Shir Reen ChiaUniversity of Nottingham, Malaysia Campus | nottingham · Department of Chemical and Environmental Engineering
Shir Reen Chia
Doctor of Philosophy in Chemical Engineering
About
55
Publications
20,743
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,851
Citations
Introduction
Shir Reen Chia currently works at University of Malaya and University of Nottingham Malaysia Campus. Shir Reen does research in Chemical Engineering. Their most recent publication is 'Food waste compost as an organic nutrient source for the cultivation of Chlorella vulgaris'.
Additional affiliations
September 2018 - present
Publications
Publications (55)
Rapidly increasing global energy consumption has caused depletion of fossil fuels, leading to the search of alternative energy resources. One of the potential solutions is utilizing algae biomass as the source of bioenergy. To fulfil the high biomass demands for biofuel production, it is of pivotal importance to develop feasible technologies to ena...
Microalgae are considered promising feedstock for the production of biofuels and other bioactive compounds, yet there are still challenges on commercial applications of microalgae-based products. This review focuses on the economic analysis, environmental impact and industrial potential of biofuels production from microalgae. The cost of biofuels p...
In this present study, alcohol/salt liquid biphasic system was used to extract phlorotannin from brown macroalgae. Liquid biphasic system is a new green technology that integrated with various processes into one-step, by concentrating, separating and purifying the bioproduct in a unit operation. The solvent used is non-toxic and there is potential...
Microalgae, a sustainable source of multi beneficial components has been discovered and could be utilised in pharmaceutical, bioenergy and food applications. This study aims to investigate the sugaring-out effect on the recovery of protein from wet green microalga, Chlorella sorokiniana CY-1 which was assisted with sonication. A comparison of monos...
Nowadays, the pretreatment of wastewater prior to discharge is very important in various industries as the wastewater without any treatment contains high organic pollution loads that would pollute the receiving waterbody and potentially cause eutrophication and oxygen depletion to aquatic life. The reuse of seafood wastewater discharge in microalga...
The environmental damage stemming from traditional diesel begins during crude oil extraction and persists throughout its usage. The burning of fossil fuels has further deteriorate the environmental effect and added to global warming by emitting harmful substances. Moreover, the reduction of finite fossil fuel reserves due to widespread extraction h...
The continuous expending of the economy and population in modern society has caused an increase in energy usage. Currently, fossil fuels and renewable energy are used to generate energy, contributing to greenhouse gas emissions. A significant effort has been made globally to address the issue of rising emissions by boosting the usage of renewable e...
This study represents the first investigation of bio-succinic acid (bio-SA) production with methane enrichment using carbon-dioxide-fixating bacteria in the co-culture of ragi tapai and macroalgae, Chaetomorpha. Microwave irradiation has also been introduced to enhance the biochemical processes as it could provide rapid and selective heating of sub...
Future sustainable approach of bioenergy production that uses microalgae–bacteria consortium to produce bioelectricity and biofuel for industrial and daily activities.
Overgrowth of microalgae will result in harmful algae blooms that can affect the aquatic ecosystem and human health. Therefore, the quantitation of chlorophyll pigments can be used as an indicator of algae bloom. However, it is difficult to monitor the geographical and temporal distribution of chlorophyll in the aquatic environment. Accordingly, an...
Catalytic reactions in producing biofuels often face issues such as low product yield, low selectivity to preferred products and serious environmental issues which leads to the exploration of green technologies. Microwave technology is one of the green technologies that is widely applied in the field such as medical, food, signal processing or navi...
Currently, increasing energy demand due to overpopulation has provoked an urge for renewable energy sources like biodiesel. Biodiesel production from non-edible seed oils provides striking solution to the problems associated with the energy crisis. In this study, the potential of Citrus medica as a novel and non-edible seed oil (33% w/w) producing...
Waste cooking oil (WCO) is largely generated and disposed into the environment, especially in China and India, making it one of the largest pollutants in the environment. The disposal of high loads of WCO is causing many detrimental environmental problems, including blockages in the sewer, hindrance of sewage pretreatment at wastewater treatment pl...
In this study, reactive green 19 dye from wastewater was immobilized on the functionalized chitosan nanofiber membranes to treat soluble microbial proteins in biological wastewater. Polyacrylonitrile nanofiber membrane (PAN) was prepared by the electrospinning technique. After heat treatment, alkaline hydrolysis, and chemically grafted with chitosa...
High energy demand from the market due to the rapid increment of the human population worldwide has urged society to explore alternatives to replace non-renewable energy. Renewable diesel produced from biomass could be the next potential energy source for its high stability, long-term storage, and comparable performance with diesel fuels. In produc...
Researchers worldwide are always in search of sustainable and clean energy to ensure the lowest environmental impact and continuous energy supply. The population increment, severe environmental pollution with the rapid depletion of fossil fuels, and the application of biodiesel as a fuel additive have urged the community to discover cleaner energy...
Climate change due to increasing CO2 emissions from industries with severe environmental pollution from wastewater due to rising global population and production plants. Current approaches in treating wastewater and flue gases are expensive processes requiring high operating costs. Hence, efficient strategies to utilize flue gases and simultaneousl...
The ever-growing human population has resulted in the expansion of agricultural activity; evident by the deforestation of rainfoamrests as a means of acquiring fertile land for crops. The crops and fruits produced by such means should be utilized completely; however, there are still losses and under-exploitation of these produces which has resulted...
Usage of plastics in the form of personal protective equipment, medical devices, and common packages has increased alarmingly during these pandemic times. Though they have served as an excellent protection source in minimizing the coronavirus disease (COVID-19) spreading, they have still emerged as major environmental pollutants nowadays. These non...
Renewable diesel as a potential sustainable energy source in future requires catalysts to convert the feedstocks into end products. Among various type of catalysts, bimetallic catalysts are widely applied in the renewable diesel production due to their unique catalytic properties and enhanced catalytic activities, which differ from their parent mon...
Depletion of non-renewable feedstock and severe wastewater pollution due to human activities have created negative impact to living organisms. The potential solution is to implement wastewater treatment and bioelectricity production through algae-based microbial fuel cell. The algae biomass produced from microbial fuel cell could be further process...
The cathodic microalgae-based MFC converts the nutrients within wastewater and produces oxygen as oxygen supply for cathodic reactions, leading to the reduction of aeration cost. Continuous energy supplies are secured via the studied technology to solve overloaded nutrient and toxic substances discharge into environment, in a sustainable approach....
The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and env...
Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy–environment nexus as well as substitute the devoid of petroleum as the production feedstock, ther...
With the rapid urbanisation happening around the world followed by the massive demand for clean energy resources, green cities play a pivotal role in building a sustainable future for the people. The continuing depletion of natural resources has led to the development of renewable energy with algae as the promising source. The high growth rate of m...
Microalgae have great potentiality to act as reservoirs of viable bioactive compounds due to the attractive composition of high value-added compounds. Besides, lots of advantages have been reported using microalgae compared to plant-based biomolecules as it does not create food competition and has rapid growth rate. The resistant microalgae cell wa...
Since 2010, there has been an upsurge in researchers’ interest in ionic-liquid-based liquid biphasic systems (IL-based LBSs). They have been discovered to be a promising technique for separation processes due to their desirable chemical and physical properties. The theory behind the LBS is covered in this chapter to provide a better understanding o...
An integrated method of cell disruption with primary separation is discussed in this chapter. Ultrasound-assisted liquid biphasic systems (UA-LBSs) are an integrated method with adjustable parameters, including the phase forming components, conditions of ultrasound, processing time and more. The basic working principle of UA-LBSs are highlighted wi...
There has been increasing attention in osmotically driven membrane processes (ODMPs), which include forward osmosis (FO) and pressure retarded osmosis (PRO). They provide a sustainable solution against water and energy scarcity issues by utilizing the osmotic pressure difference between two water bodies, feed (low salinity) and draw solution (high...
Current practice for C-phycocyanin (CPC) extraction from fresh biomass is greatly perishable, so dried biomass is preferable for longer storage life and saving spaces for small scale industries. However, the resistance of dried biomass towards cell disruption is higher compared to fresh biomass. Therefore, this work aims to develop an effective tec...
This study focuses on the application of the liquid biphasic flotation (LBF) system for the extraction of phenolic compounds using fresh and wilted Persicaria tenella, commonly known as ‘daun kesum’ or ‘laksa leaf’. Persicaria tenella have been studied intensively due to its possession of antioxidant activities which assists in reducing the risk of...
l-Asparaginases have the potential to inhibit the formation of acrylamide, a harmful toxin formed during high temperature processing of food. A novel bacterium which produces l-asparaginase was screened. Type I l-asparaginase gene from Acinetobacter soli was cloned and expressed in Escherichia coli. The recombinant l-asparaginase had an activity of...
Forward osmosis (FO) and pressure-retarded osmosis (PRO) have gained attention recently as potential processes to solve water and energy scarcity problems with advantages over pressure-driven membrane processes. These processes can be designed to produce bioenergy and clean water at the same time (i.e., wastewater treatment with power generation)....
Green microalgae containing various bioactive compounds and macronutrients such as lipids, carbohydrates, and proteins, have attracted much attention from the global community. Microalgae has the potential to be applied in food industries due to its high protein content, rapid growth rate, and ability to survive in harsh conditions. This study pres...
Biomolecules produced by living organisms can perform vast array of functions and play an important role in the cell. Important biomolecules such as lysozyme, bovine serum albumin (BSA), and bromelain are often studied by researchers due to their beneficial properties. The application of reverse micelles is an effective tool for protein separation...
Microalgae are rich in valuable biomolecules and grow on non-arable land with rapid growth rate, which has a host of new possibility as alternative protein sources. In the present study, extraction of proteins from Chlorella vulgaris via an efficient technique, Liquid Triphasic Flotation (LTF) system, was studied. The optimized conditions in LTF sy...
The management of solid waste presents a challenge for developing countries as the generation of waste is increasing at a rapid and alarming rate. Much awareness towards the sustainability and technological advances for solid waste management has been implemented to reduce the generation of unnecessary waste. The recycling of this waste is being ap...
In this present study, microalgal phycobiliproteins were isolated and purified via potential biphasic processing technique for pharmaceutical as well as food applications. The algal pre-treatment techniques were studied to enhance the yield of microalgal phycobiliproteins from the biomass. The proposed methods were optimised to obtain the best reco...
Polyhydroxyalkanoates (PHAs), a family of biodegradable and renewable biopolymers show a huge potential as an alternative to conventional plastics. Extractive bioconversion (in situ product recovery) is a technique that integrates upstream fermentation and downstream purification. In this study, extractive bioconversion of PHAs from Cupriavidus nec...
The management of solid waste presents a challenge for developing countries as thegeneration of waste is increasing at a rapid and alarming rate. Much awareness towards thesustainability and technological advances for solid waste management has been implemented toreduce the generation of unnecessary waste. The recycling of this waste is being appli...
A green and effective method of microwave-assisted three phase partitioning (MWTPP) was developed for the extraction and purification of proteins from Chlorella vulgaris microalgae species. Five types of salts were investigated and ammonium sulphate was selected as the best to form a three phase system with t-butanol as the solvent. The optimal con...
The present study investigates the prospective of substituting inorganic medium with organic food waste compost medium as a nutrient supplement for the cultivation of Chlorella vulgaris FSP-E. Various percentages of compost mixtures were replaced in the inorganic medium to compare the algal growth and biochemical composition. The use of 25% compost...
As the world's natural fuel sources continue to deplete, the search for alternative fuel sources intensifies. A promising fuel source alternative is biofuels from microalgae, due to it being a renewable source, its wide availability, and also its high production rate. This paper reviews recent developments in microalgae culture medium, cultivation...
Various alternatives have been exploited to produce biofuels economically and to reduce the environmental impacts with sustainable biowaste management. Lipids are valuable energy rich compounds that has the potential to replace conventional fossil fuels through the production of biofuels. Oleaginous microorganisms contain significant amount of micr...
Densification of food waste compost through pelletizing is essential to increase the bulk density, expand its storability, provide ease of transportation, as well as to enable easier handling of the compost. Compost in its natural form takes up a lot of space and has a high powder dispersion rate which makes it less safe and difficult to handle. Th...