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Abstract. In this paper, we propose a new probability model, ‘asym-
metric Gaussian(AG),’ which can capture spatially asymmetric distribu-
tions. It is also extended to mixture of AGs. The values of its parameters
can be determined by Expectation-Conditional Maximization algorithm.
We apply the AGs to a pattern classification problem and show that the
AGs outperform Gaussian models.

1 Introduction

Estimation of a probability density function(pdf) of the patterns in given data
set is a very important task for pattern recognition [1], data mining and so on.
Single Gaussian and mixtures of Gaussians are most popular probability models,
and they are used for many applications [2]. However, they do not always fit any
distribution of patterns, so it is meaningful to provide another probability model
which can be chosen instead of single/mixture Gaussian model.

In this paper, we propose a new probability model, ‘asymmetric Gaussian(AG),’
which is an extension of Gaussian. The AG can capture spatially asymmetric
distributions. In the past, ‘Asymmetric Mahalanobis Distance(AMD), ’ was in-
troduced [3] and it was applied to handwritten Chinese and Japanese character
recognition. The AMD can measure a spatially asymmetrical distance between
an unknown pattern and the mean vector of a class and shows excellent classifica-
tion performance. However, the AMD is suitable only for an unimodal distribu-
tion, so the range of its application is necessarily somewhat limited. Meanwhile,
since our model is formulated by a density function, it is easy to be extended
to mixture model, which can capture multi-modal distributions. Moreover, due
to its probabilistic formulation, we can develop a wide variety of extensions in a
theoretically well-appointed setting.

The remainder of the paper is organized as follows. In the next section, we
introduce the concept of latent variable model of single Gaussian model. In
section 3 we then propose the AG model by extending the framework to the
asymmetric version. Next we extend the AG to mixture models in Section 4.
Section 5 presents its maximum likelihood estimation algorithm. In section 6
we show empirically that the mixture of AGs captures clusters of patterns, each
of which are distributed asymmetrically. In section 7 we apply AG models to
pattern recognition and present results using a real-world data sets. The final
section presents our conclusions.
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2 A View of Single Gaussian

In this section we introduce a view of single Gaussian by a latent variable model.
The goal of the latent variable model is to extend the representation for asym-
metric distribution. We consider that single Gaussian has a d-dimensional latent
variable z related to an observed data x in d-dimensional space. The i-th ele-
ment of the latent variable, zi, is distributed according to the following normal
distribution N (zi; µz

i , σ
2
i ) with mean µz

i and variance σ2
i :

N (zi; µz
i , σ

2
i ) =

1√
2πσ2

i

exp
(
− (zi − µz

i )2

2σ2
i

)
. (1)

The Gaussian-distributed observed data vector x is generated by rotating z via
an orthonormal matrix Φ = [φ1, · · · ,φd] ∈ Rd×d as follows:

x = Φz. (2)

The pdf of the observed variable x is consequently given by:

p(x) =
∫

p(x|z)
d∏

i=1

N (zi; µz
i , σ

2
i )dzi (3)

=
d∏

i=1

N (φT
i x; µz

i , σ
2
i ). (4)

The last equality follows because the conditional density of x given z is p(x|z) =∏d
i=1 δ(φT

i x− zi) where δ(·) is the Dirac’s delta function.
Next, we show an arbitrary Gaussian can be represented by the latent variable

model. The observation variable x is assumed to be distributed according to a
Gaussian N (µx, Σx) ( the mean is µx and the covariance matrix is Σx). The
pdf of the Gaussian can be rewritten as

N (x;µx, Σx) =
d∏

i=1

N (ψT
i x;ψT

i µ
x, λi) (5)

where λi and ψi denote i-th eigenvalue of the covariance matrix Σx and the
corresponding eigenvector, respectively. By comparison between the formulae (4)
and (5), it is shown that the above-mentioned latent variable model represents
any Gaussian distribution by letting φi = ψi, µz

i = ψT
i µ

x, σ2
i = λi.

3 Asymmetric Gaussian

We now introduce an asymmetric Gaussian(AG) model by extending the latent
variable model.

In the same manner as Gaussian, the d-dimensional AG has a latent variable
z ∈ Rd and the observation variable x is modeled using z and an orthonormal
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Fig. 1. Univariate Gaussian and univariate asymmetric Gaussian.

matrix Φ ∈ Rd×d: x = Φz. The different point between the AG and the Gaussian
is the distribution of the latent variable z. We choose the following distribution
of each element of z:

A(zi; µz
i , σ

2
i , ri) ≡ 2√

2π

1√
σ2

i (ri + 1)




exp
(
− (zi−µz

i )2

2σ2
i

)
if zi > µz

i ,

exp
(
− (zi−µz

i )2

2r2
i
σ2

i

)
otherwise,

(6)

where µz
i ,σ2

i and ri are parameters of A(zi; µz
i , σ

2
i , ri). We term the density model

(6) ‘univariate asymmetric Gaussian(UAG).’ It is shown that UAG have an
asymmetric distribution by the Figure 1(b) where the density function is plotted.
In addition, UAG is an extension of Gaussian since UAG with ri = 1 is equivalent
to Gaussian.

The pdf of AG is given by:

p(x) = A(x; Θ) ≡
∫

p(x|z)
d∏

i=1

A(zi; µz
i , σ

2
i , ri)dzi (7)

=
d∏

i=1

A(φT
i x; µz

i , σ
2
i , ri), (8)

where Θ = {φi, µ
z
i , σ

2
i , ri}d

i=1 is the set of the adaptive parameters.

4 Mixture of Asymmetric Gaussians

Due to the definition of the density model, it is straightforward to consider a
mixture of AG, which is able to model complex data structures with a linear
combination of local AGs. The overall density of the K-component mixture
model is written by

p(x) =
K∑

k=1

πkA(x; Θ(k)) (9)
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where A(x; Θ(k)) is the kth local AG, with its own set of independent parameters,
Θ(k) = {φi,k, µz

i,k, σ2
i,k, ri,k}d

i=1, and {πk}K
k=1 are mixing proportions satisfying

0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1.

5 The EM Algorithm for Maximum Likelihood
Estimation

Optimal values of the parameters of each local AG, {Θ(k)}, and mixing propor-
tions {πk} are unable to be obtained in the closed form, and here we describe the
formulae using Expectation-Maximization(EM) algorithm [4], [5] which provides
a numerical method for estimating these maximum likelihood parameters. Given
a data set {xn}N

n=1, the log-likelihood function is given by

L =
N∑

n=1

log
K∑

k=1

(
πkA(xn; Θ(k))

)
. (10)

The maximization of the log-likelihood can be regarded as a missing-data prob-
lem in which the identity k of the component that has generated each pattern
xn is unknown.

In the E-step, we compute the posterior probability hnk, called responsibility,
of each local AG component k for generating pattern xn using the current values
of Θ(k) and πk:

hnk = P̂ (k|xn) =
πkA(xn; Θ(k))∑
k′ πk′A(xn; Θ(k′))

. (11)

In the M-step, the quantity of the expected complete-data log-likelihood which
is given by

〈Lcomp〉 =
N∑

n=1

K∑
k=1

hnk

(
logA(xn; Θ(k)) + log πk

)
(12)

is maximized with respect to {Θ(k), πk}K
k=1. The following updates of {πk} max-

imize the quantity of the term containing {πk} in (12) with subject to the con-
straint

∑K
k=1 πk = 1:

πk =
1
N

N∑
n=1

hnk. (13)

Although the parameter set of each local AG, Θ(k) = {φi,k, µz
i,k, σ2

i,k, ri,k}d
i=1,

must also be found so that it maximizes the expected complete-data log-likelihood
in the standard EM algorithm, it is not tractable to compute both Φk and the
other parameters simultaneously. We therefore use a two-stage procedure. In
the first stage of the M-step,

⋃
i,k{µz

i,k, σ2
i,k, ri,k} is held constant, and the or-

thonormal matrix Φk = {φi,k} is updated so as to increase 〈Lcomp〉 in (12). In
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the second stage, we find the optimal parameters of each UAG in each local
AG, µz

i,k,σ2
i,k and ri,k, keeping the orthonormal matrix Φk constant. This proce-

dure performs only partial maximization, however, the partial maximization of
〈Lcomp〉 also guarantees the log-likelihood not to decrease during each iteration.
Such a strategy is called generalized Expectation-Maximization(GEM) algorithm
[4], [6]. The proposed maximum likelihood(ML) estimation scheme is an example
of Expectation-Conditional Maximization(ECM) algorithm [7], which is a sub-
class of GEM algorithms. Further details concerning the two-stage procedure
can be seen in Appendix.

The ML estimation algorithm is summarized as follows:

begin
repeat
{ E-step }
Evaluate responsibilities (11);
{ M-step }
Update mixing proportions using (13);
foreach ∀k begin

Update the orthonormal matrix Φk with {µz
i,k, σ2

i,k, ri,k}d
i=1 fixed;

Find the optimal values of {µz
i,k, σ2

i,k, ri,k}d
i=1 with Φk fixed

end;
until the convergence of L

end.

6 Simulations

We applied the ML estimation algorithm mentioned in the previous section
for AG model to a problem involving 229 hand-crafted data points in the 2-
dimensional space shown in Figure 2.

Figure 2(b) shows the results using three components. We also fitted the
mixture of (standard) Gaussians for comparison (Figure 2(a)). The ellipse in
(a) denotes the set of points that have the same Mahalanobis distance from the
mean of each component, and the cross point in each ellipse lies on the mean.
Similarly the loop in (b) denotes the set of points satisfying the values of the
exponent of each local AG equal to one, and the cross point in each ellipse lies
on the point (µz

1,k, µz
0,k). The AG captures the asymmetric distribution, which

cannot be done by the Gaussian intrinsically. Although it might seem that AG
tends to over-fit to the data set, we expect that this problem could be overcome
by evidence framework [8].

7 Application to Pattern Recognition

In this section, we first present how to apply mixture of AGs to pattern recogni-
tion, and then show the experimental results on character recognition problem.
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Fig. 2. Comparison between Mixture of Gaussians and Mixture of Asymmetric Gaus-
sians.

In the training stage, we estimate the density function of each class w, p(x|w),
using the ML estimation algorithm. In the classification stage, we find the class
which has the largest posterior class probability:

P (w|x) =
p(x|w)P (w)∑

w′ p(x|w′)P (w′)
(14)

where the prior class probability P (w) is assumed to be non-informative.
We have tested the method in the public database ‘Letter’ [9] obtained from

the UCI Machine Learning repository. The data contain 20,000 instances ex-
tracted from character images. Each of them has 16 features. The number of
classes is 26. The database is partitioned into five almost equal subsets. In ro-
tation, four subsets are used to train the AG parameters of each class and the
trained AGs are tested on the remaining subset. In this experiment, we choose
K = 1 for each class, that is, non-mixture AG models are used. For comparison,
we also test Gaussians.

The accuracy on each subset is plotted in Figure 3. The ‘average’ in the
figure is obtained by the ratio of the sum of the numbers classified correctly
on each subset to the number of all instances. AGs improve in classification
performance on every subset and AGs obtain 88.14% ‘average’ accuracy while
Gaussians obtain 87.71%. It can be considered that AGs capture the distribution
of patterns more precisely than Gaussians.

8 Conclusion

In this paper, we proposed a new probability density model, asymmetric Gaus-
sian, which can fit the spatially asymmetric distribution, and extended it to
mixture model. We also developed an algorithm of the maximum likelihood es-
timation for mixture of AGs using the Expectation-Conditional Maximization
technique and it was applied to a two-dimensional problem. We also applied the
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Fig. 3. Experimental results on the database ‘Letter’.

AGs to character classification problem and showed that the AGs outperform
Gaussian models.

Appendix: M-step in the EM algorithm

We now describe the details about how to update the parameters of mixture
of AGs, Θ(k), in the M-step. We use a two-stage procedure to update Θ(k)

which increases the expected complete-data log-likelihood function. The two-
stage procedure runs as follows: (1) Update the orthonormal matrix Φk with
remaining parameters {µz

i,k, σ2
i,k, ri,k}d

i=1 fixed. (2) Update {µz
i,k, σ2

i,k, ri,k}d
i=1

with Φk fixed.

(1) Update Φk with {µz
i;k
, σ2

i;k
, ri;k}d

i=1 fixed

We compute Φk
new as follow:

Φk
new = Φk

old + η
∂ 〈Lcomp〉

∂Φk

∣∣∣∣
Φk=Φk

old

(15)

where η is the learning constant and Φk
old denotes the old value of Φk. Note that

there is no constraint to ensure that Φk
new in (15) will result in an orthonormal

matrix. Therefore, after updating, we modify Φk
new by using Gram-Schmidt or-

thonormalization procedure. Then the log-likelihood L using Φk
new is evaluated.

If L improves, Φk
new is chosen as the new value of Φk. If not, Φk is not updated.

(2) Update {µz
i;k, σ

2
i;k, ri;k} with Φk fixed

The expected complete-data log-likelihood function can be factorized by Qi,k’s:

〈Lcomp〉 =

(
K∑

k=1

d∑
i=1

Qi,k

)
+

(
N∑

n=1

K∑
k=1

hnk log πk

)
, (16)
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where

Qi,k =
N∑

n=1

hnk logA
(

(φk
i )Txn; µz

i,k, σ2
i,k, ri,k

)
. (17)

Note that Qi,k depends only on three parameters, µz
i,k, σ2

i,k and ri,k. The above
factorization permits us to find the optimal values of {µz

i,k, σ2
i,k, ri,k} separately

so that Qi,k is maximized. However, it is intractable to maximize Qi,k with
respect to the triple {µz

i,k, σ2
i,k, ri,k} simultaneously. So each of Qi,k is maximized

sequentially with respect to each of parameters by the following iterative scheme:
begin

repeat
Find the optimal value of µz

i,k with σ2
i,k and ri,k fixed;

Find the optimal value of ri,k with σ2
i,k and µz

i,k fixed;
Find the optimal value of σ2

i,k with µz
i,k and ri,k fixed;

until the convergence of Qi,k

end.
Each maximization step is performed by finding the value of µz

i,k, σ2
i,k, ri,k so

that ∂Qi,k

∂µz
i,k

= 0，∂Qi,k

∂ri,k
= 0，and ∂Qi,k

∂σ2
i,k

= 0 are satisfied, respectively. It is

straightforward to maximize Qi,k with respect to µz
i,k, σ2

i,k because the equations
are linear. ri,k is optimized by Newton-Raphson method [10] since the equation
∂Qi,k

∂ri,k
= 0 is non-linear.
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