Shingo Izawa

Shingo Izawa
Kyoto Institute of Technology · Department of Applied Biology

PhD

About

113
Publications
6,147
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,629
Citations
Citations since 2017
21 Research Items
1094 Citations
2017201820192020202120222023050100150
2017201820192020202120222023050100150
2017201820192020202120222023050100150
2017201820192020202120222023050100150
Additional affiliations
February 2009 - present
Kyoto Institute of Technology
Position
  • Professor

Publications

Publications (113)
Article
This year marks the 200th anniversary of the birth of Dr. Louis Pasteur (1822–1895), who revealed that alcoholic fermentation is performed by yeast cells. Subsequently, details of the mechanisms of alcoholic fermentation and glycolysis in yeast cells have been elucidated. However, the mechanisms underlying the high tolerance and adaptability of yea...
Article
Background Although the budding yeast, Saccharomyces cerevisiae, produces ethanol via alcoholic fermentation, high-concentration ethanol is harmful to yeast cells. Severe ethanol stress (> 9% v/v) inhibits protein synthesis and increases the level of intracellular protein aggregates. However, its effect on proteolysis in yeast cells remains largely...
Article
Full-text available
Winemaking is a dynamic and complex process in which ethanol concentrations gradually increase to reach >10% (vol/vol) through alcoholic fermentation. However, there is little information on protein damage in wine yeast during winemaking.
Article
Severe ethanol stress (>9% v/v) induces pronounced translation repression in yeast cells. However, some proteins, which are exceptionally synthesized even under translation repression, play important roles in ethanol tolerance. These proteins are expected to provide important clues for elucidating the survival strategies of yeast cells under severe...
Article
Acute severe ethanol stress (10% v/v) damages proteins and causes the intracellular accumulation of insoluble proteins in Saccharomyces cerevisiae . On the other hand, a pretreatment with mild stress increases tolerance to subsequent severe stress, which is called acquired stress resistance. It currently remains unclear whether the accumulation of...
Article
Mechanical stresses including high hydrostatic pressure elicit diverse physiological effects on organisms. Gtr1/Gtr2 and Ego1/Ego3, central regulators of the TOR complex 1 (TORC1) nutrient signaling pathway, are required for the growth of Saccharomyces cerevisiae cells under high pressure. Here, we showed that a pressure of 25 MPa stimulates TORC1...
Article
Saccharomyces cerevisiae shows similar responses to heat shock and ethanol stress. Cells treated with severe ethanol stress activate the transcription of HSP genes and cause the aggregation of Hsp104-GFP, implying that severe ethanol stress as well as heat shock causes the accumulation of denatured proteins in yeast cells. However, there is current...
Article
Since cold atmospheric pressure plasma (CAP) has not only bactericidal activity but also fungicidal activity without toxic residues and thermal damage, it is considered as an alternative method for sterilization of fungi on the surfaces of perishable foodstuffs and human bodies. Aureobasidium pullulans is a ubiquitous yeast-like fungus and called b...
Article
Organic solvent-resistant microorganisms are strongly desired for efficient fermentative production of hydrophobic substances in water-organic solvent two-phase systems. To improve organic solvent-resistance of microorganisms, a better understanding of the effects of organic solvents on microbial cells and cellular responses to organic solvents is...
Article
Full-text available
Acute high-concentration ethanol (> 9% v/v) has adverse effects on Saccharomyces cerevisiae, including the remarkable repression of bulk mRNA translation. Therefore, increased mRNA levels do not necessarily lead to an increase in the corresponding protein levels in yeast cells under severe ethanol stress. We previously identified that synthesis of...
Article
The biochemical processes and enzymes responsible for glycolysis and alcoholic fermentation by the yeast S. cerevisiae have long been the subject of scientific research. Nevertheless, the factors determining fermentation performance in vivo are not fully understood. As a result, the industrial breeding of yeast strains has required empirical charac...
Preprint
Sake yeast strain Kyokai no. 7 (K7) and its Saccharomyces cerevisiae relatives carry a homozygous loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase. Disruption of RIM15 in non-sake yeast strains leads to improved alcoholic fermentation, indicating that the defect in Rim15p is associated with the enhanced f...
Article
Short-term exposure to severe ethanol stress has adverse effects on yeast cells. However, limited information is available on the effects of long-term exposure to severe ethanol stress. In this study, we examined the effects of a long-term treatment with a high ethanol concentration (10% v/v) on yeast morphology. We found that long-term severe etha...
Chapter
As their transcription site (nucleus) and translation site (cytoplasm) are separated by the nuclear membrane, eukaryotic microorganisms such as yeast and Aspergillus undergo gene expression regulation differently from prokaryotic microorganisms such as Escherichia coli. In eukaryotic microorganisms, mRNAs synthesized in the nucleus are transported...
Book
The focus of this book is to introduce up-to-date information on applications and practical use of RNA for agriculture, biotechnology and medicine. It provides unique ideas, tools, and methods in detail from a variety of scientific and technical disciplines. RNA science has progressed enormously in recent decades, and vast amounts of information on...
Article
Vanillin, furfural, and 5‐hydroxymethylfurfural (HMF) are representative fermentation inhibitors generated during the pretreatment process of lignocellulosic biomass in bioethanol production. These biomass conversion inhibitors, particularly vanillin, are known to repress translation activity in Saccharomyces cerevisiae. We have reported that the m...
Article
Full-text available
Cold atmospheric pressure plasma (CAP) does not cause thermal damage or generate toxic residues; hence, it is projected as an alternative agent for sterilization in food and pharmaceutical industries. The fungicidal effects of CAP have not yet been investigated as extensively as its bactericidal effects. We herein examined the effects of CAP on yea...
Article
Heme plays a role in the regulation of the expression of genes related to circadian rhythms and heme metabolism. In order to identify new heme-regulated proteins, an RNA sequence analysis using mouse NIH3T3 cells treated without or with 5-aminolevulinic acid (ALA) was performed. Among the changes observed in the levels of various mRNAs including he...
Article
Full-text available
Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded pr...
Article
Lignocellulosic biomass conversion inhibitors such as vanillin, furfural, and 5-hydroxymethylfurfural (HMF) inhibit the growth of and fermentation by Saccharomyces cerevisiae. A high concentration of each fermentation inhibitor represses translation and increases non-translated mRNAs. We previously reported that the mRNAs of ADH7 and BDH2, which en...
Article
Background: The degradation of heme significantly contributes to cytoprotective effects against oxidative stress and inflammatory. The enzyme heme oxygenase-1 (HO-1), involved in the degradation of heme, forms carbon monoxide (CO), ferrous iron, and bilirubin in conjunction with biliverdin reductase, and is induced by various stimuli including oxi...
Article
Full-text available
Epigenetic regulation in starvation is important but not fully understood yet. Here we identified the Rpd3 gene, a Drosophila homolog of histone deacetylase 1, as a critical epigenetic regulator for acquiring starvation stress resistance. Immunostaining analyses of Drosophila fat body revealed that the subcellular localization and levels of Rpd3 dy...
Data
Rpd3 and Tip60 knockdown efficiency in fat bodies of FB-GAL4>UAS-Rpd3JF01401IR and FB-GAL4> UAS-Tip60GL00130IR flies. A. Western immunoblot analysis. Fat bodies from adult flies, Canton S (WT) or Rpd3 knockdown flies, FB> Rpd3RNAi (w; Fb-GAL4 /+; HDAC1JF01401/+) starved for 3 h and 6 h were analyzed by Western blot using anti-Rpd3 IgG. Two bands we...
Data
Viability of the Rpd3 knockdown and Rpd3 overexpressing flies under starvation stress. Percent survival of adult male flies at indicated hours starved are shown. FB-GAL4>UAS-Rpd3JF01401 IR (w; Fb-GAL4 /+; HDAC1JF01401/+), FB-GAL4>UAS-Rpd3GL01005 IR (w; Fb-GAL4 / HDAC1GL01005), FB-GAL4>UAS-Rpd3 (w; Fb-GAL4 / HDAC1Scer/UAS:SV5/V5), control (w; Fb-GAL...
Article
Full-text available
Post-transcriptional upregulation is an effective way to increase the expression of transgenes and thus maximize the yields of target chemicals from metabolically engineered organisms. Refractory elements in the 3′ untranslated region (UTR) that increase mRNA half-life might be available. In Saccharomyces cerevisiae, several terminator regions have...
Article
Full-text available
Cold atmospheric pressure plasma (CAP) has potential to be utilized as an alternative method for sterilization in food industries without thermal damage or toxic residues. In contrast to the bactericidal effects of CAP, information regarding the efficacy of CAP against eukaryotic microorganisms is very limited. Therefore, herein we investigated the...
Article
Full-text available
Severe ethanol stress (>9% ethanol, v/v) as well as glucose deprivation rapidly induces a pronounced repression of overall protein synthesis in budding yeast Saccharomyces cerevisiae. Therefore, transcriptional activation in yeast cells under severe ethanol stress does not always indicate the production of expected protein levels. Messenger RNAs of...
Article
Full-text available
Vanillin is a potent fermentation inhibitor derived from the lignocellulosic biomass in biofuel production, and high concentrations of vanillin result in the pronounced repression of bulk translation in Saccharomyces cerevisiae. Studies on genes that are efficiently translated even in the presence of high concentrations of vanillin will be useful f...
Article
Epidemiological studies have suggested that an excess intake of trans-unsaturated fatty acids increases the risk of coronary heart disease. However, the mechanisms of action of trans-unsaturated fatty acids in eukaryotic cells remain unclear. Since the budding yeast Saccharomyces cerevisiae can grow using fatty acids as the sole carbon source, it i...
Article
Heme is degraded by heme oxygenase to form iron, carbon monoxide (CO), and biliverdin. However, information about the catabolism of heme in erythroid cells is limited. We showed the production and export of bilirubin in murine erythroleukemia (MEL) cells. The production of bilirubin by MEL cells was enhanced when heme synthesis was increased. When...
Article
Full-text available
Vanillin is one of the major phenolic aldehyde compounds derived from lignocellulosic biomass and acts as a potent fermentation inhibitor to repress the growth and fermentative ability of yeast. Vanillin can be reduced to its less toxic form, vanillyl alcohol, by the yeast NADPH-dependent medium chain alcohol dehydrogenases, Adh6 and Adh7. However,...
Article
Yeast is a eukaryotic cell in which transcription (the nucleus) is separated from translation (the cytoplasm) by the nuclear membrane. The synthesized mRNA of yeast is translated through various steps, such as intranuclear processing and nuclear export. Various cytoplasmic processes, such as mRNA degradation and the formation of mRNP granules, are...
Article
Yro2 and its paralogous protein Mrh1 of Saccharomyces cerevisiae have seven predicted transmembrane domains and predominantly localize to the plasma membrane. Their physiological functions and regulation of gene expression have not yet been elucidated in detail. We herein demonstrated that MRH1 was constitutively expressed, whereas the expression o...
Article
We investigated yeast strains used in Cameroonian microbreweries, and identified a Saccharomyces cerevisiae strain (OCY3) with an excellent capacity for alcoholic fermentation. OCY3 showed higher tolerance to lactic acid and better fermentation performance under acidic conditions than a representative Japanese sake yeast, Kyokai No. 7, and a wine y...
Article
Vanillin is derived from lignocellulosic biomass and, as one of the major biomass conversion inhibitors, inhibits yeast growth and fermentation. Vanillin was recently shown to induce the mitochondrial fragmentation and formation of mRNP granules such as processing bodies and stress granules in Saccharomyces cerevisiae. Furfural, another major bioma...
Article
The formation of cytoplasmic mRNA-protein complex granules termed 'processing bodies and stress granules' is often induced in the stress responses of eukaryotic cells. Most previous studies on stress granules have focused on the response to a single type of stress, and little information is available about the response to combined stress. Additiona...
Article
Vanillin and furfural are derived from lignocellulosic biomass and inhibit yeast growth and fermentation as biomass conversion inhibitors. Furfural has been shown to induce oxidative stress in Saccharomyces cerevisiae. Since there has been no report on the relationship between vanillin and oxidative stress, we investigated whether vanillin caused o...
Article
Full-text available
Vanillin, generated by acid hydrolysis of lignocellulose, acts as a potent inhibitor of the growth of the yeast Saccharomyces cerevisiae. Here, we investigated the cellular processes affected by vanillin using high-content, image-based profiling. Among 4,718 non-essential yeast deletion mutants, the morphology of those defective in the large riboso...
Data
Features of morphological changes of Δhis3 (ERG6) and Δerg6 mutant cells after treatment with vanillin. Δhis3 and Δerg6 cells were grown in YPD medium with various concentration of vanillin, and the fluorescence images were analyzed as described for Figure 1. The experiments were repeated five times. Z values of Jonckheere–Terpstra test for each pa...
Data
List of parameters detected by Jonckheere-Terpstra test at P<0.01. (XLS)
Data
The assembly of cytoplasmic processing bodies (P-bodies) after treatment with vanillin. Assembly was confirmed using other components of P-bodies. Cells were treated with 0–50 mM vanillin for 30 min or deprived of glucose (- Glc) for 15 min. (TIF)
Data
The assembly of stress granules (SGs) after treatment with vanillin. Assembly was confirmed using other SG components. Cells were treated with 0–50 mM vanillin for 30 min, deprived of glucose (- Glc) for 15 min, or administered robust heat shock at 46°C for 10 min. (TIF)
Data
List of strains having morphological profiles similar with that of the vanillin treated cells. (XLS)
Data
Vanillin concentration in culture of Δhis3, Δadh6 and Δadh7 cells. Δhis3 (open circles), Δadh6 (closed diamonds), and Δadh7 (closed circles) cells were pre-cultured in YPD and inoculated at a concentration of 2×106 cells/ml into YPD containing 2.5 mM vanillin. Supernatants were collected at the indicated time point and vanillin concentrations were...
Data
List of strains used in this study. (XLS)
Article
Full-text available
Various forms of stress can cause an attenuation of bulk translation activity and the accumulation of nontranslating mRNAs into cytoplasmic messenger RNP (mRNP) granules termed processing bodies (P-bodies) and stress granules (SGs) in eukaryotic cells. Furfural and 5-hydroxymethylfurfural (HMF), derived from lignocellulosic biomass, inhibit yeast g...
Article
The stress response of eukaryotic cells often causes an attenuation of bulk translation activity and the accumulation of non-translating mRNAs into cytoplasmic mRNP (messenger ribonucleoprotein) granules termed cytoplasmic P-bodies (processing bodies) and SGs (stress granules). We examined effects of acidic stress on the formation of mRNP granules...
Article
The HSP30 gene of the budding yeast Saccharomyces cerevisiae encodes a seven-transmembrane heat shock protein expressed in response to various types of stress including heat shock. Although Hsp30p contains a potential N-glycosylation consensus sequence (Asn(2)-Asp(3)-Thr(4)), whether it is actually N-glycosylated has not been verified. Here we demo...
Article
Full-text available
Diabetes mellitus is characterized by an impairment of glucose uptake even though blood glucose levels are increased. Methylglyoxal is derived from glycolysis and has been implicated in the development of diabetes mellitus, because methylglyoxal levels in blood and tissues are higher in diabetic patients than in healthy individuals. However, it rem...
Article
Gpx2, one of three glutathione peroxidase homologs (Gpx1, Gpx2, and Gpx3) in Saccharomyces cerevisiae, is an atypical 2-Cys peroxiredoxin that prefers to use thioredoxin as a reducing agent in vitro. Despite Gpx2 being an antioxidant, no obvious phenotype of gpx2Δ mutant cells in terms of oxidative stress has yet been found. To gain a clue as to Gp...
Article
Stress granules (SGs) and processing bodies (P bodies) are cytoplasmic domains and play a role in the control of translation and mRNA turnover in mammalian cells subjected to environmental stress. Recent studies have revealed that SGs also form in the budding yeast Saccharomyces cerevisiae in response to glucose depletion and robust heat shock. How...
Article
We have previously reported that the cultivation of yeast cells with soy peptides can improve the tolerance of yeast to freeze-thaw stress (Izawa et al. Appl Microbiol Biotechnol 75:533-538, 2007), indicating that soy peptides can modify the characteristics of yeast cells. To gain a greater understanding of the potencies of soy peptides, we further...
Article
Although ethanol and osmotic stress affect the vacuolar morphology of Saccharomyces cerevisiae, little information is available about changes in vacuolar morphology during the processes of wine making and Japanese sake (rice wine) brewing. Here, we elucidated changes in the morphology of yeast vacuoles using Zrc1p-GFP, a vacuolar membrane protein,...
Article
Full-text available
Methylglyoxal is a ubiquitous 2-oxoaldehyde derived from glycolysis. Previously, we have reported that methylglyoxal attenuates the rate of overall protein synthesis in Saccharomyces cerevisiae through phosphorylation of the alpha subunit of translation initiation factor 2 (eIF2alpha) in a Gcn2-dependent manner. Phosphorylation of eIF2alpha impedes...
Article
Full-text available
Although methylglyoxal is derived from glycolysis, it has adverse effects on cellular function. Hence, the intrinsic role of methylglyoxal in vivo remains to be determined. Glyoxalase 1 is a pivotal enzyme in the metabolism of methylglyoxal in all types of organisms. To learn about the physiological roles of methylglyoxal, we have screened conditio...
Article
Post-transcriptional regulation as well as transcriptional regulation plays an important role in the expression of genes under stressed conditions in Saccharomyces cerevisiae. Under stressed conditions caused by heat shock or ethanol, yeast cells alter not only their transcriptional patterns but also the types of mRNA to be exported from the nucleu...
Article
Full-text available
Saccharomyces cerevisiae has three homologues of the glutathione peroxidase gene, GPX1, GPX2, and GPX3. We have previously reported that the expression of GPX3 was constitutive, but that of GPX2 was induced by oxidative stress and CaCl(2), and uncovered the regulatory mechanisms involved. Here, we show that the expression of GPX1 is induced by gluc...
Article
The selective export of mRNA from the nucleus plays an important role in the regulation of yeast gene expression under ethanol-stressed conditions, and it has been clarified that expression of the transcriptionally activated HSP (heat-shock protein) genes are inhibited in the mRNA processing and export steps. In actual alcoholic fermentation, durin...
Article
Methylglyoxal is a ubiquitous 2-oxoaldehyde derived from glycolysis. Although an endogenous metabolite, methylglyoxal at high concentrations has deleterious effects on cellular functions. Since pretreatment of Saccharomyces cerevisiae cells with methylglyoxal at a low concentration alleviates the toxicity of a subsequent lethal concentration of thi...
Article
Strains of wine yeast are differentiated based on their ability to ferment grape juice. To advance enology and food technology, many efforts have been invested in the detection and breeding of yeast with high fermentation ability. In this study, we investigated the enological character of 96 yeast strains isolated from spontaneously fermented botry...
Article
Under conditions of heat shock at 42 degrees C, mRNAs of HSP (heat shock protein) genes are exported out of the nucleus, whereas bulk poly(A)(+) (polyadenylated) mRNA shows a nuclear accumulation in Saccharomyces cerevisiae. Such a selective mRNA export seems an efficacious strategy of yeast cells to adapt rapidly to stress. Although ethanol stress...
Article
Recent studies have revealed that cytoplasmic processing bodies (P-bodies) play important roles in the control of eukaryotic gene expression in response to stress. Since the formation of P-bodies is in dynamic competition with translation, the status of translation is reflected in the assembly and disassembly of P-bodies in eukaryotic cells. During...
Article
Methylglyoxal, a ubiquitous metabolite derived from glycolysis has diverse physiological functions in yeast cells. Previously, we have reported that extracellularly added methylglyoxal activates Spc1, a stress-activated protein kinase (SAPK), in the fission yeast Schizosaccharomyces pombe [Y. Takatsume, S. Izawa, Y. Inoue, J. Biol. Chem. 281 (2006)...
Article
Thioredoxin is crucial for the maintenance of the redox status of cells of all types. Mammalian thioredoxin is secreted from various types of cells, although the mechanism underlying has not yet been clarified. Previously, we demonstrated that thioredoxin was released from Saccharomyces cerevisiae after treatment with ethanol. In this paper, we sho...
Article
The tolerance to freeze-thaw stress of yeast cells is critical for frozen-dough technology in the baking industry. In this study, we examined the effects of soy peptides on the freeze-thaw stress tolerance of yeast cells. We found that the cells cultured with soy peptides acquired improved tolerance to freeze-thaw stress and retained high leavening...
Article
Full-text available
Thioredoxin, an antioxidant protein, is a promising molecule for development of functional foods because it protects the gastric mucosa and reduces the allergenicity of allergens. To establish a method for obtaining an ample amount of yeast thioredoxin, we found here that thioredoxin is released from Saccharomyces cerevisiae by treatment with 20% e...
Article
Since it seems quite difficult for frozen cells to repair the damage caused by freezing, the adequate responses appear to be induced during and/or after the thawing process to recover from the damage due to freezing. In this study, the cellular events happening upon the return from freezing at -30 degrees C to a growth temperature (28 degrees C) we...
Article
Full-text available
Epigallocatechin gallate (EGCG) is the most abundant polyphenolic flavonoid in green tea. Catechin and its derivatives, including EGCG, are widely believed to function as antioxidants. Here we demonstrate that both EGCG and green tea extract (GTE) cause oxidative stress-related responses in the budding yeast Saccharomyces cerevisiae and the fission...
Article
Yeast Asr1 is the first reported protein whose intracellular distribution changes specifically in response to alcohol (Betz et al. (2004) J Biol Chem 279:28174-28181). It was reported that Asr1 is required for tolerance to alcohol and plays an important role in the alcohol stress response. Therefore, Asr1 is of interest to brewers and winegrowers a...
Article
Full-text available
Methylglyoxal (MG) is a typical 2-oxoaldehyde derived from glycolysis. We have recently found that MG activates transcription factors such as Yap1 and Msn2, and triggers a Hog1 mitogen-activated protein kinase cascade in Saccharomyces cerevisiae. Regarding the activation of Hog1 by MG, we found that Sln1, an osmosensor possessing histidine kinase a...
Article
Full-text available
We have previously reported that Saccharomyces cerevisiae has three glutathione peroxidase homologues (GPX1, GPX2, and GPX3) (Inoue, Y., Matsuda, T., Sugiyama, K., Izawa, S., and Kimura, A. (1999) J. Biol. Chem. 274, 27002–27009). Of these, the GPX2 gene product (Gpx2) shows the greatest similarity to phospholipid hydroperoxide glutathione peroxida...
Article
Ethanol affects the nuclear export of mRNA in a similar way to heat shock in Saccharomyces cerevisiae. We recently reported that the nuclear accumulation of Rat8 caused by ethanol stress correlates well with blocking of the export of bulk poly(A)(+) mRNA. Here, we characterize the localization of Rat8 and bulk poly(A)(+) mRNA in sake (Japanese rice...
Article
Ethanol stress affects the nuclear export of mRNA similarly to heat shock in Saccharomyces cerevisiae. However, we have little information about mRNA transport in actual alcoholic fermentation. Here we characterized the transport of mRNA during wine making and found that bulk poly(A)+ mRNA accumulated in the nucleus as fermentation progressed.
Article
Glyoxalase I is a ubiquitous enzyme that catalyzes the conversion of methylglyoxal, a toxic 2-oxoaldehyde derived from glycolysis, to S-D-lactoylglutathione. The activity of glyoxalase I in the fission yeast Schizosaccharomyces pombe was increased by osmotic stress induced by sorbitol. However, neither the mRNA levels of its structural gene nor its...
Article
Full-text available
Methylglyoxal (MG) is a ubiquitous metabolite derived from glycolysis; however, this aldehyde kills all types of cell. We analyzed the properties of MG-induced cell death of the budding yeast Saccharomyces cerevisiae. The MCA1 gene encodes a caspase homologue that is involved in H2O2-induced apoptosis in yeast, although the disruption of MCA1 did n...
Article
Full-text available
Thioredoxin (TRX) is an important antioxidant present in all types of organisms. Besides its role as an antioxidant, TRX protects the gastric mucosa due to its antiinflammatory effect. In addition, TRX decreases allergenicity; therefore, the oral administration of TRX is of considerable interest with respect to its clinical use as well as the devel...
Article
Full-text available
Methylglyoxal (MG) is a typical 2-oxoaldehyde derived from glycolysis, although it inhibits the growth of cells in all types of organism. Hence, it has been questioned why such a toxic metabolite is synthesized via the ubiquitous energy-generating pathway. We have previously reported that expression of GLO1, coding for the major enzyme detoxifying...
Article
Intracellular glycerol content affects the freeze-thaw stress tolerance of Saccharomyces cerevisiae. We have recently reported that intracellular-glycerol-enriched cells cultured in glycerol medium acquire tolerance to freeze stress and retain high leavening ability even in dough after frozen storage [Izawa et al. (2004) Appl Microbiol Biotechnol h...
Article
Glycerol is well known as a cryoprotectant similar to trehalose. However, there is little information about the effects of intracellular glycerol on the freeze-thaw stress tolerance of yeast. Through analysis of a quadruple-knockout mutant of glycerol dehydrogenase genes (ara1 Delta gcy1 Delta gre3 Delta ypr1 Delta) in Saccharomyces cerevisiae, we...
Article
Full-text available
Methylglyoxal (MG) is synthesized during glycolysis, although it inhibits cell growth in all types of organisms. Hence, it has long been asked why such a toxic metabolite is synthesized in vivo. Glyoxalase I is a major enzyme detoxifying MG. Here we show that the Yap1 transcription factor, which is critical for the oxidative-stress response in Sacc...