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Abstract: Despite having played a significant role in the Industry 4.0 era, the Internet of Things
is currently faced with the challenge of how to ingest large-scale heterogeneous and multi-type
device data. In response to this problem we present a heterogeneous device data ingestion model for
an industrial big data platform. The model includes device templates and four strategies for data
synchronization, data slicing, data splitting and data indexing, respectively. We can ingest device
data from multiple sources with this heterogeneous device data ingestion model, which has been
verified on our industrial big data platform. In addition, we present a case study on device data-based
scenario analysis of industrial big data.

Keywords: big data; internet of things; industrial internet of things; device data ingestion

1. Introduction

The Internet of Things (IoT) has been defined as communication between and integration of smart
objects (things) [1]. Nowadays, the rapid development of IoT has aroused increasing interest in a
variety of fields [2]. In the industrial field especially, more and more sensors are being incorporated
into smart products, manufacturing equipment, and production monitoring. Smart manufacturing,
which has become a vital component of manufacturing in the Industry 4.0 era, is currently facing
challenges related mainly to the following three issues:

1.  Heterogeneous data. There are different types of smart devices in an enterprise. Each device has
single-parameter or multiple-parameter sensors, resulting in the creation of heterogeneous data.
The first big challenge is how to ingest heterogeneous data.

2. Multi-source data. Apart from real-time streaming data, there are also legacy applications
managing existing devices in enterprises. It is unrealistic to expect enterprises to stop using
such applications completely. Moreover, we can analyze real-time streaming data in real-time.
As shown in Figure 1, after real-time analysis and original application, device data may be
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streaming data, file data or data in relational databases. How to ingest multi-source data is the

second big challenge.
Device data
Real time stream data
Real time analysis Original applications
Stream data File data Relational data

Figure 1. Multi-source data used as device data.

3.  Bigdata. With the development of smart manufacturing technology, it can be foreseen that the IoT
will increase the scale of data to an unprecedented level [3]. Recently, we have witnessed explosive
growth in the variety, velocity, and volume of data [4]. The era of big data has arrived [5-8].
More effective approaches for resolving record storage and queries in a big data environment
are required.

To solve the above issues, a heterogeneous device data ingestion model is urgently needed.
Unfortunately, existing models do not properly address these issues. Therefore, we propose a
heterogeneous device data ingestion model for our Industrial Big Data Platform (IBDP). IBDP is
an industrial big data platform based on a series of open source softwares for ingestion, analysis and
visualization of multi-source data [9]. The model includes device templates and four strategies for
data synchronization, data slicing, data splitting and data indexing, respectively. We can ingest device
data from multiple sources using this heterogeneous device data ingestion model, which is verified on
our IBDP. In addition, we report on a case study for a device data-based scenario analysis on the IBDP.
The main contributions of our paper are the following:

1.  We propose a heterogeneous device data ingestion model, which facilitates the ingestion and
fusion of heterogeneous data from multiple sources.

2. We provide four data processing strategies for data synchronization, data slicing, data splitting
and data indexing, respectively.

3. We implement the model on our IBDP and present a case study of data analysis after
data ingestion.

The rest of the paper is structured as follows: first, a brief overview of related work is given
in Section 2. The heterogeneous device data ingestion model is proposed in Section 3. Thereafter,
heterogeneous sensor data ingestion methods for multiple data sources are explored in Section 4.
In Section 5, the entire platform and some case studies are discussed, and finally, our conclusions are
given in Section 6.

2. Related Work

In recent years, we’ve been witnessing explosive growth in the variety, speed, and volume of
data [4]. The most fundamental challenge for the big data platform is how to explore the large volumes
and analyze the data to get the useful information or knowledge for future actions [10]. The traditional
data platforms are not sufficient in dealing with these challenges. Hadoop is now widely used due
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to its cost effective, high scalability and fault-tolerance, and now it has become the basic technology
for big data [11]. Currently, many big data platform-based HDFS have been developed such as CDH,
HDP, Hive, Cascade, etc. In our platform, HDEFS is also used to store data. Liu et al. have summarized
some of the big data platforms which have been widely used for achieving real-time availability [11].
These platforms are Hadoop Online, Storm, Flume, Spark and Spark Streaming, Kafka, Scribe, 54,
HStreaming, Impala, etc. They are leveraged in one or more situations. They are suitable for different
situations so the best effect can be achieved by integrating them.

Much research on sensor data and smart data ingestion and fusion has already been reported.
Llinas et al. provided a tutorial on data ingestion and a basis for sensor ingestion and fusion for
further study and research [12]. Regarding sensor data ingestion, various researchers have proposed
frameworks; for example, Lee ef al. presented a peer-to-peer collaboration framework for multi-sensor
data fusion in resource-rich radar networks [13]. In most of these frameworks, data can be exchanged
among different sensors. This is different from simple sensors, where data cannot be exchanged
among the different devices. Dolui et al. discussed two types of sensor data processing architectures,
namely, on-device and on-server data processing architectures [14]. Smart devices and products in the
industrial field employ the second architecture.

For unstructured data, Sawant et al. summarized the common data ingestion and streaming
patterns, namely, the multi-source extractor pattern, protocol converter pattern, multi-destination
pattern, just-in-time transformation pattern, and real-time streaming pattern [15]. At LinkedIn,
Lin Qiao et al. proposed the far more general and extensible Gobblin, which enables an organization
to use a single framework for different types of data ingestion [16]. The structure of the data they
collected is unknown, but for smart devices, the structure can be obtained if we have templates for
the devices.

There are also a few specialized open-source tools for data ingestion, such as Apache Flume,
Aegisthus, Morphlines, and so on, but these are generally used to ingest a single type of data.
For heterogeneous device data from multiple sources, we need to ingest different types of data.
Thus, we created the IBDP with a heterogeneous device data ingestion model for data from multiple
sources. Using this model, we can ingest various device data and store them in a unified format.

This paper is a substantial extension of [9] in some important aspects. First, we propose
a heterogeneous device data ingestion model, which facilitates the ingestion and fusing of
heterogeneous data from multiple sources. Second, we provide four data processing strategies for data
synchronization, data slicing, data splitting and data indexing, respectively. Third, we re-implemented
the ingestion layer of IBDP which proposed in [9] with the heterogeneous device data ingestion model
and the data processing strategies. Last, we provide more case study details.

3. Heterogeneous Device Data Ingestion Model

Device data include not only streaming data, but also data stored in relational databases and
files. We propose a heterogeneous device data ingestion model as outlined in Figure 2. The model
can receive or extract heterogeneous device from multiple sources and save them in a unified format.
Included in our heterogeneous device data ingestion model are device templates and four strategies
based on the device templates. The strategies cover data synchronization, data slicing, data splitting
and data indexing.
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Figure 2. Heterogeneous device data ingestion model.

3.1. Device Templates

Each device has sensors and each sensor has parameters. Since for a single type of device the
sensors and parameters are the same, we can manage each device with templates. As shown in
Figure 2, there are several sensor templates in each device template and there are several parameter
templates in each sensor template. For each device, sensor, or parameter template, there may be
several corresponding devices, sensors, or parameters, respectively. A device in different templates
may contain the same sensor, while a sensor in different sensor templates may contain the same
template parameter. In device templates, we need to set the main parameter, which is used for data
synchronization. A splice strategy is also needed. Since devices may be logical, we can combine some
related sensors to create a virtual device, which is also supported by the device templates.

3.2. Data Synchronization Strategy

Different sensor data in a device may be asynchronously transferred, especially in a virtual device.
Besides, data stored in a relational database or files need to be merged, if they have been split on
the basis of parameter or sensor. Thus, device data need to be synchronized. We propose a data
synchronization strategy based on the main parameter in a device template. The synchronization
strategy is given in Algorithm 1.

Algorithm 1 Data Synchronization Strategy

Receive data.
If the data are asynchronously transferred
If the data contain the main parameter
Create a new JSONODbject.
Store the data in the JSONObject according to device template.
Else
Store the data in the JSONObject, whose time is the closest to the time of the data.
End If.
Else
10.  Transform data into JSONODbject according to device template.
11. End If
12.  Output JSONODbjects once a certain number of these objects have been created.

VRN W=
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The main functions of the data synchronization strategy are data synchronization and data format
conversion. To use the data synchronization strategy, we need to set the main parameter when creating
the device template. When a device is added to the platform, the main parameter is automatically
generated according to the templates.

For data format conversion, we need to set the data mapping relationship from the data received
to the device format. For example, the format of data stored in relational databases is {deviceld, sensorld,
time, p1, p2, p3}. In the process of data ingestion, each parameter value in the data item is placed in the
corresponding position of the JSONObject. The format of a JSONObject is shown in Table 1.

Table 1. Format of JSONODbject.

{
“deviceId”: “A000000100000001”;
“deviceTemplateId”: “A0G00000L1";
“time”: 2016-01-31 18:30:06.0;
“sensorData”: [
{
“sensorId”: “BOOOOOOOOOOOOOOL”;
“parameterData”: [
{ “parameterId”: “C000000000000001"”; “value”: 10.3},
{ “parameterId”: “C000000000000002"”; “value”: 21.4},

1
+
{
“sensorId”: “BO00000000000002";
“parameterData”: [
{ “parameterId”: “C000000000000003"”; “value”: 14.2},
{ “parameterId”: “C000000000000004"; “value”: 12.2},

}l

3.3. Data Slicing Strategy

Since the device data are continuously updated, they should not be placed in a file. We propose a
data slicing strategy for the device templates. There are three slicing methods in this strategy, the first
of which is timing slicing. This method requires setting a string in the device templates, the format of
which and the included parameters are given in Table 2.

Table 2. Format of string and included parameters for timing slicing.

Parameter Description
String format  String containing five integer parameters, m h d M dw, in order, for example, 04 —1 —1 —1.
m Minute, ranging from —1 to 59 (—1 means that minute has not been set)
h Hour, ranging from —1 to 23 (—1 means that hour has not been set)
d Day of month, ranging from —1,1 to 31 (—1 means that day of month has not been set)
M Month, ranging from —1,1 to 12 (—1 means that month has not been set)
dw Day of week, ranging from —1 to 6 (—1 means that day of week has not been set;

Sunday = 0, Monday = 1, ..., Saturday = 6)
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For example, the string 0 4 —1 —1 —1 means that the data need to be sliced at 4:00 am every
day. The second method is periodic slicing, which requires setting an integer in the device templates,
denoting the length in seconds of the slicing interval. The third method involves slicing according
to a specific parameter, which needs to be set in the device templates. When the parameter changes,
the data are sliced. For instance, some devices need to slice data based on the value of a switch
sensor. The data slicing strategy is set in the device template. When a device is added to the IBDP, it is
automatically equipped with a slicing strategy. The algorithm for the data slicing strategy is given
below (Algorithm 2).

Algorithm 2 Data Slicing Strategy

1. Obtain the data slicing strategy by deviceld in JSONODbject.
2. If slicing strategy is timing slicing,

create a timer.
When the timer reaches the specified time, create a new file and transmit the old file;
Add data to the new file when the timer is sleeping.
End If.
3. If slicing strategy is periodic slicing,
create a timer.
At periodic intervals according to the timer, create a new file and transmit the old file;
add data to the new file when the timer is sleeping.
End If.
4. If slicing strategy is slicing according to specific parameter,
When the value of the specific parameter changes, create a new file and transmit the old file;
add data to the new file.
End If.

3.4. Data Splitting Strategy

In the slicing device sensor file, each data item is a JSONObject. Since the device data are
heterogeneous, it is difficult to get specific parameters to analyze despite the fact that the parameters
can only contain integer, float, Boolean or binary data. The device data could be used and analyzed
more easily if they were split into parameters. We propose a splitting strategy based on the templates.
Splitting involves two steps, the first of which is to split the file into sensor data items. Each data item
in the sensor data files is listed in Table 3. The second step is to split the sensor data files into parameter
data files. Each data item in the parameter data file is listed in Table 4.

Table 3. Format of data items in sensor data files.

{

“deviceId”: “AD0O000100000001”;

“deviceTemplateId”: “A000000L1";

“time”: 2016-01-31 18:30:06.0;

“sensorId”: “BO000OOOOOOOOOOL”;

“parameterData”: [
{ “parameterId”: “C000000000000001”; “value”: 10.3},
{ “parameterId”: “C000000000000002"; “value”: 21.4},
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Table 4. Format of data items in parameter data files.

{

“deviceld”: “A000000100000001";“deviceTemplateId”: “AGOOOOOL";
“time”: 2016-01-31 18:30:06.0;“sensorId”: “B0OOOOOOOOOOOOOL";
“parameterId”: “C000000000000001”; “value”: 10.3

}

3.5. Data Indexing Strategy

To speed up data ingestion, we propose a data indexing strategy for data saved in the Hadoop
Distributed File System (hereafter, HDFS). In each file, the format of a data item is <t, v>, where t is the
time of data generation and v is the value of the datum. When the files are created, they are indexed
using the data indexing strategy described in Figure 3, where dtID is the unique identity of the device
template, dID is the unique identity of the device, sID is the unique identity of the sensor, pID is the
unique identity of the parameter, and #y.4y, is the start time in the file. dtID, dID, sID, pID, and tyeg;, can
be obtained from the parameter data files. To save space, we use the directories of HDFS to implement
the index structure. Now, we give an example to show how to use the index. Suppose that we want to
get the data of one parameter whose identity is pID; from fyegin (tpegin is €arlier than fyeg;,» and is later
than fyegin1) 10 teng (ena is earlier than ty,,3 and is later than fpeg;,2) which is shown in Figure 3. First,
we search the identities of the sensor and device which contain the parameter pID;. The identities
are sIDj and dID;, respectively. Second, we get the device template dtID; corresponding to device
dID,. Third, we use directory /the_root_directory_to_store_device_data/stID1/dID1/sID1/pID1 to get data
of parameter pID;. Next, we get the files file; and file; (Note that the files not only contain data items
between e, and f,,4, but also contain some data items earlier than ty, or later than £,,,5). Finally,
we read data items from the files, align the data items < f,v > by t and eliminate the data item which ¢ is
earlier than ty,,;,, or later than t,,,4. After getting the data items, we can analyze the data of Section 4.4.

sID, sIDs

sID; |

Lpegin?

| Lhegint Leging

L 1 |

file; files | files |

Figure 3. Hierarchical index of device data: dtID is the identity of device template, dID is the unique
identity of device, sID is the unique identity of sensor, pID is the unique identity of parameter, and tp,g;y,
is the start time in the file.

4. Heterogeneous Sensor Data Ingestion Methods

The heterogeneous device data ingestion model includes five processes to ingest device data as
shown in Figure 4. These processes are data reception or extraction, data synchronization and format
transformation, data slicing, data splitting, and data indexing. The data synchronization and format
transformation process corresponds to the data synchronization strategy, the data slicing process to
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the data slicing strategy, the data splitting process to the data splitting strategy, and the data indexing
process to the data indexing strategy. The four processes for different types of data sources are the
same. The data reception or extraction process differs for different types of data sources.

Multi source data

L

Data reception or extraction

L

Data synchronization and
format transforming

L

Data slicing Data slicing strategy

Data synchronization strategy

J/ Device templates

Data splitting Data splitting strategy

L

Data indexing Data indexing strategy

L

HDFS

Figure 4. Five processes used to ingest device data.

4.1. Ingestion of Device Streaming Data

Most device data comprise streaming data, which is the basic form to ingest. We do not need

to extract streaming data; instead, they are received through Flume, which is a distributed, reliable,
and available service for efficiently collecting, aggregating, and moving large amounts of log data.
The ingestion algorithm for streaming data is given in Alogrithm 3.

Algorithm 3 Streaming data ingestion algorithm

1.
2.

=

Receive data from the monitoring port of Flume.

Receive data and convert data to a JSONObject using data synchronization strategy (described in Section 3.2,
Algorithm 1).

Slice the data using data slicing strategy (described in Section 3.3, Algorithm 2).

Split device data files into parameter data files using data splitting strategy (described in Section 3.3).
Index and store files using data indexing strategy (described in Section 3.4).

4.2. Ingestion Files of Device Data

Some device data are saved in the form of files after real-time analysis or original application

processing. If so, we first obtain the files through Flume and process these into pseudo streaming data.
Thereafter, we can view and handle the data as streaming data. The ingestion algorithm for files is
given in Algorithm 4.

Algorithm 4 Files data ingestion algorithm

1.

Receive files from monitoring directories of Flume.
Read the data and send the data to the monitoring port of Flume.

Process the pseudo streaming data using streaming data ingestion algorithm (described in Section 4.1,
Alogrithm 3).
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4.3. Ingestion of Device Data from Relational Database

Some device data are stored in relational databases after real-time analysis or original application
processing. To ingest the data, we first need to extract them from the relational database using JDBC
and Crontab.

The extractor reads data from a relational database through JDBC and sends every line of data
to the monitoring port of Flume. When to start the extraction is controlled by Crontab. Crontab,
the configuration file for which is shown in Figure 5, is a command provided by the operating
system. When we create a timing job, a new line is added to the end of the file. Each line in Crontab,
the description of which is shown towards the middle of Figure 5, is a command to start an extractor.
Two command examples are given at the bottom of Figure 5. The first command, 0 4 * * * root
/IBDP/extracter/coldStoragerExtracter.sh means that the system will start an extractor as described in file
coldStoragerExtracter.sh at 4:00 am.

SHELL=/bin/bash
PATH=/sbim /bin: fusr/sbin: fusr/bin
MAILTO=root

HOME=/

# For details see man 4 crontabs

# Example of job definition

I R TR minute {0 - &5&)

B - hour €0 - 232

g1 | L ---------- day of month {1 - 31)

g1 1 | .------- month (1 - 12} OR jan, feb, mar, apr_, .

#1 | | | .---- day of week (0 - &) (Sunday=0 or %} OR sun, mon, tue, wed, thu

ri, sat

L

# % % % x % user-name command to be executed
0 4 % % * root /IBDP/extracter/coldStoragerExtracter. sh
0 % ¥ % ¥ rpot /IBDP/extracter/heatDataExtracter. sh

Figure 5. Configuration file for Crontab.

The data after ingestion by the extractor take the form of pseudo streaming data, which can
be viewed and handled as streaming data. The ingestion algorithm for relational data is given in
Algorithm 5.

Algorithm 5 Relational data ingestion algorithm

1. Start up an extractor using Crontab.
Read the data in relational database through JDBC and send the data to the monitoring port of Flume.

3. Process the pseudo streaming data using streaming data ingestion algorithm (described in Section 4.1,
Alogrithm 3).

4.4. Analysis of Device Data

The device data are stored in a unified format after ingestion. However, in most cases, at least one
item of the device data is meaningless. Recent empirical evidence strongly suggests that we should
analyze the data as a time series. Moreover, the device data need to be fused with business data.
In most cases, we analyze the data according to the process outlined in Figure 6.
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| Device data | Business data

L

| Time series |

J/ Analytics Tasks
| Representation |
Principal component
\L analysis
| Normalization |
| | Classification
| Visualization |

Figure 6. Data analysis process.

Though the device data are in a unified format after ingestion, there are still some difficulties in

analyzing them, for example, the data frequency may not be consistent. Time series with different time
intervals should not be compared directly. To support data for enterprise analysis, we provide a library
of algorithms on IBDP, containing various common algorithms for time series including:

M

@

®)

4)

©)

Representation algorithms. In IBDP, there are several time series representation algorithms,
such as sampling, piecewise aggregate approximation [17], discrete Fourier transforms [18],
discrete wavelet transforms [19], piecewise linear representation [20] and piecewise linear
representation based on series importance point [21]. After choosing a representation, the time
series can be compared with each other.

Normalization algorithms. The time series obtained are generally accompanied by much noise.
The IBDP contains the min-max and Z-score normalization algorithms. After normalization,
the impact of noise is greatly reduced.

Principal component analysis algorithms. We do not need to analyze all the parameters of each
type of device; instead, only key parameters are extracted for analysis. The IBDP includes a
principal component analysis [22] algorithm to analyze the principal components of a time series.
Visualization algorithms. To better display the features to enterprises, there are line chart [23] and
ThemeRiver [24] algorithms for time series visualization. Using these visualization algorithms,
enterprises can see the features directly.

Classification algorithms. The IBDP includes some classification (as well as early classification)
algorithms. The main classification algorithms are shapelets (perfectly accurate shapelets
from [25], and fast shapelets from [26]), INN, and early classification of time series [27]. Using
the classification algorithms, enterprises can classify time series for different analytical tasks.

In the analytical tasks, we use not only device data, but also business data. By fusing the data,

the analytical result is more accurate and more useful.

5. Case Study of Industrial Data Analysis

5.1. IBDP: An Industrial Big Data Platform

The high-level architecture of a big data platform consists of three main layers: the data ingestion

layer, data analytic layer, and data storage layer [4]. We implemented the heterogeneous device data
ingestion model and methods in the IBDP [9], the architecture of which is shown in Figure 7.
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Figure 7. Architecture of IBDP.

Data are saved in the data storage layer and analyzed in the data analytic layer. There are a series
of applications based on the IBDP and supported by analysis results.

The platform and applications are deployed on the cloud resource center, which allows us to adjust
the storage capacity and computation ability at any time according to the need [28-30]. The extractors,
Flume agents, and other processes for data ingestion can be extended, as can the storage capacity of
the HDFS, and the computing ability of Spark and MapReduce.

We used our platform to ingest data from the Longda Foodstuff Group Co., Ltd. (Jinan, China,
hereafter refrerred to as Longda,) [31] and the Jinan District Heating Limited Company (Jinan, China
hereafter JDH,) [32]. In Longda, there are nearly 200 production devices, from which we obtained
the operating data. We also created 22 virtual devices for cold storage. JDH monitors the heating in
14,237 apartments and we created one virtual device for all the apartments. All the virtual heating
monitoring devices point to the same template. The devices are summarized in Table 5.

Table 5. Devices currently ingested by IBDP.

Device Number Type of Data Company
production devices almost 200 streaming data Longda
virtual cold storage devices 22 file Longda
virtual heating monitoring devices 14,237 relational database JDH

In the near future, we will also ingest production device data from Zhongtong Bus Holding Co., Ltd.
(Jinan, China, hereafter, ZTB) [33] as well as the operational data of buses they manufacture. We will
also ingest heating data from Jinan Theral Power Co., Ltd. (Jinan, China, hereafter JTP) [34].
In addition, we would like to use the platform for other companies” data.
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5.2. Case Study Analyzing Temperature Sensor Data

In Longda, products are kept in several cold storage rooms, each of which has 20 refrigeration
units to maintain the temperature. Each refrigeration unit has a sensor, which is used to monitor the
temperature in the cold storage (T) room and electric power consumption (W). We use these sensors in
the cold storage room to construct a virtual smart device as shown in Figure 8. Note that only Sensor 1
(S1) is shown as sensors S1 to S20 are all the same.

csdt st Tt
Sensorl: st; Parameterl: Tt; ‘21 altui iy;)ne:e‘do};ol%;o
Sensor2: st; Parameter3: Wt; ge:
— Sensor20: st;

Main parameter:
Sensorl. Parameterl

‘ Slicing strategy: 86400 ‘

Cold Storage Device S1 T
—{ Template: csdt ‘ —{ Template: st ‘ ‘ Template: Tt —
Sensor 1: SI; Parameterl: T;

Sensor 2: S2; Parameter3: W;

Sensor 20: S20;

‘ Main parameter: S1.T ‘

‘ Slicing strategy: 86400 ‘

Figure 8. Virtual cold storage device.

In each cold storage room, the main parameter is T in Sensor 1 and the slicing strategy is 86,400,
which means we slice data every 86,400 s (once a day).

After the data had been stored, 2500 data items of T were obtained by indexing. We used a
threshold detection algorithm for detection because this would affect the quality of the products when
the temperature was too high or too low. The high threshold is 0 and the low threshold is —30 as the
two horizontal lines in Figure 9. The anomaly detection results are shown in Figure 9, where the points
below the horizontal line of —30 are abnormal owing to too low temperatures.

Anomaly detection results

-30 0=y . -
o 0
-35 % o 3 0 ¢ S “ s ° o®
o 0
-40
0 500 1000 1500 2000 2500
index

Figure 9. Anomaly detection results.
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Thus, we obtained T parameters, which were affected by the temperature of the cold storage and
the working status of the refrigeration units. Then, we analyzed the correlation between them using a
near correlation coefficient. The correlation analysis results are shown in Figure 10.

Correlation analysis results

Correlation coefficient

Refrigerators

Refrigerators

001 0102 ©0.2-03 w03-04 ®w04-05 m0.5-06 m0.6-0.7 m0.7-0.8

Figure 10. Correlation analysis results of some cold storage rooms.

From Figure 10, we can see the working status of the refrigeration unit affecting the value of T the
most. The working status of refrigerators #1 and #2, #3 and #4, ... , #19 and #20 is similar.

The price of electricity differs at different times. The price at night is much lower than that during
the day. The prices are shown in Table 6. To reduce cost, we expect that cooling happens between 23:00
and 07:00.

Table 6. Price of electricity at different times.

Time Price

10:30-11:30, 19:00-21:00 1.2773
08:30-10:30, 18:00-19:00, 21:00-23:00 1.2068
07:00-08:30, 11:30-18:00 0.7838
23:00-07:00 0.3608

We analyzed the relation between electric power consumption and temperature. When the
temperature is between 0 and —30, the fitting functions are as shown in Table 7.

Table 7. Fitting functions when the door of the cold storage is closed.

Status Temperature (T) and Time (t) Power (W) and Time (t)

No refrigeration and door

of cold storage is closed T=T+15xt Wi=We1lxt
No refrigeration zjmd door T =T +54 x t W= W11 x ¢t
of cold storage is open
Refrigeration and door of T =T — 10.95  t W’ = W43225 x t

cold storage is closed

Finally, we formulated the strategy for refrigeration, which begins at 23:00 and lasts for
3 + (topen)/2 h, where tpey is the total open time.
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6. Conclusions

With the development of digitized manufacturing, data ingestion and analysis have become
more and more important. In this paper, we presented a data ingestion model for heterogeneous
devices, which consists of device templates and four strategies for data synchronization, data slicing,
data splitting, and data indexing, respectively. Next, we introduced heterogeneous sensor data
ingestion methods to ingest device data from multiple sources. Finally, we presented a case
study describing a scenario in which device data were analyzed on the IBDP. We showed that the
heterogeneous device data ingestion model can be used to ingest, analyze, and store data. It also
makes it easier and more efficient for enterprises to analyze data.
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JDH Jinan District Heating Co., Ltd.
ZTB Zhongtong Bus Holding Co., Ltd.
JTP Jinan Theral Power Co., Ltd.
References

1. Rani, S.; Talwar, R.; Malhotra, J.; Ahmed, S.H.; Sarkar, M.; Song, H. A novel scheme for an energy efficient
Internet of Things based on wireless sensor networks. Sensors 2015, 15, 28603-28626. [CrossRef] [PubMed]

2. Lin, Y, Yang,J; Lv, Z.; Wei, W.; Song, H. A self-assessment stereo capture model applicable to the Internet of
Things. Sensors 2015, 15, 20925-20944. [CrossRef] [PubMed]

3.  Fan, W,; Bifet, A. Mining big data: Current status, and forecast to the future. ACM SIGKDD Explor. Newsletter

2013, 14, 1-5. [CrossRef]

Ranjan, R. Streaming big data processing in datacenter clouds. IEEE Cloud Comp. 2014, 1, 78-83. [CrossRef]

Campbell, P. Community cleverness required. Nature 2008, 455. [CrossRef]

Mervis, ]. Agencies rally to tackle big data. Science 2012, 336, 22. [CrossRef] [PubMed]

Labrinidis, A.; Jagadish, H.V. Challenges and opportunities with big data. In Proceedings of the VLDB

Endowment, Istanbul, Turkey, 27-31 August 2012; Volume 5, pp. 2032-2033.

8. Gantz, J; Reinsel, D. The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in
the far east. IDC iView: IDC Analyze the Future 2012, 2007, 1-16.

9. Ji,C,;Liu,S; Yang, C.; Wu, L.; Pan, L. IBDP: An Industrial Big Data Ingestion and Analysis Platform and Case
Studies. In Proceedings of the 2015 International Conference on Identification, Information and Knowledge
in the Internet of Things (IIKI), Beijing, China, 22-23 October 2015. (in press).

10. Rajaraman, A.; Ullman, J.D. Mining of Massive Datasets; Cambridge University Press: Cambridge, UK, 2012.

11. Liu, X,; Iftikhar, N.; Xie, X. Survey of real-time processing systems for big data. In Proceedings of the 18th

N o O

International Database Engineering & Applications Symposium, Porto, Portugal, 7-9 July 2014; pp. 356-361.


http://dx.doi.org/10.3390/s151128603
http://www.ncbi.nlm.nih.gov/pubmed/26569260
http://dx.doi.org/10.3390/s150820925
http://www.ncbi.nlm.nih.gov/pubmed/26308004
http://dx.doi.org/10.1145/2481244.2481246
http://dx.doi.org/10.1109/MCC.2014.22
http://dx.doi.org/10.1038/455001a
http://dx.doi.org/10.1126/science.336.6077.22
http://www.ncbi.nlm.nih.gov/pubmed/22491835

Sensors 2016, 16, 279 15 of 15

12. Llinas, J.; Hall, D.L. An introduction to multi-sensor data fusion. In Proceedings of the 1998 IEEE International
Symposium on Circuits and Systems (ISCAS'98), Monterey, CA, USA, 31 May-3 June 1998; pp. 537-540.

13. Lee, P; Jayasumana, A.P.; Bandara, H.D.; Lim, S.; Chandrasekar, V. A peer-to-peer collaboration framework
for multi-sensor data fusion. J. Netw. Comput. Appl. 2012, 35, 1052-1066. [CrossRef]

14. Dolui, K.; Mukherjee, S.; Datta, S.K. Smart device sensing architectures and applications. In Proceedings of
the 2013 International Computer Science and Engineering Conference (ICSEC), Nakorn Pathom, Thailand,
4-6 September 2013; pp. 91-96.

15.  Sawant, N.; Shah, H. Big Data Ingestion and Streaming Patterns. In Big Data Application Architecture Q & A;
Apress: New York, NY, USA, 2013; pp. 29-42.

16. Qiao, L,; Li, Y;; Takiar, S.; Liu, Z.; Veeramreddy, N.; Tu, M.; Botev, C. Gobblin: Unifying data ingestion for
Hadoop. In Proceedings of the 41st International Conference on Very Large Data Bases, Kohala Coast, HI,
USA, 31 August—4 September 2015; Volume 8, pp. 1764-1769.

17.  Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Dimensionality reduction for fast similarity search in
large time series databases. Knowl. Inf. Syst. 2001, 3, 263-286. [CrossRef]

18. Agrawal, R.; Faloutsos, C.; Swami, A. Efficient Similarity Search in Sequence Databases; Springer: Berlin,
Heidelberg, 1993.

19. Chan, K.P; Fu, A.W.C. Efficient time series matching by wavelets. In Proceedings of the 15th International
Conference on Data Engineering, Sydney, Australia, 23-26 March 1999; pp. 126-133.

20. Keogh, E. Fast similarity search in the presence of longitudinal scaling in time series databases. In Proceedings
of the Ninth IEEE International Conference on Tools with Artificial Intelligence, Newport Beach, CA, USA,
3-8 November 1997; pp. 578-584.

21. Zhou, D.Z; Li, M.Q. Time series segmentation based on series importance point. Comp. Eng. 2008, 34, 14-16.
(In Chinese).

22. Yang, K.; Shahabi, C. On the stationarity of multivariate time series for correlation-based data analysis.
In Proceedings of the Fifth IEEE International Conference on Data Mining, Houston, TX, USA,
27-30 November 2005.

23. Playfair, W. The Commercial and Political Atlas and Statistical Breviary; Cambridge University Press: Cambridge,
UK, 2005.

24. Havre, S.; Hetzler, B.; Nowell, L. ThemeRiver: Visualizing theme changes over time. In Proceedings of the
IEEE Symposium on Information Visualization (InfoVis 2000), Salt Lake City, UT, USA, 9-10 October 2000;
pp. 115-123.

25. Mueen, A.; Keogh, E.; Young, N. Logical-shapelets: An expressive primitive for time series classification.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, CA, USA, 21-24 August 2011; pp. 1154-1162.

26. Rakthanmanon, T.; Keogh, E. Fast shapelets: A scalable algorithm for discovering time series shapelets.
In Proceedings of the 13th STAM Conference on Data Mining (SDM), Austin, TX, USA, 2—-4 May 2013.

27. Xing, Z.; Pei, ].; Philip, S.Y. Early classification on time series. Knowl. Inf. Syst. 2012, 31, 105-127. [CrossRef]

28. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Zaharia, M. A view of cloud
computing. Comm. ACM 2010, 53, 50-58. [CrossRef]

29. Barroso, L.A.; Clidaras, J.; Holzle, U. The datacenter as a computer: An introduction to the design of
warehouse-scale machines. Syn. Lect. Comp. Archit. 2013, 8, 1-154. [CrossRef]

30. Wang, L.; Ranjan, R.; Chen, J.; Benatallah, B. Cloud Computing: Methodology, Systems, and Applications;
CRC Press: Boca Raton, FL,, USA, 2011.

31. Longda Foodstuff Group Co. Ltd. Available online: http:/ /www.longda.com.cn (accessed on 15 December 2015).

32. Jinan District Heating Co. Ltd. Available online: http:/ /www.jnreli.com (accessed on 15 December 2015).

33. Zhongtong Bus Holding Co. Ltd. Available online: http://www.zhongtong.com/en (accessed on
15 December 2015).

34. Jinan Theral Power Co. Ltd. Available online: http:/ /www.jnrdyxgs.com (accessed on 15 December 2015).

® © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons by Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.jnca.2011.12.005
http://dx.doi.org/10.1007/PL00011669
http://dx.doi.org/10.1007/s10115-011-0400-x
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Related Work 
	Heterogeneous Device Data Ingestion Model 
	Device Templates 
	Data Synchronization Strategy 
	Data Slicing Strategy 
	Data Splitting Strategy 
	Data Indexing Strategy 

	Heterogeneous Sensor Data Ingestion Methods 
	Ingestion of Device Streaming Data 
	Ingestion Files of Device Data 
	Ingestion of Device Data from Relational Database 
	Analysis of Device Data 

	Case Study of Industrial Data Analysis 
	IBDP: An Industrial Big Data Platform 
	Case Study Analyzing Temperature Sensor Data 

	Conclusions 

