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Abstract. Conventional biomass dynamics models express next year’s biomass as this year’s biomass plus surplus
production less catch. These models are typically applied to species with several age-classes but it is unclear how well they
perform for short-lived species with low survival and high recruitment variation. Two alternative versions of the standard
biomass dynamics model (Standard) were constructed for short-lived species by ignoring the ‘old biomass’ term (Annual),
and assuming that the biomass at the start of the next year depends on density-dependent processes that are a function of that
biomass (Stock-recruit).These models were fitted to catch and effort data for the grooved tiger prawn Penaeus semisulcatus
using a hierarchical Bayesian technique. The results from the biomass dynamics models were compared with those from
more complicated weekly delay-difference models. The analyses show that: the Standard model is flexible for short-
lived species; the Stock-recruit model provides the most parsimonious fit; simple biomass dynamics models can provide
virtually identical results to data-demanding models; and spatial variability in key population dynamics parameters exists
for P. semisulcatus. The method outlined in this paper provides a means to conduct quantitative population assessments
for data-limited short-lived species.
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Introduction

Biomass dynamics (or production) models remain one of the
most popular tools for analysing both finfish and shellfish pop-
ulation dynamics (Smith and Addison 2003). They are typically
used when information on the age–structure of the catch is
unavailable and hence when more sophisticated methods of stock
assessment such as Virtual Population Analysis or statistical
catch-at-age analysis cannot be applied, and when information
on the size of the biomass of the population alone is adequate
for management purposes. Biomass dynamics models use differ-
ence equations in which new biomass equals old biomass plus
growth less catch, and ‘growth’ includes recruitment, somatic
growth and natural mortality (Punt 2003; Chaloupka and Balazs
2007).

A variety of formulations of the biomass dynamics model
have been developed and examined (reviewed in Quinn and
Deriso 1999). An implicit assumption of most biomass dynam-
ics models is that natural mortality is not very high so that a
fairly large proportion of the biomass at the start of the next
(annual) time-step consists of the biomass at the start of the

current time-step. However, the suitability of these models and
their assumptions have rarely been examined for short-lived
species such as tropical prawns and squids that exhibit high
annual recruitment variation and for which the catch comprises
only a single age class. Rather, researchers have used alternative
approaches for assessment of short-lived species. For example,
Roel and Butterworth (2000) and Isoda et al. (2005) adopted
different recruitment functions for different stock sizes when
assessing short-lived squids using biomass dynamics models.
Bellido et al. (2001) used generalised additive models for mod-
elling variation in abundance of squid rather than applying
population dynamics models.

A single-stock, single-fleet biomass dynamics model based
on the assumption that the dynamics are deterministic has been
applied to species-aggregated data for two tiger prawn species
(Penaeus semisulcatus and P. esculentus) in Australia’s Northern
Prawn Fishery (NPF), but the results were unrealistic (Dichmont
et al. 2005). It was not clear whether this was because a biomass
dynamics model is not suitable for a short-lived species or
because the method used to fit the model was inappropriate.
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The assumption that all of the error is in the observation pro-
cess and that the dynamics are deterministic (the assumptions
of an observation-error only estimator) is standard when apply-
ing biomass dynamics models (Punt and Hilborn 1996; Mueter
and Megrey 2006). This assumption is often made because
simulation studies have shown this method of fitting biomass
dynamics models is more robust than the conventional alterna-
tive of assuming that the observations are made without error, but
the dynamics are stochastic (Polacheck et al. 1993). In contrast,
the dynamics of short-lived species are subject to considerable
process error (annual recruitment constitutes a large proportion
of future biomass) as well as observation error.

The concerns with the use of an observation-error estimator
may be overcome using a Bayesian state-space formulation of
the biomass dynamics model (Meyer and Millar 1999). More-
over, concern that it is inappropriate to apply a standard biomass
dynamics model to short-lived species may be resolved by re-
formulating the biomass dynamics model. This paper therefore
outlines two alternative formulations of the standard biomass
dynamics model, which better account for the high rate of natural
mortality for short-lived species, and applies them to the grooved
tiger prawn (P. semisulcatus). These formulations account for
the multi-species nature of the fishery for P. semisulcatus by
fitting the model to catch-rate data from a fleet that targets P.
semisulcatus and from another fleet that targets another prawn
species in the Australia’s NPF, P. esculentus, and has a bycatch
of P. semisulcatus.

There is evidence that tiger prawns in the NPF constitute mul-
tiple ‘stocks’ (Dichmont et al. 2005). The analyses of this paper
therefore analyse the data for P. semisulcatus using a hierarchi-
cal formulation of the Bayesian state-space method and hence
impose priors on the between-stock variation in some key popu-
lation dynamic parameters. This avoids the need to specify prior
distributions for the parameters of the model using (non-existent)
auxiliary information and imposes the assumption that the values
for the parameters should not differ markedly among stock areas.
Finally, the results from the alternative models are compared
with those from two other models that have been applied to data
for P. semisulcatus: (1) a model that aggregates data spatially,
assumes a single fleet and estimates parameter values using an
observation-error estimator (Dichmont et al. 2005; also see this
fishery used as an example in Haddon 2001; Chapter 10) and
(2) a weekly delay-difference model that incorporates additional
parameters such as recruitment pattern, catchability, availability,
growth and natural mortality, and estimates annual recruitment
(Dichmont et al. 2003).

Methods
Alternative biomass dynamics models
In this section, the population dynamics models are assumed to
be deterministic and any dependence on ‘stock’ is omitted for
ease of presentation. The standard (or conventional) formulation
of the biomass dynamics model is (Polacheck et al. 1993; Punt
and Hilborn 1996):

By = By−1 + rBy−1

(
1 − By−1

K

)
− Cy−1, (1)

where By is the biomass at the start of year y, r is the intrin-
sic growth rate, K is the carrying capacity and Cy is the total
catch during year y. For short-lived species whose catchable
biomass is made up entirely of new recruitment, last year’s
biomass contributes little to the biomass this year so Eqn 1 can
be simplified to:

By = rBy−1

(
1 − By−1

K

)
− Cy−1. (2)

Eqn 2 is the popular logistic model for annual terrestrial
organisms such as insects and plants (Gillman and Hails 1997)
when the catch term Cy is omitted. Eqn 2 can be extended further
with two alternative assumptions: (1) most of the catch occurs
before spawning and (2) density-dependence is more likely to
depend on this year’s biomass (By) rather than last year’s biomass
(By−1), i.e.:

By = r(By−1 − Cy−1)

(
1 − By

K

)
. (3)

Rearranging Eqn 3 leads to:

By = r(By−1 − Cy−1)

1 + r
K

(By−1 − Cy−1)
. (4)

Eqn 4 has the appearance of a classical Beverton-Holt stock-
recruitment model when the mean weight is the same over time.
The biomass remaining after fishing (By−1 − Cy−1) represents
the spawning biomass in the Beverton-Holt model, and r is the
maximum recruits-per-spawner at low stock size.

The parameter K in Eqns 2 and 4 cannot be interpreted as car-
rying capacity (unlike in Eqn 1). Here, we defined the carrying
capacity B∞ as the equilibrium population size in the absence
of fishing. Table 1 lists the equations for B∞, the population
growth rate λ (slope at origin), the biomass at which MSY is
achieved and the MSY for each of models 1, 2 and 4. Table 1
also lists the relationships between the parameters r and K for
each model. Eqn 1 will be referred to as the ‘Standard’ model,
Eqn 2 as the ‘Annual’ model and Eqn 4 as the ‘Stock-recruit’
model. These three models can be extended to consider multiple
stocks by substituting rs for r, Ks for K and Bs,y for By where s
denotes stock.

Parameter estimation
The values for the parameters of the three models were estimated
by fitting them to data on catch per unit effort (CPUE). For
a multi-stock, multi-fleet fishery where some fleets target the
species of interest and other fleets take it as bycatch, the model-
estimate corresponding to the catch-rate for stock s, fleet f and
year y, Ûs,f,y is:

Ûs,f,y = qs,f PyBs,y, (5)

where qs,f is the catchability coefficient for stock s and fleet f
and Py is the relative fishing power during year y. The observed
catch-rate was assumed to be log-normally distributed about its
expected value in common with most applications of biomass
dynamics models (Polacheck et al. 1993; Meyer and Millar
1999):

Us,f,y ∼ log-normal{�n(E[Ûs,f,y], τU,s,f )}, (6)
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Table 1. Three alternative biomass dynamics models, the relationship between the parameters r and K for each model and the equations defining
the population growth rate λ, carrying capacity B∞, BMSY and MSY

Note: the relationships between rStd ∼rSR and KStd ∼KSR are true only when BStd
MSY = BSR

MSY

Standard Annual Stock-recruit

Model By = By−1 + rStdBy−1

(
1 − By−1

KStd

)
− Cy−1 By = rAnlBy−1

(
1 − By−1

KAnl

)
− Cy By = rSR(By−1 − Cy−1)

1 + rSR

KSR (By−1 − Cy−1)

r relationship rStd rAnl = 1 + rStd rSR =
(

2

2 − rStd

)2

K relationship KStd KAnl = (1 + rStd)KStd

rStd
KSR = KStd

rStd

λ 1 + rStd rAnl rSR

B∞ KStd
(rAnl − 1)KAnl

rAnl

(rSR − 1)KSR

rSR

BMSY 0.5KStd
(rAnl − 1)KAnl

2rAnl
KSR

(
1 − 1√

rSR

)

MSY
rStdKStd

4

(rAnl − 1)2KAnl

4rAnl
KSR

(
1 − 1√

rSR

)2

where τU,s,f is the precision (the inverse of the variance) of the
observation error for the catch-rate data for stock s and fleet
f. τU,s,f is allowed to differ among fleets because it would not
be expected that fleets that target a species and which take it
as bycatch would lead to indices of abundance with the same
precision.

Eqns 1, 2 and 4 are deterministic. However, it is necessary
to hypothesise how realised biomass relates to the expectation
based on Eqns 1, 2 and 4 to account for process error in the pop-
ulation dynamics (and hence formulate the biomass dynamics
models as state-space models). For the purposes of this paper,
we assumed that deviations about the expected biomass are log-
normally distributed (Meyer and Millar 1999; Chaloupka and
Balazs 2007), i.e.:

Bs,y ∼ log-normal{�n(E[Bs,y]), τB,s}, (7)

where τB,s is the precision of the process error for stock s. The
prior for the biomass at the start of the first year of the modelled
period is assumed to be the same as for the carrying capacity for
stock s.

It is necessary to specify prior distributions for all of the
parameters of the model to implement each of the three state-
space models within a hierarchical Bayesian framework. Under
the assumption that the key parameters are unlikely to differ
substantially among areas, it was assumed that r, K and q were
log-normally distributed about a common mean, i.e. r, K and q
for each stock are random effects about a common mean, and:

Ks ∼ log-normal(µK, τK),

rs ∼ log-normal(µr, τr), (8)

qs,f ∼ log-normal(µq,f , τq,f ),

where µK, µr and µq,f are the prior means for K, r and fleet-
specific catchability, respectively, and τK, τr and τq,f are the
corresponding prior precisions. Collectively, these parameters
are known as hyper-parameters (Harley and Myers 2001; Su et al.

2001). We assumed a normal distribution, N(Mθ , Tθ), for µθ ,
where θ is either K, r, or q. Bayesian hierarchical models have the
advantages that there is no need to set the values for the param-
eters of the priors, but only those of the hyper-parameters, and
that the results of models are less sensitive to the values for the
parameters of the hyper-prior than those of the prior.We specified
values for the means (Mθ) of these hyper-priors (McAllister et al.
2004; Askey et al. 2007) by considering results of other studies
and set the values for Tθ to large values so that the hyper-priors
were relatively non-informative, but still proper (Gelman 2006).
We tested a wide range of values for Mθ and found that the results
were not sensitive to them. For example, setting MK = 8.2 or 9.6
had little impact on the results. Two alternative approaches for
setting the values for the hyper-parameter Tθ were considered:
(1) set so that the coefficient of variation (CV) of the hyper-prior
is 150% and so that the hyper-prior is relatively non-informative
(McAllister et al. 2004) and (2) a half-Cauchy distribution. The
Cauchy distribution was obtained as the ratio of a normal and
the square root of a χ2 distribution with one degree of freedom
(Gelman 2006; Van Dongen 2006). The results for the two meth-
ods for setting Tθ were similar so results are only shown for the
half-Cauchy hyper-prior.

The hyper-priors for the τθ , as well as the priors for the
observation precisions, τU,s,f , and the process precisions, τB,s,
were set to proper, but reasonably non-informative gamma
distributions with mean 1 and variance 1000, i.e. G(0.001,
0.001).

In summary, the hierarchical structure of the alternative
biomass dynamics models contains the following levels:

1. Hyper-priors: µθ ∼N(Mθ , Tθ), τθ ∼G(0.001, 0.001)
2. Hyper-parameters: µK, µr , µq,f , τK, τr , τq,f

3. Priors: log(Ks)∼N(µK, τK), log(Bs,1)∼N(µK, τK), log(rs)∼
N(µr , τr), log(qs,f )∼N(µq,f , τq,f ), τU,s,f ∼G(0.001, 0.001),
τB,s∼G(0.001, 0.001)

4. Parameters: K s, rs, qs,f , Bs,1, τU,s,f , τB,s

5. Data: U s,f,y
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Given the assumptions regarding the nature of the state-space
model, the priors for the parameters and those for hyper-priors,
the posterior distribution is proportional to:

p(µK)p(τK)p(µr)p(τr)p(µ
q,f

)p(τq,f ),

p(Ks|µK, τK)p(B1970,s|µK, τK)p(rs|µr, τr)

p(q
s,f

|µ
q,f

, τq,f )p(τB,s)p(τU,s,f ), (9)
∏
s,y

(
p(Bs,y|Bs,y−1, Ks, rs, Cy, τB,s)

∏
f

p(Us,f,y|Bs,y, qs,f , Py, τU,s,f )
)
,

where the underlined parameters denote a vector or matrix over
stock s, fleet f and/or year y.

The Gibbs sampler, a Markov chain Monte Carlo
(MCMC) technique, implemented using the WinBUGS pack-
age (http://www.mrc-bsu.cam.ac.uk/bugs, verified 1 November
2009) was used to sample parameter vectors from the post-
erior distribution (Eqn 9).Three Markov chains were constructed
based on dispersed initial values and the results of the first 4000
cycles of each chain were taken as the burn-in period. The results
of an additional 60 000 cycles from the three chains were saved,
which formed the basis for further analysis. Whether the burn-in
period was sufficient and the MCMC algorithm converged ade-
quately to the posterior were evaluated by visually examining the
three chains for each parameter in Eqn 9 and using the CODA
package (Best et al. 1996).

Model diagnostics and selection
The fit of the model to the data was evaluated using the fol-
lowing criteria: (1) graphical assessment of the 95% prediction
credibility intervals, (2) χ2 goodness-of-fit statistics, (3) post-
erior predictive p-values and (4) Kolmogorov–Smirnov (KS)
two-sample tests (Sheskin 1997). We calculated these statis-
tics from posterior predictive distributions for the time-series
of CPUE. For each observed catch-rate, this distribution was
obtained by sampling parameters from the posterior distribu-
tion (Eqn 9) and then, conditional on those samples, sampling
catch rates from the log-normal distribution assumed to capture
observation error (Eqn 6). The posterior predictive distribution
of catch rate for each fleet, stock and year, u

pred
s,f,y is:

p
(
u

pred
s,f,y |U) =

∫
P

(
u

pred
s,f,y |θ)P(θ|U)dθ. (10)

In this equation, θ denotes all parameters, including model
parameters and hyper-parameters. The 2.5th, 50th and 97.5th
percentiles from the posterior predictive distribution were plot-
ted together with the observed catch rates U s,f,y.

The second criterion for model checking based on the post-
erior predictive distribution involved comparing the realised
discrepancy χ2

rel (between the observed catch rates and the post-
erior expected catch rates) and the posterior predictive χ2

pred

discrepancy (between catch rates from the posterior predictive
distribution and the posterior expected catch rate) (Gelman et al.

1996). That is, for each fleet f, this χ2 discrepancy was:

χ2
f (uf |θ) =

∑
s

∑
y

[ln(us,f,y) − ln(Ûs,f,y)]2τU,s,f , (11)

where uf is either the observed CPUE or the predicted CPUE
from Eqn 10 for fleet f.

We also calculated the posterior predictive p-value for the χ2

discrepancy as:

p(u
pred
f ) =

∫
P

[
χ2

n ≥ χ2
pred,f

(
u

pred
f |θ)]P(θ|U)dθ, (12)

where χ2
n is the standard χ2 distribution and n is the number of

data points for each fleet.
The non-parametric KS two-sample test was used to test the

hypothesis that the predicted catch rates for each replicated sam-
ple and the observed catch rates were from the same distribution.
The P-value of this test is displayed using histograms. Further-
more, the proportion of replicates in which the null hypothesis
is rejected at α = 0.05 is defined as the overall KS test P-value:

pKS
f = 1

n

∑
s

∑
y

I(ps,y,f < 0.05), (13)

where n is the total number of data points for fleet f, I is the
indicator function that takes the value of 1 when its argument is
true and zero otherwise, and ps,y,f is the probability value from
the KS for each species, year and fleet.

We used two criteria to compare alternative models: the
Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002)
and the mean square predictive error loss function (MSPE) on
the log-scale (Ghosh and Norris 2005; Webster et al. 2008). The
latter was defined as:

MSPE = 1

n

∑
s

∑
f

∑
y

[
ln

(
u

pred
s,f,y

) − ln(Us,f,y)
]2

, (14)

whereu
pred
f,s,y is sampled from Eqn 10.These equations were coded

directly in the WinBUGS program, except for the KS test and
Eqn 13, which were implemented using R. The best model was
the one that had the smallest values for E[MSPE] and DIC.

Application to P. semisulcatus
The grooved tiger prawn P. semisulcatus is a tropical species
with a typical life span of less than 18 months and an assumed
natural mortality rate of 0.045 week−1 (Dichmont et al. 2003).
Sex-specific length–frequency data from scientific surveys show
that the catch just before the start of fishing season is largely
composed of a single cohort (Ye et al. 2007). Given the high
mortality typically associated with prawns, this implies that few
animals will survive an entire year. Catch-rate data for each stock
were available for two ‘fleets’: one that targets P. semisulcatus
and another that catches this species as bycatch when target-
ing another commercially-valuable prawn species, P. esculentus.
Fishing power in Eqn 5 is expressed relative to that at the start
of 1993 (Dichmont et al. 2003) so qs,f is the catchability coeffi-
cient at the start of 1993. There is a need to model changes over
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Australia

1 Outside GOC

2 Groote
4 Weipa

3 Vanderlins

Fig. 1. The four stock regions in the Northern Prawn Fishery for Penaeus semisulcatus.

time in fishing power because of improvements in technology
and fishing skill in the NPF (Bishop 2006).

Compulsory commercial logbook data form the primary basis
for the assessment of prawn species in the NPF, including that
for P. semisulcatus. These data can be divided into fishing days,
which targeted one of the two tiger prawns or other species (in
particular, the common banana prawn, P. merguiensis) based on
the probability for each fishing day of catching banana or tiger
prawns (Venables et al. 2006). In addition, although catch and
effort data are recorded by species group rather than species
(e.g. P. semisulcatus and P. esculentus combined rather than
individually), information on, for example, the date and loca-
tion of shots can be used to split the species-combined catches
to those of individual species (Venables and Dichmont 2004;
Dichmont et al. 2005). Furthermore, the catches of tiger prawns
by day are assigned to one of the two ‘fleets’ based on whichever
tiger species had the highest relative probability of being caught
on that day given where the fishing occurred (Venables and
Dichmont 2004).

The two species of tiger prawns in the NPF have each been
divided into seven putative ‘stocks’based on geographic and bio-
logical information. These have been combined into four stocks
for assessment purposes (Fig. 1) primarily because the abun-
dance in some of these putative stocks is so low that data are
uninformative, precluding the application of assessment models
(Dichmont et al. 2005). For simplicity, we refer to these four
stocks as follows: Outside Gulf of Carpentaria (GoC) (Stock 1),
Groote (Stock 2), Vanderlins (Stock 3) and Weipa (Stock 4). The
application to P. semisulcatus is based on 291 catch-rate data
points (i.e. 2 fleets, 4 stocks and 38 years with a few 0-effort
data points).

Results
Model diagnostics and selection
The convergence diagnostics generally do not exhibit evidence
for non-convergence after∼2000 cycles of the MCMC algorithm
(e.g. a value for Gelman-Rubin statistic around 1.0), suggesting
that the length of the burn-in and the number of subsequent
cycles is sufficient for the results to form the basis for inference.
The fits of the three models to the catch-rate data are visually very
similar, and suggest that the models mimic the data well apart
from the catch rates for the bycatch fleet for the Outside GoC
and Weipa stocks (Stocks 1 and 4; Fig. 2). Consequently, detailed
results are only shown for one of these models (Stock-recruit)
for the model diagnostics.

The posterior predictive distributions for the catch rates for
the target fleet mimic the observed catch rate data and are rel-
atively narrow (e.g. Fig. 3a). In contrast, and as expected from
Fig. 2, the posterior predictive distributions for catch rates for the
bycatch fleet are much broader, especially for Stock 1 (Outside
GoC) and Stock 4 (Weipa) (Fig. 3b).

The realised discrepancy χ2
rel and the predictive discrepancy

χ2
pred do not indicate problems of model fit. For example, the

proportion of points above the 45◦ line, which is the P-value
for this χ2-test, is close to 0.5. The predictive P-values are sim-
ilar between models and fleets: 0.533, 0.481 and 0.518 for the
target fleet for the Standard, Annual and Stock-recruit models,
and 0.515, 0.523 and 0.507 for the bycatch fleet for these three
models, respectively.

The results of the KS two-sample test are somewhat different
from those of the χ2 goodness-of-fit test.Although the target fleet
has high KS P-values (the overall P-value = 1), the distribution
of P-values for the bycatch fleet is relatively uniform (Fig. 4).
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Fig. 2. Observed catch rates for the (a) targeted and (b) bycatch fleets (dots), and the posterior median time-
trajectories of predicted catch-rate from three alternative models: Standard (solid line), Annual (dashed line) and
Stock-recruit (dotted line). Stock 1, Outside Gulf of Carpentaria; Stock 2, Groote; Stock 3, Vanderlins; Stock 4,
Weipa.

The overall P-value (Eqn 13) is 0.969, meaning that the null
hypothesis that the predicted and the observed data are from the
same distribution was rejected for nearly 3% of the replicates.
This KS test indicates that the model fits the catch rate data for
the target fleet better than the catch rate data for the bycatch fleet.
It also indicates that the KS test is more sensitive than the overall
χ2-test.

The model selection method based on DIC and the mean
square predicted loss selected the Stock-recruit model as ‘best’
and the Standard model as ‘worst’. The Standard and Annual
models had, respectively, DICs 56.85 and 47.59 greater than
that for the Stock-recruit model. The extent of difference in DIC

between the Stock-recruit model and other two models is ‘defini-
tive’ (DIC difference >10; Spiegelhalter et al. 2002), whereas
the difference between the Annual and Standard models is ‘sub-
stantial’ (DIC difference between 5 and 10). The mean MSPEs
were consistent with the inferences based on DIC; 0.425, 0.422
and 0.419 for the Standard, Annual and Stock-recruit models,
respectively.

Quantities of management interest
The posterior distributions for BMSY and MSY do not differ
substantially among models. The posterior medians for MSY
(summed across stocks) were 1927, 1921 and 2001 tonnes for
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Fig. 3. Observed catch rates (dots) for the (a) targeted and (b) bycatch fleets, and the posterior predictive
distributions (medians and 95% credibility intervals) for catch rates based on the Stock-recruit model.

the Standard, Annual and Stock-recruit models, respectively.
These values are slightly higher than the estimate of MSY from
the weekly delay-difference model currently used to provide
management advice (Dichmont et al. 2003) (M ŜY = 1768 t),
but fall within the 95% confidence intervals for this estimate
(1517–2043 t).

The time-trajectories of biomass relative to BMSY (a key man-
agement indicator for the NPF) from the three biomass dynamics
models are similar for each individual stock (Fig. 5) and when
the data for all stocks are aggregated (Fig. 6), although the Stock-
recruit model tends to produce a higher estimate of B/BMSY than
the other two models. All of the analyses suggest that the stocks
have been reduced in abundance since the start of fishing in

1970, dropped below BMSY during early the 1980s and increased
in abundance in recent years. The posterior median values for
B2007/BMSY exceeded 1 for three of the four stocks. The excep-
tion is the Groote stock (Stock 2), for which the posterior median
for B2007/BMSY is 0.86, 0.87 and 0.95 for the Standard, Annual
and Stock-recruit models, respectively.

When aggregated over stocks, the ratio of current biomass to
BMSY exceeds 1 and the time-trajectory of B/BMSY is remark-
ably similar to that from the weekly delay-different model
even though the latter is substantially more complicated than
a biomass dynamics model (Fig. 6). In contrast, the results
from a Schaefer biomass dynamics model implemented as a
maximum-likelihood observation-error estimator and fitted by
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means of maximum likelihood (Dichmont et al. 2005) differ
markedly from those of the Bayesian state-space models and
the weekly delay-difference model even though it uses the same
basic data and makes the same assumptions about changes over
time in fishing power as the other biomass dynamics model
(Fig. 6).

The posterior distribution provides a convenient way to exam-
ine parameter uncertainty. The coefficients of variation for K,
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ing posterior predictive catch per unit effort (CPUE) from the Stock-recruit
model and the observed CPUE. The vertical dashed line is where P = 0.05.
(a) Target fleet; (b) bycatch fleet.
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BMSY , MSY and growth rate r are fairly small (generally below
20% for each stock and when results are aggregated spatially).
Catchability q for the target fleet is also precise: a CV of 18%,
15% and 15% for the Standard,Annual and Stock-recruit models,
respectively. However, the CV of q for the bycatch fleet is high:
52%, 55% and 54% for the Standard, Annual and Stock-recruit
models, respectively. The posteriors for the catchability of the
target fleet are similar among stocks but those for the catchabil-
ity of the bycatch fleet vary among stocks (Fig. 7). The process
and observation error variances are similar among the three mod-
els. However, the observation error variances differ substantially
between the target and bycatch fleets. The observation error vari-
ances for the bycatch fleet also differ substantially among the
four stocks.

Discussion

This study demonstrates that biomass dynamics models are
appropriate for short-lived species when both process and obser-
vation error are taken into account.The biomass dynamics model
that assumes that density-dependence is governed by current
year biomass (the Stock-recruit model) appears to be particularly
effective for short-lived species. While the methods developed in
this paper have clear advantages, some caveats should be taken
into consideration.

Advantages of hierarchical Bayesian state-space models
Comparisons between hierarchical Bayesian biomass dynam-
ics models, the weekly delay-difference model and a standard
observation-error estimator indicate the former has clear advan-
tages. The estimates of the ratio of biomass to BMSY from the
hierarchical Bayesian biomass dynamics models are virtually
identical to those from a more sophisticated weekly delay-
difference model. In contrast, the estimates of this ratio from
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the standard observation-error estimator are markedly different.
This can be attributed to making allowance for process error and
hence capturing the dynamics of the resource better.

Past attempts to assess even data-rich prawn species by stock
have led to unreliable or unrealistic results (Dichmont et al.
2005). The use of a Bayesian estimation framework, which
imposes hyper-priors on the key parameters of the model, clearly
improved the stability of the model by allowing the assessment
for the more data-poor stocks to ‘borrow strength’from those for
the more data-rich stocks. The benefits of hierarchical Bayesian
techniques in this respect have been identified for several appli-
cations in the past (Rivot and Prevost 2002; McAllister et al.
2004).
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Fig. 6. Posterior median time-trajectories for B/BMSY for the three alternative biomass dynamics models
aggregated over stock, the weekly delay-difference model, and a maximum likelihood observation-error estimator.
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The results of a stock-specific assessment reveal spatial dif-
ferences in both parameter values and stock status (although
perhaps less than would have been the case had the assessment
not imposed priors on the parameters). In particular, although
biomass of P. semisulcatus is assessed to be above BMSY when
results are aggregated over stocks in the NPF, the stock-specific
results indicate that at least one stock (Groote) has not recovered
to the extent that the other stocks have and remains below BMSY .

Potential violation of model assumptions
The Stock-recruit model is selected as ‘best’ using DIC and the
mean square predicted loss even though the fits to the data were



Modified Bayesian biomass dynamics models Marine and Freshwater Research 1307

visually very similar to those of the other models. This model
assumes that very few prawns survive a year, and that the density-
dependence is a function of current rather than past biomass.
However, these assumptions will be violated to some extent
for P. semisulcatus because at least some animals survive an
entire year. Moreover, spawning occurs over an extensive period
indicating that a discrete formulation for the biomass dynam-
ics will always be an approximation irrespective of assumptions
regarding density-dependence and survival.

Effects of observation error between target
and bycatch fleets
We presented results for the three alternative biomass dynamics
models where the precision parameter τU,s,f (the inverse of the
variance) of the observation error for the catch-rate data varies
among stocks and fleets. We compared two alternative assump-
tions regarding the variance of the observation error: (1) it is the
same across stocks and fleets and (2) it differs among stocks, but
is the same for each fleet. The time-trajectories of B/BMSY from
these models are much smoother than those shown in Figs 5 and
6. However, the models fit the data poorly. For example, �DIC
is 513 for the variant of the Stock-recruit model in which it is
assumed that the observation error variance is the same among
stocks and fleets, and 201 when the observation error variance
varies among stocks, but not between fleets.

The results of poor fits to the bycatch fleet data for two stocks
(Outside GoC and Weipa) also suggest that assuming a constant
observation error variance across stocks and fleets is inappro-
priate. These poor fits are mainly due to very limited catch and
effort data. For example, only 2% and <1% of total effort by the
bycatch fleet occurred on the Outside GoC and Weipa stocks,
respectively.

Application of the method to other short-lived invertebrates
The hierarchical Bayesian biomass dynamics models developed
in this paper could be applied to other short-lived invertebrate
species for which only catch and effort data are available. The
data for P. semisulcatus are adequate to apply fairly complicated
stock assessment methods. However, this is not the case gener-
ally for species in the NPF for which information on stock status
is needed.These species lack information on recruitment pattern,
catchability, availability, growth and natural mortality, which
precludes application of, for example, the method of Dichmont
et al. (2003) to the data for these species.The similarity of results
between the biomass dynamics models implemented in the state-
space framework and those of the weekly delay-different models
provides some confidence that the biomass dynamics models
outlined in this paper may be applied to data for species such as
blue and red endeavour prawns (Metapenaeus endeavouri and
M. ensis), red-legged banana prawns (Fenneropenaeus indicus –
formerly Penaeus indicus) and king prawns (Melicertus latisul-
catus and M. longistylus), which are of commercial value and for
which data on catch and effort are available, but for which data on
biological parameters such as growth and natural mortality are
either absent or considered unreliable. Of course, model diagnos-
tics and examination are needed when one applies this method to
other species because P. semisulcatus is perhaps unusual among
tropical prawns because recruitment appears to be functionally

related to spawning stock size, and among-year fluctuations in
recruitment are relatively small.
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