An analog front-end circuit for ISO/IEC 14443-compatible radio frequency identification (RFID) interrogators was designed and fabricated by using a 0.25 µm double-poly CMOS process. The fabricated chip was operated using a 3.3 Volt single-voltage supply. The results of this work could be provided as reusable IPs in the form of hard or firm IPs for designing single-chip ISO/IEC 14443-compatible RFID interrogators.

Keywords: RFID, RFID interrogator, analog front-end circuit, ISO 14443.
of a platform-based single-chip RFID reader [8].

II. Design of Analog Front End Circuit

Figure 2 shows a block diagram of the RFID reader system. The RFID reader system consists of a digital controller and an analog front-end part. The analog front-end part is composed of a transmitting section for the ASK modulator and antenna driving circuit and a receiving section for demodulating the sub-carrier-modulated input data from the RFID. D_TX is the input data to be transmitted to a transponder. D_TX is either modified Miller-coded or NRZ-coded data for type-A mode or type-B mode, respectively. RX_OUT is a demodulated output of the receiving circuit.

Figure 2 shows a typical application where the antenna is directly connected to the TX pin of the driver. The external antenna circuit consists of an electromagnetic coupling (EMC) low-pass filter and an antenna matching circuit. The EMC filter is a low-pass filter composed by L_0 and C_0, where the cut off frequency of the EMC filter was designed to be 14.5 MHz, which is slightly above the carrier frequency. The resonance frequency of an LC tank composed by C_1, C_2, and an inductance of the loop antenna was tuned to a carrier frequency of 13.56 MHz, where C_1 is a stray capacitance of the loop antenna. The value of C_1 depends on the antenna’s geometrical properties and the material of the print circuit board.

1. ASK Modulator and Antenna Driver

Figure 3 shows the proposed circuit of the ASK modulator and the antenna driver circuit of an RFID reader for an ISO/IEC 14443 type A/B interface. Signal AB_SEL is the control signal selecting either type-A or type-B mode. MPL should be off by setting AB_SEL to ‘low’ so that the circuit is operating in type-A mode. Then, the D_TX data is ASK-modulated with CLK by the NAND gate NA1, while the inverter formed by MPH and MN drives 100% ASK-modulated pulses to the TX node. The voltage regulator consists of voltage dividers R_1, R_2 and OP1. The voltage of the V_CAP is regulated by 90% of VDD since the value of R_1 is determined to be about 9 times the R_2 value. A large external capacitor should be connected to the V_CAP node to suppress switching noises during type-B operation.

If the input of AB_SEL is ‘high’, MPH pulls up the TX node when both the D_TX and CLK levels are ‘high’, while MPL pulls up the TX node when D_TX is ‘low’ and CLK is ‘high.’ The pulse amplitudes of the TX node are values of either VDD or V_CAP depending on the input data D_TX. The EMC filter filters high frequency harmonics of the rectangular pulse of the TX node.

2. Receiving Circuit

Figure 4 shows the proposed circuit for the receiving block.
The basic function of the receiving block is to demodulate load-modulated data in the R_X input so that it reproduces a subcarrier-modulated pulse signal, $R_{X, OUT}$, and feeds it to the digital controller. The binary data received can easily be produced in the digital controller [7], [8]. The voltage level of the R_X input is adjusted by the voltage divider formed by R_{XL1} and R_{XL2}, and an offset voltage is added by a clamper circuit so the negative input level is shifted to the ground. The maximum amplitude of the antennal signal is larger than 30 V. The main purpose of the voltage divider is to protect the mixer from a high voltage signal from the antenna. The designed ratio of the voltage divider is about 1/5. Negative input is not acceptable inside of the circuit because we only use a single positive supply as a VDD. Moreover, since process migration is important, we have been aiming for a reusable IP for an SoC solution of an RFID interrogator so that a complicated technology such as the triple-well process is not necessary for analog IP design.

The mixer made of a CMOS transmission gate multiplies CLK and the incoming RF signal. The R_X input is a signal from the antenna, so the carrier of the R_X signal is synchronized with CLK by itself. The DC offset level of the mixer output is adjusted to half VDD in the level adjustment circuit before feeding to the filter and comparator circuitry. The low-pass filters in the receiving section suppress high-frequency noise where the cut off band is about 800 kHz. A high-pass filter with a cut off frequency of about 1.6 MHz formed by C_5, R_7 and R_8 is used to eliminate the low-frequency spurious signal. The mid-band gain of the low-pass filter is about 10, and the gain of the inverting amplifier composed by R_8 and R_9 is about 10, so the overall gain of the receiving circuit was designed to be about 100. A Schmitt trigger is used for the comparator.
III. Experimental Results and Discussions

The chip was designed in full custom and fabricated by using Dongbu's 0.25 \(\mu \)m double-poly CMOS process. A test board of an RFID interrogator was manufactured as shown in Fig. 5. Since the size of an antenna is related to the read range [9], the size of the antenna is about 7\times 7 \text{cm}^2, which was designed to cover 10 cm of the read range. Figure 6 shows a measured waveform of \(D_{TX} \) and the output of the loop antenna. The data of \(D_{TX} \) are the frame data of the request-A command (REQA) encoded by a modified miller for type-A mode and request-B (REQB) for type-B mode [1]. The measured waveforms show that the RF outputs on the antenna meet the ISO/IEC 14443 type-A and type-B specifications for rising and falling time, overshoot and undershoot, and AM modulation index under a supply voltage of 3.3 V.

Figure 7 shows a subcarrier-modulated signal on the antenna and the corresponding \(R_{X,OUT} \) signal output of the receiving circuit. The ripple voltage on the antenna with a subcarrier of 847 kHz is a response of an RFID to a request command. The \(R_{X} \) signal was demodulated so that each ripple voltage was converted into a corresponding pulse signal. The proposed analog front-end circuit was operated in a 3.3 V single-supply voltage. Since the proposed circuit is designed using standard CMOS with a single-supply voltage, it can be integrated with the digital part for a single-chip design of an RFID interrogator using a standard digital CMOS process.

![Fig. 7. Measured waveforms of load-modulated antenna voltage (\(R_{X} \)) and demodulated \(R_{X,OUT} \) voltage.](image)

IV. Conclusion

An analog front-end circuit for an ISO/IEC 14443 type-A- and type-B-compatible RFID reader has been designed in full custom and fabricated by using 0.25 \(\mu \)m double-poly CMOS process. The measured results demonstrated that the circuit has met the standard specifications. The final goal of this work is to provide reusable analog IPs for an SoC solution of ISO/IEC 14443-compatible contact-less card readers by integrating both analog and digital parts into a single chip. The proposed circuit can be easily migrated to other CMOS processes for the IP-based design because the proposed circuit was designed and silicon-proved using a 0.25 \(\mu \)m CMOS process with a single-supply voltage of 3.3 V, which is available for most foundry companies.

References

Kyung-Won Min received the BS and MS degrees in semiconductor science from Wonkwang University in 1998 and in 2000. He joined IPC, Inc. in 2000 and worked in ASIC Design Department until 2004. He is currently working towards the PhD degree at Wonkwang University. His research interest is in the design of RFID tag and reader chips for both UHF band and 13.56 MHz.
Suk-Byung Chai received the BS degree from Wonkwang University, Iksan, Korea, in 2003. Now, he is a graduate student at Wonkwang University, where has been engaged in the research and development of RFID reader systems.

Shiho Kim received BSEE degree in electronic engineering from Yonsei University, Seoul Korea, in 1986. And he received the ME and PhD degrees in electrical engineering from KAIST, Daejeon, Korea, in 1988, and 1995. He joined LG Semicon Ltd. in 1988, where he was involved in the design of memory products such as DRAM and flash memories. Since 1997, he has been an Associate Professor at the Department of Electrical and Computer Engineering of Wonkwang University at Iksan, Korea. He has worked for SIPAC (System Integration and IP Authoring Center) as a member of executive committee since 2001. From February 2000 to February 2001, he stayed at IMEC and K.U. Leuven as a Visiting Professor. He is the Executive Chair of SoC Forum Korea. His current research interest includes SoC design for RFID Readers and tags, IP authoring and embedded memories.