
Shigeru Kuratani- Ph.D.
- Professor at Kobe University
Shigeru Kuratani
- Ph.D.
- Professor at Kobe University
About
362
Publications
124,082
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
14,803
Citations
Introduction
Current institution
Additional affiliations
April 2005 - February 2016
Publications
Publications (362)
Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to...
The evolutionary origin of the jaw remains one of the most enigmatic events in vertebrate evolution. The trigeminal nerve is a key component for understanding jaw evolution, as it plays a crucial role as a sensorimotor interface for the effective manipulation of the jaw. This nerve is also found in the lamprey, an extant jawless vertebrate. The tri...
Determining the general laws between evolution and development is a fundamental biological challenge. Developmental hourglasses have attracted increased attention as candidates for such laws, but the necessity of their emergence remains elusive. We conducted evolutionary simulations of developmental processes to confirm the emergence of the develop...
Whole genome duplications (WGDs) are major events that drastically reshape genome architecture and are causally associated with organismal innovations and radiations. The 2R Hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the veracity and timing of the 2R event relative to the divergence of g...
Whole genome duplications (WGDs) are major events that drastically reshape genome architecture and are causally associated with organismal innovations and radiations ¹ . The 2R Hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution 2,3 . However, the veracity and timing of the 2R event relative to the diverge...
The morphology of the mammalian chondrocranium appears to differ significantly from those of other amniotes, since the former possesses uniquely developed brain and cranial sensory organs. In particular, a question has long remained unanswered as to the developmental and evolutionary origins of a cartilaginous nodule called the ala hypochiasmatica....
Significant evolutionary shifts in locomotor behaviour often involve comparatively subtle anatomical transitions. For dinosaurian and avian evolution, medial overhang of the proximal femur has been central to discussions. However, there is an apparent conflict with regard to the evolutionary origin of the dinosaurian femoral head, with neontologica...
The support of pluripotent cells over time is an essential feature of development. In eutherian embryos, pluripotency is maintained from naïve states in peri-implantation to primed pluripotency at gastrulation. To understand how these states emerged, we reconstruct the evolutionary trajectory of the Pou5 gene family, which contains the central plur...
Nitric oxide (NO) is an ancestral key signalling molecule essential for life and has enormous versatility in biological systems, including cardiovascular homeostasis, neurotransmission and immunity. Although our knowledge of NO synthases (Nos), the enzymes that synthesize NO in vivo , is substantial, the origin of a large and diversified repertoire...
Palaeospondylus gunni, from the Middle Devonian period, is one of the most enigmatic fossil vertebrates, and its phylogenetic position has remained unclear since its discovery in Scotland in 1890 (ref. 1). The fossil’s strange set of morphological features has made comparisons with known vertebrate morphotype diversity difficult. Here we use synchr...
Background
The endostyle is an epithelial exocrine gland found in non-vertebrate chordates (amphioxi and tunicates) and the larvae of modern lampreys. It is generally considered to be an evolutionary precursor of the thyroid gland of vertebrates. Transformation of the endostyle into the thyroid gland during the metamorphosis of lampreys is thus dee...
Constrained & Directional Evolution Newsletter Vol. 5 No. S1 (2021), p. 1-8, cover image, https://www.constrained-evo.shigenobulab.org/docs/CDENewsVol5NoS1.pdf [access: 2024-03-01]. (Extended Abstract)
Symmetry in the arrangement of body parts is a distinctive phylogenetic feature of animals. Cnidarians show both bilateral and radial symmetries in their internal organs, such as gastric pouches and muscles. However, how different symmetries appear during the developmental process remains unknown. Here, we report intraspecific variations in the sym...
Significance
The anatomical framework of the jaw has traditionally been thought to be highly conserved among vertebrates. However, here we show that the therian-unique face (muzzle) evolved via a drastic alteration of the common pattern of the tetrapod jaw. Through comparative morphological and developmental analyses, we demonstrated that the theri...
The vertebrate head and brain are characterized by highly complex morphological patterns. The forebrain, the most anterior division of the brain, is subdivided into the diencephalon, hypothalamus, and telencephalon from the neuromeric subdivision into prosomeres. Importantly, the telencephalon contains the cerebral cortex, which plays a key role in...
Jawed vertebrates possess two distinct groups of muscles in the trunk (epaxial and hypaxial muscles) primarily defined by the pattern of motor innervation from the spinal cord. Of these, the hypaxial group includes muscles with highly differentiated morphology and function, such as the muscles associated with paired limbs, shoulder girdles and tong...
The vertebrate cerebellum arises at the dorsal part of rhombomere 1, induced by signals from the isthmic organizer. Two major cerebellar neuronal subtypes, granule cells (excitatory) and Purkinje cells (inhibitory), are generated from the anterior rhombic lip and the ventricular zone, respectively. This regionalization and the way it develops are s...
The frameshift hypothesis is a widely accepted model of bird wing evolution. This hypothesis postulates a shift in positional values, or molecular-developmental identity, that caused a change in digit phenotype. The hypothesis synthesized developmental and paleontological data on wing digit homology. The “most anterior digit” (MAD) hypothesis prese...
Nitric oxide (NO) is an ancestral key signaling molecule essential for life and has enormous versatility in biological systems, including cardiovascular homeostasis, neurotransmission, and immunity. Although our knowledge of nitric oxide synthases (Nos), the enzymes that synthesize NO in vivo, is substantial, the origin of a large and diversified r...
The notochord functions primarily as a supporting tissue to maintain the anteroposterior axis of primitive chordates, a function that is replaced entirely by the vertebral column in many vertebrates. The notochord still appears during vertebrate embryogenesis and plays a crucial role in the developmental pattern formation of surrounding structures,...
Bats are the second-most speciose group of mammals, comprising 20% of species diversity today. Their global explosion, representing one of the greatest adaptive radiations in mammalian history, is largely attributed to their ability of laryngeal echolocation and powered flight, which enabled them to conquer the night sky, a vast and hitherto unoccu...
Vertebrate extraocular muscles (EOMs) function in eye movements. The EOMs of modern jawed vertebrates consist primarily of four recti and two oblique muscles innervated by three cranial nerves. The developmental mechanisms underlying the establishment of this complex and the evolutionarily conserved pattern of EOMs are unknown. Chondrichthyan early...
Recapitulation is a hypothetical concept that assumes embryogenesis of an animal parallels its own phylogenetic history, sequentially developing from more ancestral features to more derived ones. This concept predicts that the earliest developmental stage of various animals should represent the most evolutionarily conserved patterns. Recent transcr...
To understand Haeckel's idea of recapitulation with modern evolutionary biology, one has to realize how evolutionarily conserved embryonic stages appear sequentially in developmental processes as chains of causality. Whether the idea of evolution was accepted or not, Haeckel and von Baer commonly saw an importance of a particularly conserved mid‐em...
Background:
Vertebrates are characterized by possession of hypobranchial muscles (HBMs). Cyclostomes, or modern jawless vertebrates, possess a rudimentary and superficial HBM lateral to the pharynx, whereas the HBM in jawed vertebrates is internalized and anteroposteriorly specified. Precursor cells of the HBM, marked by expression of Lbx1, origin...
Abstract The relationship between development and evolution has been a central theme in evolutionary developmental biology. Across the vertebrates, the most highly conserved gene expression profiles are found at mid-embryonic, organogenesis stages, whereas those at earlier and later stages are more diverged. This hourglass-like pattern of divergenc...
One-egg twins, in general, initiate embryonic development at the same time, and their developmental stages proceed in parallel. Here we report a rare case of the embryonic development of the red-eared slider turtle, Trachemys scripta, in which twins at conspicuously different developmental stages developed on a single yolk. One of the twins appeare...
Jawed vertebrates have inner ears with three semicircular canals, the presence of which has been used as a key to understanding evolutionary relationships. Ostracoderms, the jawless stem gnathostomes, had only two canals and lacked the lateral canal1–3. Lampreys, which are modern cyclostomes, are generally thought to possess two semicircular canals...
The subdivision of the gnathostome neurocranium into an anterior neural crest-derived moiety and a posterior mesodermal moiety has attracted the interest of researchers for nearly two centuries. We present a synthetic scenario for the evolution of this structure, uniting developmental data from living cyclostomes and gnathostomes with morphological...
Background:
The skeletal musculature of gnathostomes, which is derived from embryonic somites, consists of epaxial and hypaxial portions. Some hypaxial muscles, such as tongue and limb muscles, undergo de-epithelialization and migration during development. Delamination and migration of these myoblasts, or migratory muscle precursors (MMPs), is gen...
Abstract While skeletal evolution has been extensively studied, the evolution of limb muscles and brachial plexus has received less attention. In this review, we focus on the tempo and mode of evolution of forelimb muscles in the vertebrate history, and on the developmental mechanisms that have affected the evolution of their morphology. Tetrapod l...
Abstract The group Vertebrata is currently placed as a subphylum in the phylum Chordata, together with two other subphyla, Cephalochordata (lancelets) and Urochordata (ascidians). The past three decades, have seen extraordinary advances in zoological taxonomy and the time is now ripe for reassessing whether the subphylum position is truly appropria...
The relationship between development and evolution is a central topic in evolutionary biology. Recent transcriptome-based studies support the developmental hourglass model, which predicts that the animal embryogenetic program is most strongly conserved at mid-embryonic stages. This model does not necessarily contradict the classical hypothesis that...
Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays, and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark a...
Cranium of jawed vertebrates is composed of dorsal moiety that encapsulates the brain, or the neurocranium, and the is called the neurocranium, and the ventral moiety, the viscerocranium, that supports the pharynx. In modern jawed vertebrates (crown gnathostomes), the viscerocranium is predominantly of neural crest origin, and for the neurocranium,...
Hox genes exert fundamental roles for proper regional specification along the main rostro-caudal axis of animal embryos. They are generally expressed in restricted spatial domains according to their position in the cluster (spatial colinearity)-a feature that is conserved across bilaterians. In jawed vertebrates (gnathostomes), the position in the...
The migration and distribution patterns of neural crest (NC) cells reflect the distinct embryonic environments of the head and trunk: cephalic NC cells migrate predominantly along the dorsolateral pathway to populate the craniofacial and pharyngeal regions, whereas trunk crest cells migrate along the ventrolateral pathways to form the dorsal root g...
Background
The extant vertebrates include cyclostomes (lamprey and hagfish) and crown gnathostomes (jawed vertebrates), but there are various anatomical disparities between these two groups. Conspicuous in the gnathostomes is the neck, which occupies the interfacial domain between the head and trunk, including the occipital part of the cranium, the...
The development of the mouth in animals has fascinated researchers for decades, and a recent study proposed the modern view of recurrent evolution of protostomy and deuterostomy. Here we expanded our knowledge about conserved traits of mouth formation in chordates, testing the hypothesis that nitric oxide (NO) is a potential regulator of this proce...
Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); howe...
In amniote embryos, skeletal muscles in the trunk are derived from epithelial dermomyotomes, the ventral margin of which extends ventrally to form body wall muscles. At limb levels, ventral dermomyotomes also generate limb-muscle precursors, an Lbx1-positive cell population that originates from the dermomyotome and migrates distally into the limb b...
In Fig. 2 of this Article originally published, some erroneous lines appeared on the left side of the images in panels c, e and g. The figure should have appeared as shown below. These errors have now been corrected in all versions of the Article.
We have proposed that independent origins of the tympanic membrane (TM), consisting of the external auditory meatus (EAM) and first pharyngeal pouch, are linked with distinctive middle ear structures in terms of dorsal-ventral patterning of the pharyngeal arches during amniote evolution. However, previous studies have suggested that the first phary...
Elucidating how body parts from different primordia are integrated during development is essential for understanding the nature of morphological evolution. In tetrapod evolution, while the position of the hindlimb has diversified along with the vertebral formula, the mechanism responsible for this coordination has not been well understood. However,...
Paired limbs were acquired in the ancestor of tetrapods and their morphology has been highly diversified in amniotes in relation to the adaptive radiation to the terrestrial environment. These morphological changes may have been induced by modification of the developmental program of the skeletal or muscular system. To complete limb modification, i...
Background
Cardiac outflow tract patterning and cell contribution are studied using an evo-devo approach to reveal insight into the development of aorto-pulmonary septation.
Results
We studied embryonic stages of reptile hearts (lizard, turtle and crocodile) and compared these to avian and mammalian development. Immunohistochemistry allowed us to...
Highly complicated morphologies and sophisticated functions of vertebrate brains have been established through evolution. However, the origin and early evolutionary history of the brain remain elusive, owing to lack of information regarding the brain architecture of extant and fossil species of jawless vertebrates (agnathans). Comparative analyses...
Zoological Letters, an open access online journal launched in 2015 is entering its third year of publication, and now seeks to drive new insights in evolutionary and comparative zoology by the inclusion of paleontological studies into its scope.
The vertebrate head characteristically exhibits a complex pattern with sense organs, brain, paired eyes and jaw muscles, and the brain case is not found in other chordates. How the extant vertebrate head has evolved remains enigmatic. Historically, there have been two conflicting views on the origin of the vertebrate head, segmental and non-segment...
The ancestral configuration of the vertebrate head has long been an intriguing topic in comparative morphology and evolutionary biology. One peculiar component of the vertebrate head is the presence of extra-ocular muscles (EOMs), the developmental mechanism and evolution of which remain to be determined. The head mesoderm of elasmobranchs undergoe...
Background
The taxonomic position of the Middle Devonian fish-like animal Palaeospondylus has remained enigmatic, due mainly to the inability to identify homologous cranial elements. This animal has been classified into nearly all of the major vertebrate taxa over a century of heuristic taxonomic research, despite the lack of conclusive morphologic...
Our knowledge of vertebrate cranium evolution has relied largely on the study of gnathostomes. Recent evolutionary and developmental studies of cyclostomes have shed new light on the history of the vertebrate skull. The recent ability to obtain embryos of the hagfish, Eptatretus burgeri, has enabled new studies which have suggested an embryonic mor...
Motivated by the discovery of segmental epithelial coeloms, or "head cavities," in elasmobranch embryos toward the end of the 19th century, the debate over the presence of mesodermal segments in the vertebrate head became a central problem in comparative embryology. The classical segmental view assumed only one type of metamerism in the vertebrate...
The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolu...
Scrutiny of fossils sometimes uncovers an unexpected phylogenetic relationship. New analyses of the enigmatic fossil Tullimonstrum from 300 million years ago reveal it to be a vertebrate. See Letters p.496 & p.500
The vertebrate brain is highly complex, but its evolutionary origin remains elusive. Because of the absence of certain developmental domains generally marked by the expression of regulatory genes, the embryonic brain of the lamprey, a jawless vertebrate, had been regarded as representing a less complex, ancestral state of the vertebrate brain. Spec...
Deuterostomes (animals with ‘secondary mouths’) are generally accepted to develop the mouth independently of the blastopore. However, it remains largely unknown whether mouths are homologous among all deuterostome groups. Unlike other bilaterians, in amphioxus the mouth initially opens on the left lateral side. This peculiar morphology has not been...
A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year o...
Two major skeletal systems-the endoskeleton and exoskeleton-are recognized in vertebrate evolution. Here, we propose that these two systems are distinguished primarily by their relative positions, not by differences in embryonic histogenesis or cell lineage of origin. Comparative embryologic analyses have shown that both types of skeleton have chan...
The vertebrate spinal accessory nerve (SAN) innervates the cucullaris muscle, the major muscle of the neck, and is recognized as a synapomorphy that defines living jawed vertebrates. Morphologically, the cucullaris muscle exists between the branchiomeric series of muscles innervated by special visceral efferent neurons and the rostral somitic muscl...
Introduction:
The vertebrate body is characterized by its dual segmental organization: pharyngeal arches in the head and somites in the trunk. Muscular and nervous system morphologies are also organized following these metameric patterns, with distinct differences between head and trunk; branchiomeric nerves innervating pharyngeal arches are super...
Introduction:
The vertebrate head is characterized by unsegmented head mesoderm the evolutionary origin of which remains enigmatic. The head mesoderm is derived from the rostral part of the dorsal mesoderm, which is regionalized anteroposteriorly during gastrulation. The basal chordate amphioxus resembles vertebrates due to the presence of somites...
Introduction:
Somites, blocks of mesoderm tissue located on either side of the neural tube in the developing vertebrate embryo, are derived from mesenchymal cells in the presomitic mesoderm (PSM) and are a defining characteristic of vertebrates. In vertebrates, the somite segmental boundary is determined by Notch signalling and the antagonistic re...
The neck acquired flexibility through modifications of the head-trunk interface in vertebrate evolution. Although developmental programs for the neck musculoskeletal system have attracted the attention of evolutionary developmental biologists, how the heart, shoulder and surrounding tissues are modified during development has remained unclear. Here...
The tympanic membrane is a thin layer that originates from the ectoderm, endoderm, and mesenchyme. Molecular-genetic investigations have revealed that interaction between epithelial and mesenchymal cells in the pharyngeal arches is essential for development of the tympanic membrane. We have recently reported that developmental mechanisms underlying...
Background
Retinoic acid (RA) signaling controls many developmental processes in chordates, from early axis specification to late organogenesis. The functions of RA are chiefly mediated by a subfamily of nuclear hormone receptors, the retinoic acid receptors (RARs), that act as ligand-activated transcription factors. While RARs have been extensivel...
The amniote middle ear is a classical example of the evolutionary novelty. Although paleontological evidence supports the view that mammals and diapsids (modern reptiles and birds) independently acquired the middle ear after divergence from their common ancestor, the developmental bases of these transformations remain unknown. Here we show that low...
Lampreys represent one of two extant jawless vertebrates (cyclostomes) that diverged from jawed vertebrates over 500 million years ago. They are aquatic inhabitants with elongated, eel-shaped bodies and lack paired fins. Instead of jaws, lampreys possess a disc-shaped oral funnel armored with horny teeth. Their larvae, called ammocoetes, exhibit wo...
Because of its apparently primitive morphology and phylogenetic position, the hagfish is recognized as one of the most basal lineages of vertebrates. In particular, their embryonic gene expression patterns were expected to provide insights into the common ancestral state of the molecular developmental mechanisms. However, it has been difficult to o...
The hourglass model of embryonic evolution predicts an hourglass-like divergence during animal embryogenesis - with embryos being more divergent at the earliest and latest stages but conserved during a mid-embryonic (phylotypic) period that serves as a source of the basic body plan for animals within a phylum. Morphological observations have sugges...
With the exception of that from the olfactory system, the vertebrate sensory information is relayed by the dorsal thalamus (dTh) to be carried to the telencephalon via the thalamo-telencephalic tract. Although the trajectory of the tract from the dTh to the basal telencephalon seems to be highly conserved among amniotes, the axonal terminals vary i...
During cardiogenesis the epicardium, covering the surface of the myocardial tube, has been ascribed several functions essential for normal heart development of vertebrates from lampreys to mammals. We investigated a novel function of the epicardium in ventricular development in species with partial and complete septation. These species include rept...
The turtle shell is a wonderful example of a genuine morphological novelty, since it has no counterpart in any other extant vertebrate lineages. The evolutionary origin of the shell is a question that has fascinated evolutionary biologists for over two centuries and it still remains a mystery. One of the turtle innovations associated with the shell...
The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In...
Turtles are characterized by their possession of a shell with dorsal and ventral moieties: the carapace and the plastron, respectively. In this review, we try to provide answers to the question of the evolutionary origin of the carapace, by revising morphological, developmental, and paleontological comparative analyses. The turtle carapace is forme...
Because of their unique morphology, turtles have raised profound questions as to their evolutionary origin. In striking contrast to the body plan of other tetrapods, the shoulder girdle of turtles sits inside the rib cage, which comprises the dorsal shell, or carapace. By this topological change of the skeletal elements, the carapace has been regar...
Cover illustration. Morphology of the trigeminal nerve is closely related to the embryonic composition of the jaw or oral apparatus of vertebrates. In this issue of the Journal of Morphology, Higashiyama and Kuratani (pp. 17-38) investigate the development of the maxillary nerve, a component of the trigeminal nerve, generally regarded as a branch s...
The origins of the vertebral elements and the underlying developmental mechanisms have so far remained unclear, largely due to the unusual axial skeletal morphology of hagfish, one of two extant jawless vertebrate clades. Hagfish axial supporting tissue is generally believed to consist of the notochord and cartilaginous fin rays only. However, care...
Recent molecular phylogenetic analyses have shown that the modern jawless vertebrates, hagfishes and lampreys, are more closely related to each other than to the other vertebrates, constituting a monophyletic group, the cyclostomes. In terms of their developmental morphology as well, it is possible to identify an embryonic pattern in hagfish embryo...
The shoulder girdle of turtles has a triradiate morphology. Although its dorsal process represents the scapular blade, the skeletal identities of the two ventral processes remain uncertain. To elucidate the question, developmental patterns of the girdles were compared between Chinese soft-shelled turtles, chickens, and mice. Despite the morphologic...
The turtle shell is comprised of a dorsal carapace and a ventral plastron, and is an autapomorphy of this group. The carapace consists of the vertebral column and ribs as well as a specialized dermis. The formation of the shell is accompanied by a change in the spatial relationship of the ribs and the pectoral girdle. Because of this rearrangement,...
The shoulder muscles of an early jawed vertebrate represent an intermediate evolutionary state.
The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of t...
Supplementary Figures S1-S7, Supplementary Methods and Supplementary Reference
Hox genes, with their similar roles in animals as evolutionarily distant as humans and flies, have fascinated biologists since their discovery nearly 30 years ago. During the last two decades, reports on Hox genes from a still growing number of eumetazoan species have increased our knowledge on the Hox gene contents of a wide range of animal groups...
Classical hypotheses regarding the evolutionary origin of paired appendages propose transformation of precursor structures (gill arches and lateral fin folds) into paired fins. During development, gnathostome paired appendages form as outgrowths of body wall somatopleure, a tissue composed of somatic lateral plate mesoderm (LPM) and overlying ectod...
It has been demonstrated recently that hagfishes, one of two groups of extant jawless vertebrates, have cartilaginous vertebral elements. Embryological and gene expression analyses have also shown that this group of animals develops a sclerotome, the potential primordium of the axial skeleton. However, it has not been shown unequivocally that the h...