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Abstract—As vehicular communication networks embrace
metaverse beyond 5G/6G systems, the rich content update via
the least interfered subchannel of the optimal frequency band
in a hybrid band vehicle to everything (V2X) setting emerges
as a challenging optimization problem. We model this problem
as a tradeoff between multi-band VR/AR devices attempting to
perform metaverse scenes and environmental updates to metaverse
roadside units (MRSUs) while minimizing energy consumption.
Due to the computational hardness of this optimization, we
formulate an opportunistic band selection problem using a multi-
armed bandit (MAB) that provides a good quality solution in
real-time without computationally burdening the already stretched
augmented/virtual reality (AR/VR) units acting as transmitting
nodes. The opportunistic use of scheduling rich content updates
at traffic signals and stand-still scenarios maps well with the
formulated bandit problem. We propose a Dual-Objective Mini-
max Optimal Stochastic Strategy (DOMOSS) as a natural solution
to this problem. Through extensive computer-based simulations,
we demonstrate the effectiveness of our proposal in contrast to
baselines and comparable solutions. We also verify the quality of
our solution and the convergence of the proposed strategy.

Index Terms—Metaverse, Content Update, Radio Frequency
(RF), Visible Light Communication (VLC), Hybrid Band Allo-
cation (HBA), MAB, and MOSS.

I. INTRODUCTION

As vehicle-to-vehicle/infrastructure (V2X) communications

meet metaverse, optimizing the scene and environment up-

dates requiring a large capacity while minimizing the resid-

ual energy of metaverse-enabled wireless devices on-board

vehicles emerges as an interesting research problem [1], [2].

While beyond 5G (B5G) network technologies exploiting both

legacy RF (radio frequency) and high spectrum bands such as

mmWave (millimeter wave) and visual light communications

(VLC), they are still likely to be challenged by the tremendous

bandwidth requirements of metaverse services and applications.

Therefore, it is crucial to efficiently perform the V2X metaverse

content updates by AR/VR devices to make the best of the
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available high-frequency spectrum while minimizing the energy

consumption of these wireless nodes onboard the vehicles as

depicted in Fig. 1. In this vein, we formulate a hybrid band

allocation (HBA) problem with regard to our considered V2X-

assisted metaverse system setting to opportunistically make

use of the best possible frequency band and its sub-channel

[3], [4]. Our optimization problem aims to maximize the data

rate while opportunistically switching to the best metaverse

roadside unit (MRSU) band/sub-channel while waiting/stopping

at traffic signals/parking within a reasonably limited time. Since

solving such a problem requires complete system information

along with high computational resources, we are motivated to

address this problem in a distributed setting by playing a multi-

armed bandit (MAB) game between the metaverse-enabled

transmitting device and the receiving MRSU in the presence

of variable-sized blockers which dramatically and adversely

impact the propagation characteristics of high-frequency, high-

capacity frequency bands and their corresponding sub-channels.

Motivated by the above, the contributions in this work are

summarized as follows:

• We formulate the band selection problem using MABs,

where the AR/VR is the bandit player attempting to upload

metaverse content to MRSU via available bands (bandit

arms). The bandit reward is the upload rate content and

the cost is the energy consumption upon the decided arm.

• We propose a dual-objective bandit strategy to solve

this problem, referred to as dual-objective minimax opti-

mal stochastic strategy (DOMOSS). Then, we incorporate

residual energy-aware (REA) features for performance

comparison.

• DOMOSS is compared with classical bandits such as

upper confidence bound (UCB), Thompson sampling (TS),

Minimax Optimal Stochastic Strategy (MOSS) schemes,

and HBA benchmarks.

• Simulation results indicate the near-optimal band selection

performance of our proposal compared to other methods

in terms of upload content rate, energy-efficiency, and

convergence performance.
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Fig. 1: Considered hybrid-band V2X metaverse content update

scenario.

The remainder of this paper is structured as follows. Section II

summarizes the related work of HBA systems. Section III

details the hybrid-band V2X metaverse content update scenario.

Section IV overviews the band optimization problem formula-

tion. Section V discusses the proposed DOMOSS scheme after

highlighting REA-UCB, REA-TS, and REA-MOSS methods.

Section VI presents the performance evaluation of our proposal

compared with other methodologies. Finally, Section VII high-

lights the concluding remarks.

II. RELATED WORK

Since multi-band communication in V2X-enabled meta-

verse is a relatively new concept, we present the relevant

research work available in the literature that addresses hybrid-

band/channel selection learning techniques in wireless sys-

tems [5]–[9]. In Device-to-Device (D2D)-enabled communica-

tion, the copresence of WiFi and VLC bands were considered

in [10]. A hybrid neural network-driven heuristic decision-

making was conceptualized to select the best possible band.

However, this approach requires extensive dataset collection,

preprocessing, and training. Furthermore, this approach could

not be enhanced beyond indoor settings. On the other hand, a

convolutional neural network (CNN) was employed to intelli-

gently predict the best signal-to-interfernce-noise-ratio (SINR)

band from a diverse frequency-bands pool in [11]. Despite

its potential, that methodology suffered from the limitation

of training datasets and simplistic VLC channel model as-

sumptions. In [12]–[15] coauthors of our work addressed the

HBA problem by employing distributed learning via MAB,

and introduced enhanced UCB strategies. However, according

to [16], there is significant room for improvement beyond

considering only a single objective in the MAB formulation.

III. SYSTEM MODEL

In this section, we present our considered system model.

As depicted in Fig. 1, both MRSU and on-vehicle AR/VR

nodes, and Electronic Control Units (ECUs) are assumed to

be equipped with hybrid-band radios, i.e., legacy RF, mmWave,

and VLC bands with the presence of possible vehicular blockers

with varying sizes that obstruct the line-of-sight between the

MRSU and AR/VR/ECU nodes. In this setting, the multi-

band AR/VR device is responsible for delivering the metaverse

update to the MRSU via possible frequency bands, i.e., legacy

RF (2.4/5.25GHz WiFi), mmWave (38GHz (also referred to

as WiGig), or VLC (400-800THz). Each band is split into

a number of sub-channels to upload the metaverse scene or

environment-related update bits [3].

As for the legacy RF bands, we consider 2.4GHz and

5.25GHz WiFi channel models based on log-normal shadowing

comprising zero means; standard deviations of 2.15dB and

6dB, reference path losses of 41.8 and 47.2; and path loss

exponents of 2 and 2.32, respectively [13]. Also, the multi-band

MRSU is assumed to comprise a two-dimensional directional

antenna model Next, we describe the mmWave channel in the

38GHz spectrum [3], [15]. The received mmWave power at the

ECU node depends on the antenna beamforming gain and the

effect of the vehicular blocker [3]. For the mmWave model, we

consider a zero-mean log-normal distributed path loss while

allowing the RSU-ECU beamforming. Note that the system

model mainly is interested in the Line-of-Sight (LoS) link

between the RSU and ECU nodes owing to an approximately

20dB gain in contrast with that achieved by the non-LoS

mmWave link [12]. On the other hand, for the VLC system,

we consider the Light-Emitting Diode (LED) transmitters at the

RSU node based on the Lamebrtian framework [3].We utilize

the vehicular blocker model for the legacy RF, mmWave, and

VLC bands via an empirical setup in an urban setting, obtained

from the work in [17]. In our scenario, we consider no vehicular

blocker, small vehicular blockers (comprising dimensions of

5.07x1.69x1.93m3), as well as large vehicular blockers (with

the dimensions of 7.01x2.04x2.63m3). Based on the reported

findings in [17], we then derive a vehicular blocker loss function

with regard to the frequency and blocker types as a linear

regression as follows,

�;>2:8=6;>BB[3�] = V1 + U1 log(1 +
52,=

1GHz
), (1)

where U1 is the gradient, V1 denotes the line intercept, and 1

represents the size of the vehicular blocker.

Based on the co-presence of these multi-band radios at

the MRSU, we assume opportunistic connectivity between the

serving MRSU and each AR/VR node that attempts to perform

a metaverse update of size ;. Consider that there are ' vehicles

with one AR/VR node on-board and � MRSU in a service

area. Each MRSU 4 (∈ �) can connect to a given AR/VR

unit A (∈ ') at time C over the best sub-channel of any of the

three frequency bands, models of which were described earlier.

Here, each AR/VR unit A is assumed to have its own metaverse

content update payloads. Also, we consider each transmitting

and receiving nodes pair 4 and A such that 4 can resume the

remaining metaverse content update payload (;− ;′) from A and

upload them with the remote metaverse server over high-speed

backhaul links. Based on the system model foundations, we are

now ready to formulate the research problem in the following

section.
IV. PROBLEM FORMULATION

A. Optimization Problem with Complete System Information

Herein, we first formulate the band selection problem based

on the pre-described system model by considering AR/VR



device A and MRSU 4. This can be considered as a linear

programming problem as follows,

arg max
8, 9

<
∑

8=1

=8
∑

9=1

�,8 9)�Γ8 9 (C)

* (C) ∗ )ℎ,8 9 + )�
38 9 (2a)

F.A.C.

38 9 ∈ {0, 1}, (2b)

arg min
8, 9

C+',8 9 (C) =
%#

VR
!�

�,8 9Γ8 9
(C)

, (2c)

<
∑

8=1

=8
∑

9=1

38 9 = 1, (2d)

<
∑

8=1

=8 ≥ #, (2e)

)� ≤ C + n | n > 0, (2f)

!� + ;
′ <= ;, (2g)

�8 ≥ ΞCℎ, (2h)

where < denotes the number of frequency bands supported

by the transmitting AR/VR device A and the receiving MRSU

4 while =8 indicates the available sub-channels in the cor-

responding band 8. Let # denote the maximum number of

available channels across all the considered frequency bands.

The objective function describes the selection of the band 8

and sub-channel 9 at MRSU A such that the term inside the

two summation notations yield the maximum data rate at time

C. 38, 9 refers to a decision variable for the band and sub-

channel selection that can take only a binary value between

0 and 1 while the summation of all the decision variable (i.e.,

overall 8 and 9 values) is considered to be 1 as shown by the

first two constraints. �+',8 9 (C) refers to a cost function where

%#
+'

denotes the transmit power of the AR/VR device upon

the utilized band # . �,8 9 denotes the bandwidth of channel

9 that belongs to band 8. The third constraint describes the

fact that all channels over the available bands must be equal

to or more than available sub-channels # . The next constraint

articulates the data download time, )� , which is considered to

be not more than the current time C plus n where the latter

parameter acts as a limited waiting time of AR/VR device A at

a traffic stoppage or parking for opportunistic connectivity with

the best possible band/sub-channel at MRSU 4. !� refers to the

segment of the metaverse content payload to be uploaded by

the device A to serving MRSU 4 such that the sum of !� and

;′ (i.e., previously uploaded segments of the metaverse content

updated to other MRSUs) are equal to or less than the size of

the entire metaverse content update. �8 refers to the residual

energy of AR/VR device 8 which must remain at least the same

as the threshold energy level ΞCℎ so that other operations of the

AR/VR device are not disrupted. The overhead time between

A and 4 is denoted by )ℎ,8 9 , which is subject to the adopted

band/sub-channel. Γ8 9 (C) refers to the spectral efficiency (bits

per second per hertz) and is equal to log2 (1 +
%
8 9

MRSU
(C )

#0+� (C )
), where

%
8 9

MRSU
(C) indicates the received power at MRSU 4 at time C

using band 8. #0 and � represent the noise and interference

power, respectively.

B. Reformulation of the Original Problem into A Multi-Armed

Bandit (MAB) Game

Since the constrained maximization problem (2a) requires

the AR/VR device A to obtain the complete information of

the channel state information of all the available bands/sub-

channels of all the surrounding MRSUs, the solution to the

problem in real time is challenging. Also, the problem becomes

computationally heavy on the AR/VR devices when the number

of MRSUs is significantly high leading to high values of

< and =. As such, we transform the original optimization

problem into a sequential decision-making problem, referred to

as a stochastic multi-armed bandit by considering the blocking

phenomena of the vehicular blockers where A is the MAB

player and it plays its games to maximize a reward (i.e., the data

rate for disseminating the metaverse content update payload

to the MRSU) over a number of rounds while minimizing a

penalty in terms of the communication cost for selecting the

band/sub-channel. At each round C, which is bounded by a time

horizon, the transmitting device A chooses an action among a

finite set of options, referred to as arms, which describe the <

possible bands and = sub-channels. By selecting an arm (i.e.,

a band and its sub-channel), A draw an arbitrary reward k8, 9 (C)

from an unknown distribution that does not change with time.

At the end of each round, A updates the estimate of the mean

reward of arm 8, 9 as follows.

k8, 9C
=

1

)8, 9 (C − 1)

C−1
∑

?=1

k8, 9 (?)I�?=8, 9 , (3)

where )8, 9 (C − 1) refers to the number of times arm 8, 9 was

played prior to the commencement of round C. Next, I�?=8, 9 is

an indicator function that equals 0 if the arm i,j is not played

during round C or equals 1, otherwise. In this manner, after

playing for a finite number of rounds, the observed mean will

approach the mean reward of the arm. Thus, the reformulated

problem via the stochastic MAB game needs to be solved

with a strategy that can allow updating these estimates at the

AR/VR device after each round to select a good arm (i.e., a

high SINR band/sub-channel) in the following round. In the

following section, we design the solution methodology for the

re-formulated problem. Therefore, the optimal dual objective

arm is the lowest cost one from highly rewarded arms that

attains:

{8, 9}∗ = arg max
8, 9

(1 − n)`8, 9 B.C. arg min
8, 9

C8, 9 . (4)

CVR,# ∗
MAB
(C) =

%#
VR

!�

�,# ∗
MAB

Γ
# ∗

MAB

(C)
, (5)

where MAB is applied MAB technique (e.g., DOMOSS, UCB,

and TS), �VR,# ∗
MAB
(C) is the VR battery/energy consumption to

upload data content of �! bits with a speed of �,# ∗
MAB

Γ
# ∗

MAB

(C)

bps. In the following section, we discuss the methodology

for solving this transformed problem in a distributed manner

with high-quality solutions close to the optimal solution to the

original problem.



V. PROPOSED BASELINE METHODS AND ENVISIONED

NEAR-OPTIMAL SOLUTION

Herein, we present a systematic methodology to solve the

aforementioned MAB problem using UCB, TS, and MOSS

[18], respectively. We incorporate residual energy awareness

(REA) with regard to the transmitting AR/VR device into these

three strategies, referred to as REA-UCB, REA-TS, and REA-

MOSS, respectively. Then, wen design a dual-objective MOSS

algorithm to solve the MAB game.

A. Designed baseline 1: REA-UCB Method

REA-UCB is a modified UCB approach where the energy-

related term is subtracted from the exploration term of the basic

UCB equation as follows [13], [14],

<∗'��−*�� (C) = 0A6 max
8
{k̄8 (C) +

√

2;>6 )*

d8,C
−

G8

ΞVR,8 (C)
}, (6)

where k̄8 (C) denotes the upload rate from AR/VR device to

MRSU and d8,C reflects how many times arm 8 was played

within round/time C. The term
G8

Ξ+',8 (C )
accounts for the VR/AR

energy expense due to transmitting to MRSU over the chosen

band/sub-channel (i.e., the arm) 8 at time C.

B. Designed baseline 2: REA-TS Method

REA-TS is designed by modifying the basic Thompson

Sampling (TS) strategy by taking into account the VR/AR

energy consumption in its exploration phase. In this vein, the

term
G8

Ξ+',8 (C )
is included in the basic TS formula expressed as

[13], [15],

<∗'��−)( (C) =

0A6 max
8
{\8 (C) −

G8

Ξ+',8 (C)
}, \8 (C) ∼ N (k̄8 (C),

1

d8,C + 1
), (7)

where N(k̄8 (C),
1

d8,C+1
) denotes a normal distribution with k̄8 (C)

mean and 1
d8,C+1

variance.

C. Designed baseline 3: REA-MOSS Method

Again we incorporate residual energy-awareness (REA) term

into conventional MOSS [19]. Our customization is as follows,

<∗'��−"$(( (C) =

0A6 max
8
{k̄8 (C) +

√

√

√

<0G
(

;>6
(

C
d8 (C )

)

, 0
)

d8 (C)
−

G8

ΞVR,8 (C)
}, (8)

D. Envisioned Dual-Objective MOSS (DOMOSS) Algorithm

From hereon, we describe our envisioned DOMOSS al-

gorithm by jointly taking into consideration two objectives,

namely maximizing data rate and minimizing energy con-

sumption of AR/VR device for metaverse content update to

the MRSU. For this purpose, we exploit the strengths of the

classical MOSS algorithm [19] and apply it to the Explore Then

Commit (ETC) algorithm [16] instead of UCB. The idea is to

subsidize from the maximum rewards to pull the cheapest arm

(lowest cost). This is more effective than deducting the cost in

the exploration part as in the baseline methods, i.e., REA-UCB,

Algorithm 1: Proposed DOMOSS algorithm.

Result: Best band # at C ∈ [)*].
Input: C = 0, k̄# (C) = 0, d=,C = 0,

ΞCℎ,Ξ+',# (C = 1), 1 ≤ # ≤ �, 1 ≤ C ≤ )*.
Pure Exploration Stage:

for C ∈ [g�] do
�C = C <>3 �;
play arm �C and observe reward k�C;

d8 (C + 1) = d8 (C) + 1 {�C = 8} ∀ 8 ∈ [�]
update

ΞVR,8 (C) = ΞVR,8 (C) − �VR,8 (C) , {�C = 8} ∀ 8 ∈ [�]
end

UCB Stage:

for C ∈ [g� + 1 : )*] do

ˆ̀8 (C) ← k8 (C)/d8 (C), V8 (C) ←

√

<0G
(

;>6
(

C
d8 (C )

)

,0
)

d8 (C )
,

*?30C4`*��
8

(C) & `!��
8
(C) using Eqs.9,10

mC = arg max8 `
!��
8
(C);

� (C) = {8 : `*��
8

(C) − (1 − Y)`!��
<C
(C) ≥ 0 ;

�C = arg min8∈� (C ) C8;
Play arm �C then obtain

reward/achievable data rate k�C (C);
d8 (C + 1) = d8 (C) + 1 {�C = 8} ∀ 8 ∈ [�]

update ΞVR,�C (C) = ΞVR,�C (C) − �VR,�C (C)
end

REA-TS, and REA-MOSS. Such subtraction is not suitable

in a lot of realistic application scenarios, particularly if the

payoffs and costs are not the same category/type [16]. Hence,

in our envisioned DOMOSS algorithm, first, the UCB and lower

confidence bound (LCB) for the bandit’s arms are determined

using MOSS policy. Then, a feasibility set containing the arms

of payoffs exceeding the maximum LCB value of entire arms

is established. Finally, from the constructed feasibility set,

DOMOSS elects the lowest-cost arm. Algorithm 1 outlines the

main steps of our proposed DOMOSS algorithm. Its input is

all existing bands N and n tuning parameter. The output of

the algorithm is the decided channel to connect with #∗
"��
(C).

At C=0, d=,C the counter of each band/channel # = #2ℎ is

decided and their attained upload data rates, Ψ̄#8C
, are initiated

by 0. The algorithm comprises two key stages, namely the pure

exploration and selection stages. In pure exploration phase, the

AR/VR attempts all bands/channels, i.e., 8∗C = C <>3 �, to notice

their update rates Ψ�8∗C
. Also, d:8∗C

are updated, and the average

rates of the AR/VRΨ̄:8∗C
are estimated. This is done for an

investigation period of g�, where g =

(

)*
�

)2/3

( [16]). On the

other hand, during the selection stage, at trial C ∈ [g� + 1, )� ],

the UCB and LCB arms are calculated as follows:

`*��
8 (C) ← min ˆ̀8 (C) + V8 (C), (9)

`!��
8 (C) ← max ˆ̀8 (C) − V8 (C). (10)

Now, the feasible set of chosen arms with � (C) = {8 :

`*��
8
(C)−(1−Y)`!��

<C
(C) ≥ 0 are established. Out of � (C), the

arm attributed with the minimum energy cost �#8C
is decided

to upload the metaverse update payload as follows:

�C = arg min
8∈� (C )

C8 . (11)



Lastly, DMOSS parameters are updated, and residual en-

ergy levels of AR/VR sets are enumerated upon the decided

band/sub-channel. The proceeding trial repeats the whole pro-

cess if the AR/VR device needs to upload new metaverse

content update payloads to the MRSU.

VI. PERFORMANCE EVALUATION

Herein, we conduct numerical simulations and evaluate the

performance of our proposed DOMOSS algorithm in contrast

with the baseline methods, i.e., REA-UCB, REA-TS, REA-

MOSS, and benchmark (e.g., optimum, exhaustive, and ran-

dom) HBA algorithms. The optimal HBA solution is found

via the simultaneous election of the best channel with the

cheapest cost. The exhaustive HBA first attempts all existing

bands then chooses the supreme one after significant overhead.

On the other hand, the random HBA method pulls a random

band/channel without any information by giving priority to the

decision time. Table I lists the considered simulation parameters

including vehicular blocker details.

Fig. 2 presents the performance of spectral efficiency in terms

of the achieved data rate of our proposal at Y = 0.5 with regard

to the baseline and benchmark methods. In other words, this

performance measure signifies the selection of the arms that

are attributed with larger than or equal to half of the maximum

payoff. The results are presented over increasing separation

distances by considering three vehicular blocker scenarios,

i.e., no blockage (line-of-sight between AR/VR device and

MRSU), small vehicular blocker, and large vehicular blocker,

respectively. The obtained reward or data rate was reported to

be inversely related to the vehicular blockage type as demon-

strated in the plots of Figs. 2(a), 2(b), and 2(c), respectively.

From the results, we notice that with the increasing distances,

the metaverse content update rate drops for all the compared

methods owing to the path loss effect for the selection of the

respective band/sub-channel. Additionally, with the introduction

of blockers with larger blockers, the drop in the data rate

appears even more significant. Interestingly, the performance

of our proposed DOMOSS algorithm is near-optimal, i.e.,

99% with regard to the optimal benchmark solution, for all

the considered separation distances between the transmitting

AR/VR device in the vehicle and the destination MRSU.

Next, we evaluate the energy-efficiency of our proposal

compared with other methods in Fig. 3. DOMOSS works

at Y = 0.7 which means 70% of maximum content upload

rates are grouped to decide the cheapest arm. Our proposed

TABLE I: Simulation parameters.
Simulation parameter Value

# 4, i.e. (38,5.25,2.4,105) GHz

�,1, 52,1, %
1
)G

, )ℎ,1 40MHz, 38GHz, 20mW, 0.28msec

�,2, 52,2, %
2
)G

, )ℎ,2 40MHz, 5.25GHz, 20mW, 3.6`sec

�,3, 52,3, %
3
)G

, )ℎ,3 20MHz, 2.4GHz, 20mW, 3.6`sec

�,4, 52,4, %
4
)G

, )ℎ,4 20 MHz, 105GHz, 20mW, 3.6`sec

Ξ+',= (C = 1) , ΞCℎ uniform [0.01→ 1], 1%

G0, G 5 m, [10 - 100] m

)* , �! , )� 150, 1TB, 0.1 S

UB<0;; , VB<0;; 2.6, 3 [17]

U;0A64 , V;0A64 3.6, 7.7 [17]

DOMOSS algorithm outperformed other schemes due to proper

channel allocation strategy that minimizes the AR/VR device’s

consumed energy. With growing separation distances between

the transmitter and the receiving MRSU, the energy expenditure

of all the methods was found to increase as well. Interestingly,

the REA-UCB, REA-TS, REA-MOSS, and DOMOSS exhibit

significantly low energy consumption in the AR/VR device. In

particular, DOMOSS achieves the highest energy-efficiency in

terms of the residual energy of the transmitting AR/VR device.

On the other hand, the brute-force HBA method results in the

highest energy consumption. This is because of exhaustively

searching all possible frequency bands and their respective sub-

channels without paying any attention to the residual energy

constraint of the transmitter.

Now, we evaluate the convergence of our proposal as de-

picted in the plot of Fig. 4 at G = 20<. The convergence

trends of the comparable methods are also shown in the plot. As

evident from these results, our proposed DOMOSS algorithm

achieves 99.8% of the optimal performance during all the trials

until the time horizon of 400 trials. Thus, the viability of our

proposal is verified in terms of metaverse content updates while

substantially improving the AR/VR device’s energy budget.

Regarding the computational complexity of our proposed

DOMOSS algorithm, its space complexity is $ (#) while the

time complexity is $ (#)*) based on the analysis provided in

[18] where # refers to the number of arms and )* denotes the

time horizon.

VII. CONCLUSION

The introduction of vehicular communication networks be-

yond 5G/6G systems into the metaverse presents a challenge

in terms of optimally updating rich content via an interference-

free subchannel in a hybrid-band V2X setting. To address this,

we model this optimization problem as a tradeoff between

multi-band AR/VR devices performing metaverse scenes and

environmental updates to MRSUs while minimizing energy

consumption of the transmitting AR/VR devices. Given the

computational hardness of this optimization requiring detailed

channel state information of all possible bands/sub-channel

links for the nearby MRSUs, we formulate an opportunistic

band selection problem based on MAB game. This solution

effectively balances the competitive demands of both AR/VR

units acting as transmitting nodes without challenging compu-

tational requirements. To exploit stand-still scenarios, e.g., at

traffic signals for a brief stoppage, we proposed a DOMOSS

algorithm. We evaluated the effectiveness of our proposal in

comparison to three designed baselines and several benchmark

solutions and verified the quality of our solution in terms of its

fast convergence, near-optimal data rate, and energy-efficiency

performances.
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