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Abstract—Millimeter wave (mmWave) communication has at-
tracted considerable attention as a key technology for the next-
generation wireless communications thanks to its exceptional ad-
vantages. MmWave leads the way to achieve a high transmission
quality with directed narrow beams from source to multiple des-
tinations by adopting different antenna beamforming (BF) tech-
niques, which have a pivotal role in establishing and maintaining
robust links. However, realizing such BF gains in practice requires
overcoming several challenges, such as severe signal deterioration,
hardware constraints, and design complexity. The elevated com-
plexity of configuring mmWave BF vectors encourages researchers
to leverage relevant machine learning (ML) techniques for better
BF configurations deployment in 5G and beyond. In this arti-
cle, we summarize mmWave BF strategies employed for future
wireless networks. Then, we provide a comprehensive overview of
ML techniques plus its applications and promising contributions
toward efficient mmWave BF deployment. Furthermore, we discuss
mmWave BF’s future research directions and challenges. Finally,
we discuss a single and concurrent mmWave BF case study by ap-
plying multiarmed bandit to confirm the superiority of ML-based
methods over conventional ones.

Index Terms—Beamforming training (BT), deep learning,
machine learning (ML), millimeter wave (mmWave), multiarmed
bandit (MAB).

I. INTRODUCTION

THE urgent need to deliver higher throughput, lower latency,
massive connectivity, and reliable services has encouraged
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academia and industry to investigate different technologies and
spectrum regions for the next-generation wireless networks.
Although the fifth-generation (5G) of mobile networks is still
in planning stage, many research efforts have been explored
to propose hybrid models, where different technologies coexist
in a heterogeneous architecture at which billions of devices
are communicating via the same network. Several technologies
have recently received profound attention and can be considered
pillars for the 5G and beyond 5G (B5G) networks, including
massive multiple-input–multiple-output (massive MIMO) an-
tenna arrays, beamforming (BF), and nonorthogonal multiple
access (NOMA), etc. On the other hand, to support such mas-
sive connectivity, the capacity of the cellular network needs to
be extensively boosted (1000 fold) by efficiently using any
available spectrum regions while optimizing the system energy
efficiency, which constitutes a substantial part of the operating
cost [1].

Due to its large swath of available spectrum, millimeter wave
(mmWave) band, 30–300 GHz, is considered one of the key
components of 5G and B5G. Yet, mmWave channel owns bad
propagation characteristics due to its high operating frequencies,
vulnerability to path blocking, and oxygen absorption [2]. Con-
sequently, massive MIMO arrays are needed to mitigate such
severe channel impairments by leveraging the high BF gain to
obtain sufficient signal-to-noise ratio (SNR) [1]. However, tra-
ditional sub-6 GHz MIMO digital precoding techniques are not
feasible for mmWave, since it requires an incredible number of
radio-frequency (RF) chains, digital-to-analog (D/A) converters,
and analog-to-digital (A/D) converters with excessive power
consumption. Instead, mmWave BF can be done either using
analog beamformers, where a single RF chain is shared by all
antenna elements or using hybrid analog/digital beamformers.
In this context, hybrid beamformers provide an efficient tradeoff
between the low-complexity/limited-performance analog BF
and high-complexity/good-performance fully digital BF using
lower RF chains than the number of antenna elements, as shown
in Fig. 1 [1]. However, both analog-only and hybrid BF are
employed to realize multiuser and multistream transmissions in
indoor and outdoor mmWave communications. Consequently,
a variety of BF training (BT) techniques were suggested in
literature to determine the best mmWave transmit-receive beam
pair for different considerations, such as improving signal-to-
interference-plus-noise ratio (SINR) or security [3].

On the other hand, the recent progress in machine learning
(ML) has provided momentum to employ it in a large number
of applications in wireless networks, including cells association,
spectrum management, intelligent resources allocation [4], rout-
ing [5], recovery of channel state information (CSI), modulation,
detection, and device-to-device communication [6], beside its
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TABLE I
NOMENCLATURE

Fig. 1. Structure of hybrid analog/digital BF for mmWave communications.

potential in other paradigms, such as load-balancing in software-
defined networks [7], underwater communication [8], and robot
vision and image processing [9]. Additionally, leveraging ML
for developing efficient mmWave BF has become a hot research
area, where researchers have investigated several ML algorithms
for solving BF-related technical problems [10]–[12]. These in-
clude beam pairs selection [10], [13]–[17], location prediction,
angle-of-arrival (AoA) estimation [10], [13], [18], [19], BF
scheme selection [11], and mmWave beam alignment [19]–[21],
etc. The expected massive data traffic and number of users
increment over the next few years encourages researchers to
propose several solutions to these challenges. In highly dynamic
mmWave scenarios, conventional mmWave BF techniques will
be inappropriate as they require huge training overhead asso-
ciated with adjusting large array BF vectors. One promising
solution is to learn the surrounding environment via utilizing
a suitable ML technique. Thus, just based on some selected
environmental signatures, fast ML-based BF and beam tracking
algorithms can be developed. In this article, motivated by provid-
ing intelligent self-decision-making communication networks,
we investigate the ML-based research efforts for improved BF
techniques. Consequently, we highlighted a brief discussion of
the BT optimization problem in mmWave channels in Section II,
followed by a summary of mmWave BT strategies in Section III.
A short overview of the classification of ML techniques is
presented in Section IV. Section V summarizes several ML appli-
cations with promising contributions toward efficient mmWave

deployment. Additionally, we shed light on some open issues
and challenges for future research in Section VI. In Section VII,
we elaborated in explaining a case study to show the superiority
of ML-based methods in single and concurrent mmWave BF
using single-player and multiplayer multiarmed bandit (MAB)
schemes. Finally, Section VIII concludes this article. Table I
shows a list of the abbreviations used throughout this article.

II. MMWAVE CHANNEL MODEL AND BT
OPTIMIZATION PROBLEM

As mmWave channel has low number of scatters, it can be
represented by adopting L geometric scatters as [22]

H =

√
NTXNRX

α

L∑
�=1

τ�ARX(φ�)A
H
TX(θ�) (1)

where 1 ≤ � ≤ L is the path index and L is the total number of
paths, and NTX and NRX are the number of TX and RX antenna
elements shown in Fig. 1. α is the distance-dependent average
path loss, and τ� is the �th path complex gain. ARX(φ�) and
AH

TX(θ�) denote the antenna array response vectors of the RX
and TX, respectively, and H denotes the Hermitian transpose.
φ� and θ� denote the AoA and angle of departure (AoD) of �th
channel path, respectively. ATX(θ�) can be represented as

ATX(θ�) = [1, ej
2π
λ
dsin(θ�), .., ej(NTX−1) 2π

λ
dsin(θ�)]T (2)

where T means transpose, d is antenna elements spacing, and
λ is the signal wavelength. The same equation can be applied
for evaluating ARX(φ�) except that TX is replaced by RX and
θ� is replaced by φ�. By only considering one TX/RX RF chain
in (1) to emphasize the operation of the analog beamformer
responsible for the BT process, the signal at the RX side can be
expressed as

y = FH
RX (:, brx)HFTX (:, btx)x+ FH

RX (:, brx)n (3)

where x is the TX signal, and n is the additive white Gaussian
noise of length NRX × 1. FTX(:, btx) and FRX(:, brx) are the
antenna weight vectors (AWVs) of the TX and RX of lengths
NTX × 1 and NRX × 1 in the directions of btx and brx beams,
i.e., corresponding to columns btx and brx in FTX and FRX,
respectively. The target of the BT optimization problem is to
find out the best beam pair (b∗tx, b∗rx) maximizing the achievable
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Fig. 2. Taxonomy of mmWave BT techniques.

throughput in bit per second. This can be represented as

(b∗tx, b
∗
rx) = W

(
TD

KTBT + TD

)

arg max
∀(btx,brx)

log2

(
1 +

|FH
RX (:, brx)HFTX (:, btx) |2

σ0

)

s.t. btx ∈ φBTX , brx ∈ φBRX ,FTX ∈ φFTX ,FRX ∈ φFRX (4)

where W is the available bandwidth, and σ0 is the noise power.
φBTX , φBRX , φFTX , and φFRX are the spaces of the TX beam
directions, RX beam directions, TX AWVs, and RX AWVs,
respectively. The ratio (TD/(KTBT + TD)) represents the BT
overhead, where TD and TBT are the times required for data
transmissions and BT using one (btx, brx) pair, and K is the
total number of (btx, brx) beam pairs involved in the BT process.
Optimally, the (b∗tx, b∗rx) should be obtained just using one BT
duration, i.e., K = 1.

III. LITERATURE REVIEW IN RECENT MMWAVE

BT TECHNIQUES

In this section, we classify various BT techniques suggested in
the literature and summarize their pros/cons. These techniques
can be classified into two main categories, as shown in Fig. 2,
based on the availability of the mmWave CSI [23] as follows.

A. BT Without CSI Knowledge

In this category, BT is done by testing all available or a subset
of transmit/receive (TX/RX) beam pairs to determine the optimal
one for constructing the mmWave link without estimating the
mmWave CSI. This category includes several BT algorithms,
such as the exhaustive, numerical, and location-based search
algorithms, etc.

1) Exhaustive Search (EX) BT: EX is standardized by IEEE
802.11ad wireless gigabit (WiGig) standard [24]. EX BT is
based on analog beamformers using structured antenna code-
books. Three phases are conducted to complete the BT process,
as shown in Fig. 3, namely, the sector level sweep (SLS), multiple
sector ID capture (MIDC), and beam combining (BC). In the

Fig. 3. Example of SLS phase.

SLS phase shown in Fig. 3, the mmWave WiGig transmitter
(initiator) scans its available transmit (TX) antenna sectors,
i.e., AWVs, whereas the WiGig receiver is kept in quasi-omni
antenna mode [24]. This is done by sending sector sweep frames
in all available TX beam directions, as shown in Fig. 3. Then, the
WiGig receiver (responder) makes the same process to train its
TX beams, as shown in Fig. 3. In the MIDC phase, both initiator
and responder trains their RX beams using the same process used
in the SLS phase by sweeping their RX beams instead. After SLS
and MIDC phases, tables of best candidate TX /RX AWVs are
constructed to be used in the BC phase. In this phase, best TX/RX
beams collected from the SLS and MIDC phases are combined
and tested to find out the best candidates TX/RX beam pairs for
constructing the mmWave link and performing fast switching
if blocking happens. EX takes a considerable amount of time
for completing the BT process, which opens the door for more
sophisticated BT techniques. For example, it is stated in [25] that
1.8 ms is needed to accomplish the EX search using 32 TX/RX
antenna sectors in the SLS phase and 49 TX/RX beam pairs in
the BC phase.

2) Adaptive Beam Search BT: Multilevel beamwidths can
be used to reduce the complexity of the EX BT by adopting
wider beams in the earlier BT stages. According to their attained
SNRs, narrower beams are adjusted. However, this BT scheme
suffers from low BF gain due to the little coverage of the wide
beams [26].
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3) Numerical Search BT: Here, the BT starts with a random
TX/RX beam pair, and then the beam search is refined using
numerical algorithms, such as the Rosenbrock or Tabu algorithm
to reach at a suboptimal pair. However, these algorithms require
large training steps, and it is highly based on the initially selected
beam pair [27].

4) Location-Based BT: Location-based BT was proposed
to reduce the number of beams used by the BT process to
those expected to cover the mmWave device at estimated loca-
tion [28]–[31]. The BT complexity of these techniques is based
on the localization error of the used localization methodology,
including global positioning system for outdoor and Wi-Fi/Li-Fi
for indoor localization.

B. Based on mmWave CSI Knowledge

In this category, the parameters of the mmWave channel, e.g.,
channel gains, AoDs, and AoAs, are estimated for both line-of-
sight (LOS) and non-LOS paths. Then, based on these estimated
parameters, the TX/RX antenna beams are constructed.

1) Training-Based Compressive Sensing (CS) BT: Utilizing
sparsity inherent in mmWave channel, CS was used to esti-
mate mmWave channel parameters at the transmitter side for
constructing either analog or hybrid precoders. In this regard,
adaptive multiresolution BT was proposed for constructing the
sensing matrices [22].

2) Location-Based CS BT: To further reduce the complexity
of the sensing matrices and increase the BF gain, adaptive
multilevel sensing matrices can be constructed based on user
localization. Users’ positioning can be utilized to assist the
construction of the sensing matrices to overcome the poor ac-
curacy of the mmWave channel. In this scheme, the adaptive
BT levels are adjusted based on the expected localization error
relative to the expected angular spread of the mmWave channel
[30], [31].

IV. OVERVIEW OF ML TECHNIQUES AND TERMINOLOGIES

The classification of ML techniques has been explained in
detail in several literature, including [13], [32]–[34]. For the
sake of clarity and completeness of the discussions, we give a
brief overview of ML techniques’ training methodologies and
terminologies. Generally speaking, the ML’s training method-
ology can be categorized into one of the following three broad
categories.

1) Supervised Learning: The ML model is trained to learn a map-
ping function, y = f(x), using a historical dataset that gives
samples of the input–output (x− y) relationship, whereas the
objective of the model is to predict future output (yo) for a
given test input (xo). The learning is done by estimating the
probability p(y|x) of the samples in the dataset or specific
properties of that distribution [32], [34]. Two main predictive
models can be employed, namely the regression and the
classification models. The regression models use statistical
techniques to model the relationship between explanatory
variables and real-valued outcomes to predict the output by
using either linear or sigmoid function approximations. On
the other hand, classification as the most widely used ML
techniques classifies data samples into one out of several

classes. In other words, it learns how to map an input to
one of the possible outputs. Several classical classification
models can be used for mmWave BF applications, including
K-nearest neighbor (KNN), support vector machines (SVMs),
and decision tree [19]. Additionally, the recent breakthrough
in graphical processing unit designs allows more sophisticated
and deep artificial neural networks (ANNs) to be used for
large-size datasets. Such deep neural network (DNN) archi-
tectures, including the convolutional neural network (CNN),
recurrent neural network (RNN), Hopfield networks, and
Boltzmann machine, have been used in many novel areas in
wireless and optical communication networks [13], [33]. We
briefly highlight the main ideas of some of the most widely
used types as follows.
a) K-nearest neighbor: KNN is a classical supervised ML

algorithm, which can be applied for classification as well
as for regression tasks. When KNN is used for classifi-
cation, we search for the Kth nearest neighbors of the
test sample xo in the training dataset and then classify
it following the majority of the samples among the Kth
nearest neighbors [32], [35]. Consequently, a particular
case is when K = 1, where xo is assigned to the class of
the nearest sample using any particular selected distance
function, such as the Minkowski norm Lp distance, etc.
The performance of KNN depends on the selection of
the value of K, where less values lead to more accurate
classification results but with more sensitivity to noise. On
the other hand, larger values reduce noise sensitivity but
may lead to less distinct classes’ boundaries.

b) Support vector machine: SVM is a binary-classification
model that finds the hyperplane that maximizes the clas-
sification margin (i.e., the distance away from the hyper-
plane) to separate two classes of the training samples [32].

c) Deep neural network (also known as deep multilayer
neural network): ANN can be organized either in shallow
or deep structures consisting of several layers, which are
known as shallow NN or deep NN. One of the main usage
of DNN is the function approximation by a weighted
combinations of simple units (neurons) in a sequence of
layers (input, hidden, and output layers). The neurons in
those layers resemble the perception process in a brain,
where a specific neurons are activated based on the ex-
citation. Different structures have been investigated in
the literature to approximate several types of functions,
such as a mapping between input signals (images, sounds,
and videos) and their class labels (i.e., classification), and
computing future output based on historical values of the
inputs and/or outputs (regression) [13], [33].

d) Convolutional neural network: CNN is a DNN architec-
ture capable of automatically extracting high-level fea-
tures from raw input features better than the manual or
human-designed features. CNN assumes a locally con-
nected filters instead of fully connected architectures be-
tween layers to capture the spatial correlations [36]. CNN
exploits two operations, namely convolution and pooling.
The convolution uses multiple filters to extract features
from the dataset in addition to preserving their corre-
sponding spatial information. On the other hand, pooling
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(also known as subsampling) is used to reduce the di-
mensionality of the feature map via either max-pooling or
average-pooling [33]. CNN has provided improvements in
many fields, including image processing and recognition.
Recently, different CNN architectures have been used in
many areas through transfer learning technique, which will
be explored in more details in Section VI-B.

e) Recurrent neural network: RNN is a class of neural net-
works designed for modeling sequential data. In RNN,
it is assumed that the current output of the network is
a function of the current input and the previous out-
put via introducing memory cells. However, with long
sequences, RNN shows gradient vanishing and explod-
ing problems frequently, which leads to designing other
advanced types of RNN, such as the long short-term
memory (LSTM) and gated recurrent units (GRU) by
introducing a set of gates in the design [37]. Investigating
different RNN architectures are promising for analyzing
time series data in mobile networks as well as their suc-
cess stories in speech recognition and natural language
processing [33].

2) Unsupervised Learning: This methodology searches for hid-
den patterns and structures of the input data in the absence
of data labels. The tasks of unsupervised learning can be
divided into clustering, density estimation, and dimension
reduction [32]. First, the main goal of clustering is to divide
samples into groups or clusters. This means that initially we
do not know the class that each sample belongs to in the
dataset. Clustering has many applications in data analysis,
image/audio/video processing, and recently in wireless com-
munication. K-means is one of the most widely used clustering
techniques. Second, the aim of density estimation is to esti-
mate the density of the data distribution in the feature space,
which may reveal several important characteristics in the
high-density regions. The Gaussian mixture model (GMM)
is a famous technique of this type. Finally, the dimension
reduction aims to transform the data from a high-dimensional
space into a low-dimensional space while reserving the prin-
cipal structures of the data. Principal component analysis
and autoencoder (AE) are examples of such type. We briefly
highlight the main ideas of some of the most widely used
unsupervised learning types as follows.
a) K-means: It is a simple clustering algorithm that finds k

representative optimal points in the feature space for the k
clusters. Each sample in the dataset is assigned to one clus-
ter according to the distance between the point and each
representative. However, selecting the optimal k-points is
NP-hard problem that can be approximated using a less
complex iterative algorithm by randomly selecting initial
k-points, followed by assigning all samples to the initial
k-points. Then, we get the mean of each cluster and repeat
the process again and again until convergence [38].

b) Gaussian mixture model: GMM is an efficient density
estimation technique with the objective of fitting the data
into a mixture (weighted linear combination) of k Gaussian
probability distributions. This allows GMM to handle
complicated cluster forms. The parameter k controls the
complexity of GMM, where increasing k allows GMM to
approximate any continuous distribution to some degree

of accuracy. However, the larger k, the higher the proba-
bility of overfitting and time cost to estimate the mixture
parameters using the log-likelihood [39].

c) Autoencoder: AE is used for dimension reduction of im-
ages, audio, and video signals besides its application in
communication systems [4], [40]. An AE is an NN that can
be used to learn an effective representation for a dataset in
unsupervised learning way (i.e., encoded mode), where the
transformed code has lower dimensions compared with the
original data. AE consists of two NN: an encoder f(−|η)
and a decoder g(−|θ), where η and θ denote the parameters
of the encoder and the decoder, respectively [32]. If we
have an inputx ∈ Rd, the encoder is responsible of finding
a latent distribution (or a code) z ∈ Rt, f(x|η) = z, where
d and t are the lengths of x and z, respectively, and t < d.
On the other hand, the decoder tries to recover the original
feature x from the code z such that g(z|θ) = x̄ and x ≈ x̄.
Given the dataset {xi}ni=1, the object of the AE training
process is to learn the parameter set that minimizes the sum
of squared error

∑n
i=1 ||xi − x̄i||2. It is noteworthy that

when the AE limits the code’s length, the training will force
the code to capture critical structure of the input features
and ignore trivial ones, such as sparse noises, which makes
it suitable for denoising.

3) Reinforcement Learning (RL): RL adopts different learning
methodologies based on trial-and-error similar to humans. An
RL’s agent is rewarded or penalized for its action in order to
maximize the long-term rewards. A recursive environmental
feedback is provided to the agent to help in selecting the proper
actions in each step by following certain policy that maps
agent behavior from state to action. With uncertainty in the
environment, the system’s dynamics can be modeled using a
Markov decision process to optimize the objectives [34]. In
the following, we briefly highlight the main idea of Q-learning
as an example of RL techniques, whereas MAB is explained
in Section VI in more details [14], [20].
a) Q-learning: This is a model-free RL technique at which the

agent does not need to know or have a model of the envi-
ronment. The agent calculates a Q-value corresponding to
each state-action pair through experience, which is stored
in Q-table. The Q-value can be considered as a long-term
reward. However, it is not suitable for large-scale problems
because the tables become too large with hard complicated
complexity [41].

V. ML APPLICATIONS IN MMWAVE BF

Herein, we will list several interesting applications of ML
algorithms for enabling efficient mmWave BF for 5G and B5G
networks, which are shown in Fig. 4. Table II summarizes
these different ML applications, emphasizing its importance as
discussed below.

A. Beam Selection/Alignment/Tracking

1) Beam Selection: ML techniques have been widely used
for improving the beam searching, selection, and alignment
especially in highly mobile systems, such vehicular, high-speed
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TABLE II
ML-BASED MMWAVE BF

Fig. 4. Sample applications of ML in mmWave BF.

trains (HSTs), and unmanned aerial vehicles (UAVs) communi-
cations [15], [20], [37], respectively. A deep conventional neural
network (DCNN) model has been used for reducing mmWave
beam selection overhead and configuring mmWave vehicle to
infrastructure links (V2I) [15]. The mmWave beam selection
problem has been formulated as a multiclass classification prob-
lem to learn the optimal beam pair taking into consideration the
nearby vehicles locations [37]. A bandit inspired beam searching
methods for mmWave HSTs was proposed in [20] that not only
speed up the highly variable channel estimation calculations but
also to provide sufficient time for data transmission. The number
of beam directions or propagation paths, which represent the
arms, are reduced by exploiting the previous propagation infor-
mation. Those algorithms performed extensive evaluations using
realistic traffic patterns derived from Google maps, which not
only allows mmWave BSs to reach near-optimal performance
but also remains within 5% of the optimal performance by swift
adaptation to system changes (i.e., blockage and traffic).

2) Beam Alignment: Experimental results cleared out that
in a 7° beam width system, a misalignment of 18◦ dimin-
ishes the link budget by 17 dB, which might cut the link en-
tirely [42]. Hence, precise mmWave BA is required to guarantee

high data rate communications. Several works have formulated
environmental-aware beam alignment learning algorithms as
contextual MAB problems by exploiting the historic informa-
tion, which have been used for vehicular and HST communica-
tions [14], [43]. The distributed BA search problem in a point
to point mmWave MIMO system was formulated as adversarial
MAB problem in [44]. An exponential weight algorithm algo-
rithm was applied independently at both TX and RX to explore
different beams and identify the best one for data transmission
using a single bit feedback information.

3) Beam Tracking: mmWave beam tracking is a challenging
issue, especially in high mobile scenarios, such as UAVs and
V2I, due to the fast mobility and narrow transmission beams. It
is imperative to employ artificial intelligence and ML techniques
that predicts the surrounding environment in order to enhance the
performance [45], [46]. A promising RNN-based beam tracking
model that tracks the AoA of a mobile user is proposed in [47].
ML-based beam tracking will enhance the data transmission
quality and speeds up the beam switching process.

B. Coordinated BF and Blockage Prediction

The sensitivity of mmWave signals to blockage greatly impact
the coverage and reliability of mobile users. One interesting
paradigm to enhance the mmWave network coverage is in-
tegrating ML and coordinated BF techniques [48], where a
number of coordinated BSs simultaneously serve mobile users
to avoid blockage. Each user transmits only one uplink training
pilot sequence, which is jointly received at the BSs and draw
a defining signature for the user location and its surrounding
environment. The authors in [48] have developed a deep learning
model that learns these signatures to predict the BF vectors at the
BSs. The proposed system adopts an online training technique
by learning and adapting to the environment.

Blockage naturally leads to disconnecting the communication
session between the user and the BS while reconnecting the
user to another LOS BS incurs high BT overhead and latency.
ML-based BF techniques can solve such a problem by switching
to another unblocked beams by learning and predicting that

Authorized licensed use limited to: Kyushu University. Downloaded on July 12,2021 at 18:06:25 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

M. ELHALAWANY et al.: LEVERAGING MACHINE LEARNING FOR MILLIMETER WAVE BEAMFORMING IN BEYOND 5G NETWORKS 7

certain link will experience blockage in the next few time
frames [13]. This capability allows the serving BS to proactively
handover the user to another BS with highly probable LOS
link. The work in [49] has exploited empirical distribution of
users, posthandover trajectory, and LOS blockage, which is
learned online via an MAB framework in order to maximize the
expectation of the user-BS connection time after each handover.
This approach is capable of enhancing handover decision and
greatly improve the network performance. On the other hand,
the authors in [36] have exploited a framework that incorporate
computer vision and deep learning tools to predict mmWave
beams and blockages using RGB images captured by a camera-
enabled BS. The author in [39] have used GMM for modeling
blockage loss data for BF.

C. AoA Estimation and Optimal BF Technique Selection

1) AoA Estimation: The work in [10] investigates how AoA
information can be exploited by both DL and ML approaches
to perform beam selection in the uplink of a mmWave com-
munication system. The uplink mmWave beam selection task
was formulated as a multiclass classification problem and solved
by two supervised ML algorithms (KNN and SVM classifiers)
and one feed forward DNN technique [multilayer perceptron
(MLP)]. The main target of these algorithms is to choose the
optimal formation for the analog BF network based on the
estimated AoAs of different users devices. The results show
that MLP outperforms both KNN and SVM methods in terms of
classification accuracy. Additionally, a multiple signal classifi-
cation (MUSIC) algorithm is used for estimating both AoA and
received powers more precisely (close to 80%). Additionally, the
work in [18] proposed another DNN approach for detecting and
estimating the AoAs of radio waves. Their network architecture
learns a mapping technique that relates the received antenna
array signals with its associated AoAs of the impinging wave.
In [19], the authors have considered a hierarchical posterior
tree-based matching algorithm for active learning in mmWave
initial alignment and AoA estimation.

2) Optimal BF Technique Selection: Due to the existence
of several BF techniques in the literature, it is imperative
to select the proper and the most efficient one under differ-
ent constraints and environments. The authors in [11] have
investigated a DNN-based BF selection scheme for a two-
user multi-input single-output (MISO) interference channels.
In their design, each user chooses between two popular BF
schemes, which are the maximum ratio transmission BF and
the zero-forcing BF, where the transmit power and the channel
vectors are the inputs, and the output is the recommended
BF scheme.

D. Beam Selection for mmWave NOMA Systems

The author in [58] has investigated a mmWave NOMA sys-
tem, where a localization-based joint user selection and BF
are proposed. Developing practical algorithms that efficiently
handle different problems in mmWave NOMA scenarios can
also be handled using the promising ML techniques. In [59],
a set of ML-based algorithms have been proposed for beam
selection and power allocation in mmWave NOMA systems. A
low complex and promising k-means user clustering algorithm

implemented in NOMA scenario is developed in [38]. An ML
detection scheme was proposed to achieve better attack detection
policy in mmWave NOMA systems in [52]. Zhang et al. [53]
discuss an efficient DL framework to handle the user association,
subchannel, and power allocation problems in NOMA mmWave
heterogeneous networks to maximize EE under QoS constraints.
The authors proposed a semisupervised DL-based subchannel
allocation scheme and DNN- based power optimization algo-
rithms. The work in [41] discusses an improved online Q-
learning based algorithm that handles joint user-cell association
and interbeam power allocation for sum rate maximization of a
downlink mmWave NOMA system.

E. BF for mmWave Wireless Power Transfer (WPT)

ML algorithms can be used to accelerate efficient realization
of mmWave WPT techniques. The authors in [54] developed an
online technique for receiver positioning using random forest
and DNN to efficiently charge the power receivers. A stochastic
geometry based approach for directional power transfer using
BF for WPT has been discussed in [60]. In [61], an ML-based
method for controlling power with fast control at the transmitter
was proposed, where Bluetooth low energy technology is used
for communication.

F. BF Design

1) Unknown Users Scenario: Flexible ML-based design
techniques that are compatible with different BF/combing ar-
chitectures have been studied and investigated by researchers
to accelerate the BT especially in mmWave systems. In [55],
the authors proposed a neural hybrid BF/combining MIMO
system with a significant BER performance improvements. A
blind BF on a multiple BS cellular environment with multi-
ple mobile users using DRL has been investigated in [21]. A
DL-based mmWave massive MIMO design for effective hybrid
precoding with minimum BER, in which each selection of
the precoders for obtaining the optimized decoder is regarded
as a mapping relation in the DNN, was proposed in [56].
In [35], a hybrid BF design structure for the DL of multiuser
mmWave scenario using KNN for grouping RF chains at the BS
was given.

2) New Heterogeneous Networks Scenario: Probing optimal
beamformers in massive MIMO systems is a critical noncon-
vex optimization problem, solved by high computational cost
optimization techniques. The problem is further complicated in
mmWave-based HetNet scenarios, where the BSs are merged
with large numbers of transmit antennas and have different
inter-BS distances. Trials of solving such problems by using ML
techniques have been conducted [17], [57]. A 85% precise DNN
design for beam selection in mmWave HetNets that utilizes the
CSI of sub-6 GHz network as input features and its output is the
mmWave BS and beam selection is discussed in [17]. An RNN
learning based BF for MISO interference channel in HetNet is
investigated in [57].
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VI. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

In spite of the progress in ML algorithms and how they can
reduce complexity in wireless network and BF, it is vital to rec-
ognize the existence of different issues and challenges that must
be addressed if those algorithms are to be adopted in practical
systems. In this section, we present how ML-based algorithms
affect and be affected by various challenges in mmWave BF. We
present the following interesting and challenging future research
topics that are worth for further investigations.

A. Datasets Availability

The implementation of ML-based algorithms requires large
amounts of real data samples for training purpose. Additionally,
those huge samples need to be labeled for supervised learning
algorithms. However, it is not always feasible to acquire enough
amounts of real labeled data in practice, which forms a bot-
tleneck in communication networks. Regarding datasets in the
area of mmWave BF, few datasets have been published for public
use [62]–[64].

B. Dealing With Small Labeled Data

The problem of small labeled data can be solved by semisu-
pervised learning techniques that can efficiently deal with small
labeled data and large set of unlabeled data. Another interesting
method to solve the lack of massive data samples is to use
generative models, such as generative adversarial networks and
AEs to expand the available sample set by generating a synthetic
data following the same distribution of the original real data [4].
This approach is beneficial for all ML-based BF algorithms
while the performance of such method of synthetic data-driven
ML algorithms needs to be investigated in more details. Another
interesting concept has been explored in [18] to deal with small
datasets. The author investigated a DNN-based network for
AoA estimation for antenna array under the assumption of low
number of samples. The proposed DNN is divided into two
subnetworks, where the first one which is known as the detection
network is used to divide the search area of antenna array into
subsectors in order to reduce the training angles combinations.
Then, another subnetwork is used for estimating the AoA within
the specified subsector. However, no deep investigations have
been performed to confirm the performance of such approach.
Finally, one of the most promising techniques to explore is to
improve the learning process through the transfer of knowledge
from a pretrained related task in other fields. It is noteworthy that
pretrained CNN networks that have been trained on very large
datasets, such as ImageNet [65], AlexNet [66], VGG Net [67],
or GoogLeNet [68], can be used to fine-tune their weights on a
different dataset with limited number of samples, and a different
vector of features [34].

C. Frequent Hand-Off and Mobility

In order to support high mobility in mmWave systems, we
have to overcome the sensitivity of mmWave signals to blockage
and to dynamically maintain mmWave beams aligned. Since
the optimal BF in mmWave systems with large antenna array
requires considerable training overhead and complex process-
ing, it is interesting to explore other ML algorithms beside the

coordinated BF to solve such problems. One interesting idea to
exploit ML techniques to select primary and several redundant
beams for each node [16], where the node could perform self-
handover if the primary beam is interrupted. Additionally, it is
imperative to jointly consider channel prediction techniques to
support hand-off decision. While LSTM has been used in recent
the literature, other time series techniques can be investigated
for this task, such as the echo state network or long-short term
echo state network [69].

D. Fast ML Inference Versus Conventional Beam
Selection Algorithms

Due to the inherent complexity of the beam training algo-
rithms in mmWave BF, proposing an optimal/suboptimal ML-
based algorithm with fast inference time is a challenging task
specially if we take into consideration the latency, frequent hand-
off, and users’ mobility in vehicular-to-everything scenarios.
The work in [12] has considered a supervised ML algorithm
for beam selection and switching (BSS) to provide the best
performance at the receiver. The BSS is interpreted using DNN
as a multiclass classification algorithm. However, it is possible to
exploit other ML techniques to support efficient BSS especially
under uncertainty in the network, such as MAB and actor critic
RL techniques.

E. Adaptive ML for Easy/Adversarial Environment

Current existing ML algorithms are implemented directly
to mmWave BF. However, nontrivial robust ML algorithms
specialized for mmWave environments are required. ML-based
easy data methodology tries to develop adaptive simultaneous
algorithms for both best and worst cases [70]. For example, an
application of the learning with easy data framework (e.g., [70])
to beam learning might work not only in the worst situations
but also take advantage of easy situations to obtain better per-
formance.

VII. CASE STUDY: MAB FOR MMWAVE BT

In this section, we elaborate in explaining single-player MAB
technique and its extension to multiplayer case. Also, we provide
a case study with two different scenarios exploiting MAB for
single and concurrent mmWave BT to show the superiority of
ML-based BT over conventional techniques.

A. MAB Dilemma

MAB is an entirely online ML, where the player attempts to
obtain the maximum reward from several arms of slot machines,
where the rewards of the arms follow random distributions. It
has been adopted for solving many practical optimization is-
sues in wireless communications (network routing and resource
allocation, etc.) [71], [72]. It is divided into single-player and
multiplayer MAB as follow.

1) Single-Player MAB: In single-player MAB, a player tries
to identify the arm having the maximum long-term reward within
finite trials [73]. The player gathers information on every slot
machine (exploration) by examining several arms as feasible,
later determining the arm with the most considerable reward.
Hence, the player tries to compromise between playing with
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the arm having the maximum achievable reward so far, i.e.,
exploitation, or investigating new arms, i.e., exploration. For
long horizon time (investigation period), the player can accu-
rately anticipate the due reward of each arm. According to the
distribution of the rewards, the MAB problem is divided into
stochastic or adversarial. In stochastic MAB, the arms’ rewards
are pulled from independent and identical distributions, which
are undetermined for the players. Meanwhile, in adversarial
MAB, the rewards are decided according to the hostile envi-
ronment.

2) Multiplayer MAB: In multiplayer MAB, each player acts
in sequential trials to obtain an unidentified reward too. If more
than one player chooses the same arm, collisions occur [71].
Then, based on the collision model, players might share the
rewards or no player obtains the reward. According to the
exchanged information between the players, multiplayer MAB
algorithms are classified as centralized and decentralized. For
decentralized MAB, no data exchanges among the players, and
each player plays his future actions only based on his collected
reward remarks. On the other hand, in the centralized MAB,
the game is performed cooperatively among the players by
sharing complete observations making the game seems like
a single-player one. Collisions in the decentralized setup are
unavoidable compared to the centralized counterparts. Hence,
each player plays selfishly to study collisions and attempts to
be far from them while interfacing with the environment toward
increasing his profit.

B. Case Study

In the following case study, we model the mmWave BF
problem as a stochastic MAB, such as the upper confidence
bound (UCB) algorithm [73].

UCB is one of the famous MAB algorithms that efficiently
addresses the exploitation–exploration dilemma. The authors
in [74] proposed to utilize UCB for mmWave BT, where they
used locations indexed offline database containing mmWave
beam identifications and their related channel strengths. Then,
a digest from this database is utilized by the UCB-based BT
algorithm for online learning based on the current user’s lo-
cation. However, no concurrent mmWave BT was proposed
in [74]. In this article and for the purpose of surveying, we
will propose a simple form of the UCB-based BT suitable for
both single and concurrent mmWave BT, where the player(s)
learns the best beam pair time by time selfishly without any
prior knowledge provided by any preconstructed databases or
subside information. During the MAB game, UCB provides a
compromise between selecting the arm having the maximum
average reward so far or exploring new ones. At the beginning
of the UCB algorithm, the player checks all available arms
and obtains their corresponding rewards. Afterward, the arm
satisfying the following maximization equation is selected by
the player:

k�t = arg max
1≤k≤K

(
Ῡk,t−1 +

√
2 ln(t)

sk,t−1

)
,K + 1 ≤ t ≤ T (5)

where k�t indicates the selected arm k� at time t, where K is
the total number of arms, and T is the time horizon. Ῡk,t−1 and
sk,t−1 are the average reward of arm k and the number of times

Fig. 5. mmWave WLAN area under study.

Algorithm 1: UCB Algorithm.
1: Initialize: each arm k, 1 ≤ k ≤ K will be selected

once, and its corresponding Υk,t is obtained.
2: For t = K + 1 : T
3: Draw a beam pair and obtain the reward Υm,t

k�t = argmax1≤k≤K (Ῡk,t +
√

2 ln(t)
sk,t

)

4: sk�,t = sk�,t−1 + 1

5: Ῡk�,t =
1

sk�,t

∑sk�,t

j=1 Υk�,j

6: End For

it was selected up to t− 1. After selecting arm k�t, its number
of selections and average reward are updated for the next round,
as follows:

sk�,t = sk�,t−1 + 1 (6)

Ῡk�,t =
1

sk�,t

sk�,t∑
j=1

Υk�,j . (7)

In the conducted simulations, realistic mmWave channels are
generated using ray tracing through commercial wireless Insite
software. Fig. 5 shows the ray tracing simulation area where an
indoor mmWave WLAN system is considered with eight access
points (APs) that are fixed on the ceiling. The room size is 30×
15× 4m3, and each AP uses 10-dBm TX power and 2-D BF.
In the concurrent mmWave BT scenario, all APs are operating,
whereas in the single mmWave BT scenario, we consider a single
AP fixed at the center of the room’s ceiling. A dataset of 7200
channels is generated at different locations in the room area,
where the locations are separated by 0.25 m in both horizontal
and vertical directions. This dataset in addition to the source code
of the proposed UCB-based BT is set publicly available in [75]
and [76]. For BF, the azimuth coverage angle of the mmWave
AP,ϑazm is divided into a number of beam tiers, which is equal to
Ntier = � ϑazm

ϑ−3dB
	, where ϑ−3dB is the beamwidth. Then, the total

number of beams is equal to K = 1 + 6Ntier(Ntier+1)
2 , as given

in [77]. For example, using ϑ−3dB = 60◦ and ϑazm = 85◦, then
Ntier ≈ 2 and K = 19 beams.

1) Single mmWave BT: In this scenario, we assume a single
mmWave AP located at the center of the room with quasi-omni
antenna pattern, whereas the mmWave users are uniformly dis-
tributed inside the room area. Both cases of no blockage and
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Fig. 6. Average throughput comparisons against beamwidth.

LOS blockage are modeled as Bernoulli random variables [78]
with a probability of 0.5.

The problem is formulated as a single-player MAB. The
objective is to allow the AP to interact with the environment via
MAB-based algorithm in order to improve the beam selection
based on its observations. The AP is considered as a player
or agent trying to maximize its long-term reward/throughput,
through playing over the available beam pairs (btx,k, brx,k), where
K indicates the total number of beam pairs, i.e., the bandit’s
arms. In this case, the reward for the UCB algorithm is expressed
as

Υk,t = W

(
TD

TBT + TD

)

log2

(
1 +

∣∣FH
RX (:, brx,k,t)HFTX (:, btx,k,t)

∣∣2
σ0

)
(8)

where W,TD, TBT , and σ0 in dBm are equal to 2.16 GHz, 1
ms,14μs, and−174 + 10 log10(W ) + 10, respectively, whereas
the adopted carrier frequency is 60 GHz. Then, the algorithm is
running as previously explained and shown in Algorithm 1 steps.

Fig. 4 compares the average throughput of both the con-
ventional EX-BT and the UCB-BT versus −3 dB beamwidth.
The simulation results in Fig. 4 shows that for sharp beams,
i.e., −3 dB beamwidth of 10◦, a five times improvement in
average throughput is obtained using UCB-BT over using the
EX-BT. This comes from the online learning capability of the
UCB algorithm, which can successively learn the environment
and enhance the throughput performance without the need of
frequently EX all available beams. As the beamwidth increases,
the performance of the UCB-BT decreases due to the decrease
in the BF gain as UCB-BT uses one beam switching only at
a time to learn the environment. However, the performance of
the EX-BT increases influenced by the high decrease in the BT
overhead, i.e., K TBT , as the exhaustively searched beam space
K is decreased. For example, at ϑ−3dB = 10◦, K is equal to
271, whereas it is equal to 36 when ϑ−3dB = 30◦ as previously
explained. This happens till reaching a point where the effect
of the low BF gain becomes dominant, at which the average
throughput of the EX-BT tends to decrease. Additionally, Fig. 6

Fig. 7. Average total system rate against the number of concurrent links using
LoS blockage probability of 0 and −3 dB beamwidth of 50◦.

shows that ML-based UCB-BT approach effectively outper-
forms the EX-BT at all tested beamwidths for both cases of
with and without LOS blockage.

2) Concurrent mmWave BT: In this scenario, multiple
mmWave APs are operating simultaneously without central
coordination or permitting information exchange among them.
Thus, selfish multiplayer MAB will be employed to achieve
the suboptimal set of concurrent beams. Specifically, an MAB
algorithm will be implemented in each mmWave AP to interact
with the environment independently, and timely enhance its
concurrent beam selection based on its successive observations.
In this scenario, a mmWave AP is acting as the player trying to
maximize its own long- term profit (i.e., spectral efficiency) at
each time via playing over its available beam space (i.e., the arms
of the bandit). This is done through utilizing its own observations
irrespective of the other APs selections/observations.

In this case, the reward for the UCB algorithm is expressed
as

Υk,t = W

(
TD

TBT + TD

)

× log2

(
1 +

Prk (btx,k,t, brx,k,t)∑K
m=1, m 
=k Prm (btx,m,t, brx,m,t) + σ0

)
(9)

where the term Prk(btx,k,t, brx,k,t) indicates the received power
of mmWave link k using beam pair (btx,k,t, brx,k,t) at time
t, where K indicates the total number of concurrent links.∑K

m=1, m 
=k Prm(btx,m,t, brx,m,t) represents the sum of the in-
terference powers from other concurrent links at time t.

Fig. 7 shows the average total sum rate of the MP-UCB MAB
algorithm in addition to the optimal performance against the
number of concurrent links, which are uniformly distributed
inside the WLAN area, where LoS blockage probability of 0 and
−3 dB beamwidths of 50◦, i.e., 19 beam IDs, are used. As shown
in this figure, as the number of concurrent links increases, the
average total sum rate increases as well. However, the curves
tend to saturate after using seven concurrent links due to the
increase in mutual interference. It is interesting to note that
the proposed MP-UCB MAB based concurrent BT algorithm
shows comparable performance to the baseline optimal one.
At eight concurrent mmWave links, about 93% of the optimal
performance is obtained using MP-UCB MAB algorithm by just
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testing one TX/RX beam pair at a time. Compared to the existing
mmWave BT techniques, in [29], to obtain 93% of the optimal
performance using the highly accurate Li-Fi and Wi-Fi localiza-
tion techniques, about 8 and 26 beam pairs should be used in the
BT process. Moreover, the schemes given in [22], [29], and [30]
used 64, 961, and 94 beam pairs to obtain 93% of optimal
performance, respectively. Also, a high number of beam pairs
are required by the numerical search BT to obtain 93% of the
optimal performance, as given in [27]. These compared values
come even without considering mutual interference, such as our
case [29]–[31]. Hence, these performance comparisons assure
the high potency of the proposed MAB-based BT over highly
accurate non-ML localization-based BT techniques, e.g., Li-Fi
localization, and even over complicated non-ML BT schemes
based on mmWave channel estimation or numerical search.

VIII. CONCLUSION

This article has provided a comprehensive overview of the
applicability of ML algorithms in the area of mmWave BF. The
aforementioned discussion has identified challenges and hurdles
that need to be addressed by the community to establish viable
ML-based protocols for supporting BF in B5G networks. The
scope of future research when ML meets BF is broad; there-
fore, we presented a few interesting and challenging research
topics we believe are worth further investigations. Moreover,
we presented a case study with two scenarios to show the
efficiency of MAB method over EX method in mmWave single
and concurrent BT.
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