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Abstract

Microgrids have recently emerged as a building block for smart grids com-
bining distributed renewable energy sources (RESs), energy storage devices,
and load management methodologies. The intermittent nature of RESs brings
several challenges to the smart microgrids, such as reliability, power quality,
and balance between supply and demand. Thus, forecasting power generation
from RESs, such as wind turbines and solar panels, is becoming essential for
the efficient and perpetual operations of the power grid and it also helps in
attaining optimal utilization of RESs. Energy demand forecasting is also an
integral part of smart microgrids that helps in planning the power generation
and energy trading with commercial grid. Machine learning (ML) and deep
learning (DL) based models are promising solutions for predicting consumers’
demands and energy generations from RESs. In this context, this manuscript
provides a comprehensive survey of the existing DL-based approaches, which
are developed for power forecasting of wind turbines and solar panels as well
as electric power load forecasting. It also discusses the datasets used to train
and test the different DL-based prediction models, enabling future researchers
to identify appropriate datasets to use in their work. Even though there are a
few related surveys regarding energy management in smart grid applications,
they are focused on a specific production application such as either solar or
wind. Moreover, none of the surveys review the forecasting schemes for pro-
duction and load side simultaneously. Finally, previous surveys do not consider
the datasets used for forecasting despite their significance in DL-based fore-
casting approaches. Hence, our survey work is intrinsically different due to its
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data-centered view, along with presenting DL-based applications for load and
energy generation forecasting in both residential and commercial sectors. The
comparison of different DL approaches discussed in this manuscript reveals that
the efficiency of such forecasting methods is highly dependent on the amount
of the historical data and thus a large number of data storage devices and high
processing power devices are required to deal with big data. Finally, this study
raises several open research problems and opportunities in the area of renewable
energy forecasting for smart microgrids.

Keywords: Energy forecasting; Renewable energy; Deep learning;

Artificial neural networks; Machine learning

1. Introduction1

The power sector is moving towards renewable energy sources (RESs) be-2

cause of their low price and massive contributions in reduction of carbon emis-3

sions. RESs consist of a number of resources, which include bioenergy, wind4

energy, hydropower, photovoltaic (PV) energy, etc. Usually, these RESs are5

operated in islanded and grid-connected modes [1]. Solar and wind energies6

are generated by installing PV panels and wind turbines (WTs), respectively,7

and these are handy in most places around the globe. Besides, RESs play an8

important role in minimizing carbon emissions among various electricity sources9

[2, 3, 4, 5, 6, 7], as shown in Figure 1. Moreover, Figure 2 indicates the yearly10

proportion of renewable power contribution to the whole electricity generation11

of some leading countries of the world. Brazil generates a huge amount of power12

from renewable sources (see Figure 2) in order to meet the consumers’ power13

demand.14

Figure 1: Sector-wise carbon emissions around the world [8]

Solar panels convert direct sunlight to electrical energy, while WTs generate15

electric power from wind. The key characteristics of these energy sources are16

limited controllability, limited predictability, and power output variability as17

the power produced from RESs completely relies upon environmental factors18

like solar irradiance, temperature, humidity, and wind speed [9]. For example,19
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Table 1: List of abbreviations

Acronym Description Acronym Description

ACCE Adaptive circular conditional ex-
pectation

LM Load monitoring

AE Auto Encoder LSTM Long short term memory
AEMO Australian energy market opera-

tor
LSTM-
EFG

LSTM-enhanced forget-gate

AI Artificial intelligence MFE Multistage forecast engine
ALM Adaptive learning model MI Mutual information
ANFIS Adaptive neuro-fuzzy inference

system
MLR Multiple linear regression

ANN Artificial neural network MLP Multilayer perceptron
AR Auto-regressive model NARX Nonlinear Auto regressive net-

work with exogenous variables
ARX Auto-regressive with exogenous

input
NMAE Normalized mean absolute error

BEC Building energy consumption NN Neural network
BRT Boosted regression tree NREL National renewable energy labora-

tory
CNN Convolutional neural network NWP Numerical weather prediction
DBN Deep belief network NWS National weather service
DCWT Dual-tree complex wavelet trans-

form
NWTC National wind technology center

DE Differential evolution PDRNN Pooling-based deep RNN
DL Deep learning PV Photovoltaic
DLSTM Deep LSTM p-WPRF Probabilistic wind energy ramp

forecasting
DNN Deep neural network RBMs Restricted boltzmann machines
DQR Direct quantile regression Relu Rectified linear unit
EMSs Energy management systems RESs Renewable energy sources
ENN Elman neural network RICNN Recurrent Inspection CNN
EO External optimization RNN Recurrent neural network
ESSs Energy storage systems SSA Singular spectrum analysis
EVs Electric vehicles SVRM Support vector regression ma-

chine
EWT Empirical wavelet transformation UAVs Unmanned aerial vehicles
GA Genetic algorithm V2G Vehicles to grid
GABPNN GA back-propagation NN WIND Wind integration national dataset
GBR Gradient boosting regression WPD Wavelet packet decomposition
GRU Gated recurrent unit WPF Wavelet packet filter
HELM Hysteretic extreme learning ma-

chine
WT Wavelet transform

ICT Information and communication
technologies

WTs Wind turbines

IMFs Intrinsic mode functions WTD Wavelet threshold denoising
IoT Internet of things
KEPCO Korea electric power corporation

PV panels produce higher energy in case of high solar radiation (clear sky) and20

they generate minimum energy (may be 0) during cloudy weather or at night21

times. On the contrary, WTs generate minimum energy (may be zero) in case22

of lower and higher wind speed than cut-in and cut-out speed, respectively [1].23

Thus, large fluctuations in power generation from PV plants and WTs introduce24

several challenges, including voltage irregulations as well as reserve power flow25
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problems and power distribution issues [10]. To make matters worse, energy26

consumers also exhibit intermittent behavior in power consumption because of27

various factors, like environmental changes, user preferences, etc.28
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Figure 2: RESs contribution in whole power generation of a few countries of the world [11]

As mentioned above, the integration of RESs complicate the power grid29

operations and microgrids introduce difficulties in maintaining balance between30

energy generation and consumption (see Figure 3 for microgrid architecture).31

Therefore, accurate forecasting of energy generation from RESs (i.e., PV panels32

and WTs) along with electric load forecasting is an exigent need of the current33

smart grid era. Accurate load/demand forecasting allows the utility companies34

to control demand-driven supply effectively and produce surplus power from35

other resources (traditional power generation portfolios) when RESs are unable36

to meet consumers’ demand.37

Reliable prediction of wind and solar power generation form WTs and solar38

panels, respectively, is a challenging task, as it relies entirely on weather pat-39

terns (e.g., humidity, temperature, irradiance, etc.) [9, 1, 12]. Forecasting can40

be performed using several methods, including physical models [13], machine41

learning (ML) [14, 15], and (more recently) deep learning (DL) [16, 17]. In the42

last decade, ML and DL approaches have been applied in several domains of43

computational intelligence and forecasting, where they demonstrated promising44

efficacy. For example, they are employed for energy optimization and forecast-45

ing in smart microgrids [18, 17], energy prediction in wheat production [19],46

health services improvements [20, 21, 22], performance improvement in wire-47

less networks [23], flood management [24], and hydrogen production forecasting48

[25]. However, all the forecasting methods have their own pros and cons. For49

instance, physical methods are effective in predicting the dynamics of the atmo-50

sphere, but they need significant computational resources since a huge amount51

of data is required to calibrate the dynamics of the atmosphere. Further issues52
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Figure 3: A typical microgrid architecture

arise when physical approaches find unexpected estimation errors, while they53

are also not suitable for short-term forecasting horizons. Similarly, most of the54

current renewable energy prediction statistical models are designed as linear55

models that limits their ability to solve more complex forecasting issues with56

longer forecasting time horizons.57

Contrary to physical models, ML-based forecasting approaches usually of-58

fer more accurate results than statistical and physical models due to their ad-59

vanced data mining and feature extraction capabilities. However, as a general60

rule, ML-based forecasting approaches use some “shallow” models as their cen-61

tral learning concepts. Typical shallow patterns are trees, regressors, or neural62

networks with zero or one hidden layer. It is well known that the training of63

such shallow models requires a great deal of experience and skill. Moreover, the64

theoretical study of shallow structures is often challenging. Thus, in practical65

applications, shallow models have significant drawbacks. However, it has been66

recently established that DL-based energy generation and power load forecast-67

ing approaches outperform the aforementioned methods as, unlike ML-based68

approaches, DL-based approaches do not suffer from hand-engineered feature69

selection, sample complexity, and weak generalization efficiency. [26].70

Even though the forecasting of load demand and energy from RESs is a71

new research area, it has already gained significant attention from the research72

community. Lately, a lot of research studies have proposed DL-based approaches73
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for such forecasting, while several survey/review works have been conducted74

[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37], where they attempted to survey DL75

methods for energy or load forecasting from various perspectives and scopes.76

For instance, some recent survey papers present an overview of microgrid and77

RESs, such as solar power, wind energy, geothermal energy, hydro energy, etc.78

[27, 32]. The work presented in [18] reviews ten major ML models that were79

frequently employed in energy systems. A brief review of the load monitoring80

(LM) strategies is discussed in [28]. Surveys of building energy consumption81

prediction and overview of ML methods are given in [29, 30, 37]. A review study82

presented in [31] discusses DL-based methods for solar irradiance prediction,83

while the papers [33, 34, 35] disclose recent studies on both solar and wind84

energy forecasting using DL/ML methods. A more detailed discussion about85

state-of-the-art survey works is presented in Section 2 and Table 2. List of86

abbreviations is given in Table 1 of this manuscript.87

However, the existing studies only review either some particular topics or88

consider a specific issue. There is no survey/review study that considers a broad89

involvement of DL methods in smart microgrids in simultaneous ways, e.g.,90

load forecasting and energy generation prediction from photovoltaic and wind91

turbines. In addition, none of the existing surveys review datasets that were92

employed for load and energy forecasting. The above motivate us to deliver this93

study with the comprehensive review of the state-of-the-art DL-based approaches94

developed to forecast the power generation from WTs and solar panels, along with95

the forecasting of load demand of consumers. Various datasets reported in the96

literature for the prediction of wind speed/energy and solar irradiance/energy97

are also presented in this study. Our comprehensive review and analysis makes98

this manuscript useful for beginners as well as experts working in this domain.99

This study further helps the reader in tracking datasets used by researchers100

and developing real-world forecasting applications. Finally, this study can serve101

as a technical reference for comparison and selection of effective and efficient102

forecasting strategies.103

The rest of the manuscript is organized as follows. Section 2 discusses past104

surveys in the area of energy management systems (EMSs) and highlights our105

contributions. Section 3 outlines the methodology of this survey. Section 4106

offers a summary of the main DL techniques, while Section 5 describes the107

use of DL in EMSs and various forecasting models. This section also reviews108

the datasets that are used to train and test the reviewed DL-based forecasting109

models. Section 6 investigates the potential issues of the existing DL-based110

approaches. Finally, the last section concludes the survey.111

2. Related Work, Motivation, and Contributions112

There are a lot of research works published regarding energy management113

in smart grid/microgrids that present problems and solutions along with fu-114

ture opportunities in the area of smart energy management [27, 28, 38, 39, 40].115

Nowadays, researchers are working to explore ML, DL, and artificial intelli-116

gence technologies to tackle smart grid challenges. Such techniques provide117
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powerful tools for the planning, modeling, monitoring, fault diagnostics, and118

fault-tolerant operation of advanced smart grids and renewable energy systems.119

In order to organize and summarize the current status of DL-based approaches120

for energy and load forecasting, several review/survey articles have been pre-121

sented by the research community. In this section, an overview of these articles122

is disclosed. At the end, this section also highlights how our manuscript differs123

from past surveys.124

In [27], authors present an overview of RESs, such as solar power, wind125

energy, geothermal energy, hydro energy, etc. Furthermore, the significant role126

of artificial intelligence (AI) to improve the performance of renewable energy127

is uncovered in various aspects, including decision, control, optimization, and128

simulations. At the end, they conclude that the performance of the smart grid129

and microgrid can be enhanced by employing AI-based techniques.130

The study at [28] presents a brief review of the load monitoring (LM) strate-131

gies in energy management systems (EMSs). This work categorizes the energy132

management in two broad types: (i) intrusive LM that refer to distributed sens-133

ing, and (ii) non-intrusive LM that belong to single-point sensing. They also134

analyze intrusive and non-intrusive based LM schemes for energy management135

in the smart grid. In addition, this study presents an analysis of current lit-136

erature as well as future prospects in LM for energy management. Some of137

the future problems regarding LM raised in their work include accurate dis-138

aggregation/recognition, non-intrusive LM application in EMS, non-traditional139

signatures usage to improve the accuracy of non-intrusive LM, and smart meter140

usage in EMS.141

Amasyali et al. covered data-driven prediction studies for building energy142

consumption (BEC) in [29], where they review the prediction steps in detail (i.e.,143

data gathering, data preprocessing, model training, and testing of the trained144

model). Furthermore, they present machine learning (ML) based algorithms145

along with their performance in terms of building energy predictions. Perfor-146

mance evaluation criteria of different studies are also disclosed in this work.147

Finally, gaps are uncovered in the existing research and future directions are148

provided to the research community in the field of data-driven BEC prediction.149

Another review work on data-driven based strategies is presented at [30].150

Unlike [29], the research presented at [30] considers data-driven approaches for151

prediction as well as for the classification of BEC. Their review work demon-152

strates that a large amount of building energy applications are addressed by153

data-driven strategies. These applications include load forecasting/prediction,154

benchmarking for building stocks, guideline making, and power pattern profil-155

ing. At the end, this work paves an opportunity for the researchers to explore156

the potential in small-scale energy minimization via considering consumers’ de-157

mands.158

Voyant et al. presented a review in [31], which unfolds the ML-based method-159

ologies to predict the solar irradiance. It is important to note that solar irra-160

diance must be predicted in order to forecast energy generation from the solar161

panel. This survey presents ML-based prediction models in terms of classifica-162

tion, data preparation, learning (supervised and unsupervised), and accuracy163
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evaluation. Additionally, a comparative analysis is presented to determine the164

accuracy of various prediction models.165

Research work at [32] presents a critical review of smart microgrid energy166

management methods, problems, and their solutions. As electricity generation167

in microgrids is intermittent in nature, [32] summarizes the methods/strategies168

to tackle the volatile and intermittent behavior of the microgrid. A variety of169

EMSs are discussed in detail, which are developed through different approaches,170

e.g., classical methods, linear programming, heuristics schemes, evolutionary171

approaches, swarm optimization, fuzzy logic, neural network, etc. Moreover,172

communication technologies used in the microgrid are disclosed and comparative173

analysis among them is performed. Real-time applications of microgrids and174

future challenges conclude this study.175

Authors of [33] have summarized the studies on solar and wind energy fore-176

casting using DL-based prediction techniques. This study states that robust-177

ness, reliability, generalization ability, accuracy, sustainability, and precision are178

the prominent issues when using DL-based algorithms for energy prediction of179

renewable energy sources. The performance of DL-based algorithms is much180

better than other computationally intensive prediction techniques when dealing181

with big datasets; however, the performance is low in case of small datasets.182

The authors have broadly categorized the DL-based forecasting algorithms into183

single and hybrid forecasting methods and concluded that hybrid DL techniques184

provide better forecasting results compared to single DL techniques.185

The research contributions presented at [34, 35] survey wind energy and186

solar power prediction approaches, respectively. In addition, the authors of187

[34] also discuss applications of ANN in WT system design and fault detection.188

Fallah et al. presented a review work in [36], which explores and summarizes the189

efforts of researchers in developing load forecasting algorithms. Another study190

[37] reviews load forecasting methods, while the authors classify the forecasting191

algorithms in several types based on short-term, very short-term, medium-term,192

and long-term load forecasting.193

Contributions. Table 2 summarizes the closely related surveys/reviews on194

smart microgrids and reveals our survey’s novelty. The aforementioned surveys195

and review works either focus on a specific production application [28, 29, 30,196

31, 33, 34, 35, 36, 37, 41] or failed to present a broad image of energy and load197

forecasting simultaneously. Furthermore, none of the presented works focused198

on the datasets used for forecasting. Our survey work is therefore intrinsically199

different due to its data-centered view, along with DL-based application for load200

and energy generation forecasting in both residential and commercial sectors.201

This study presents a detailed review of state-of-the-art DL-based approaches,202

proposed for power forecasting of wind turbines and solar panels as well as en-203

ergy load forecasting. Moreover, this survey also presents the datasets used204

to train and test the different DL-based prediction models, enabling future re-205

searchers to identify appropriate datasets to use in their works. Eventually,206

based on our comprehensive survey, this study outlines several challenges that207

still remain to be addressed and research opportunities for future.208
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Table 2: Comparative analysis of our work and existing review/survey studies.
Note: PY: published year; BEC: building energy consumption; LF: load forecasting; WSF:
wind speed forecasting; SIF: solar irradiance/energy forecasting; DP: datasets presentation

Ref. PY Duration BEC/LF WSF SIF DP Review/survey focus

[37] 2014 1973-2013 X × × × Solutions to power demand forecasting problem; clas-
sifies the applied load forecasting methods in various
types, e.g., very short-term, short-term, medium-term,
and long-term load prediction

[27] 2017 1981-2017 × X X × Energy generation from renewable energy sources
(RESs) and hybrid renewable systems; the role of arti-
ficial intelligence in improving the efficiency of RESs

[28] 2017 1992-2016 X × × × Intrusive and non-intrusive load monitoring techniques
to mitigate the power consumption and energy cost of
consumers; load forecasting methods are adapted to
forecast the energy consumption to balance demand
and supply

[31] 2017 1996-2016 × × X × Solar energy forecasting using ML techniques, namely,
supervised and unsupervised learning; data pre-
processing and data classification techniques

[35] 2017 1991-2016 × × X × Current status of solar energy in India; real-time impli-
cation of solar plants in various states of India, energy
generation from these plants, and their impact on In-
dia’s economy; solar energy forecasting methods

[29] 2018 2002-2017 X × × × Building energy consumption prediction focused on the
scope of load predictions, the data properties, and the
data pre-processing techniques that are exploited in the
literature

[30] 2018 1986-2017 X × × × Building energy analysis and building energy consump-
tion forecasting through data-driven approaches; data
classification methods for building energy consumption
management

[34] 2018 2000-2018 × X × × Artificial neural network (ANN) based studies are ex-
ploited to forecast wind energy; applications of ANN
in WT system design and fault detection

[36] 2018 1979-2018 X × × × Machine learning techniques for load demand predic-
tion to make sure the reliable operations of the whole
power system

[33] 2019 2008-2018 × X X × Solar and wind energy prediction using DL-based tech-
niques; this study concludes that hybrid methods are
more efficient than single DL methods

[41] 2020 2002-2019 × × X × Limited to long-term solar radiations forecasting using
DL-based models

Our
work

- Upto 2020 X X X X DL-based forecasting methods for both load and energy
generation from solar panels and WTs; first-of-its-type
datasets presentation while considering load and en-
ergy prediction; current challenges and future research
directions
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3. Survey Methodology209

The primary objective of the research methodology is to identify, classify,210

and review the DL approaches that are employed for load demand or energy211

forecasting (for solar and wind energy). The main focus during paper selec-212

tion was on works that were conducted from the period 2015 to 2020. In our213

comprehensive review, the methodology consists of five primary steps.214

1. Keyword-based search: As a first step, we have performed a keyword-215

based search of research studies using Google Scholar. Since Google216

Scholar ranks articles based on various factors, i.e., authors, publishers,217

number of citations, and published year, it is selected for searching high-218

quality articles. Examples of our keywords include data-driven load fore-219

casting, building energy consumption forecasting, load forecasting, wind220

energy forecasting, wind speed forecasting, solar energy forecasting, solar221

irradiance forecasting, as well as machine and deep learning for energy222

management in smart grids.223

2. Screening of papers: Next, we performed screening of the retrieved224

research papers that were found through the previous step. The criteria225

of screening were that the study focuses on power load or energy prediction226

and employs single DL, single ML, or hybrid DL/ML approaches.227

3. Identifying extra articles: In this step, we found some extra articles228

based on the papers that were identified in step 2. Specifically, articles229

that were cited in the selected papers and articles citing the selected papers230

were also screened through our criteria described in step 2.231

4. Considering for review: All the articles selected in steps 2 and 3 are232

reviewed to disclose their objectives of forecasting, employed/proposed233

DL/ML methods, forecasting type (long-term, short-term), data source234

and type, modeling performance, and compared approaches.235

5. Analyzing review results In the last step, review results are analyzed in236

order to find superior approaches for load or energy forecasting. Research237

gaps and future opportunities were also found in this phase.238

3.1. Evaluation Criteria239

Since the prediction accuracy is a critical factor in selecting any forecasting240

model, the performance of DL algorithms in this survey paper is compared on241

the basis of the potential of the proposed approaches to establish the most242

accurate predictions. Mean absolute percentage error (MAPE), mean absolute243

error (MAE), and root mean square error (RMSE) are selected as the three244

basic evaluation metrics, since they are the most popular metrics used in the245

reviewed papers.246

4. Preliminaries on Deep Learning Models247

This section discusses the DL-based approaches that are most widely em-248

ployed in the current literature for energy management and power prediction.249
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4.1. Artificial Neural Network250

An artificial neural network (ANN) is constructed based on the working251

principle of the human nervous system [42]. The ANN is entirely based on252

a set of neurons, which are the fundamental parts of a neural network (NN)253

in which communications happen. In Figure 4, a basic ANN architecture is254

depicted. An input is received and output is generated by neurons based on their255

internal activation functions [43, 44]. The weights and parameters determining256

the activation functions are modified by a mechanism known as learning. For257

ANNs, the key parameters that control learning are the learning rate parameter,258

the number of hidden layers, and the maximum number of iterations. The259

input, hidden, and output layers may contain a different number of neurons.260

Different activation functions, like Sigmoid, Rectified Linear Unit, and Softmax,261

are used for computation within the ANNs. The advantages of ANN include:262

information is stored on the entire network so loss of any piece of information263

does not affect the performance of ANN, fault tolerance, and it has a parallel264

processing capability [45]. On the contrary, the disadvantages of ANN include:265

hardware dependency as it requires processors with parallel processing power,266

lack of interpretability of the network, and the duration of network is unknown267

[45, 46].268

Input Hidden Output

ANN DNN

Figure 4: A typical architecture of ANN and DNN

4.2. Deep Neural Network269

Deep neural network (DNN), also shown in Figure 4, is composed of various270

hidden layers in addition to the input and output layers [47, 48]. An ANN271

with two or more hidden layers is called DNN. To generate the output, the272

DNN investigates the input data using mathematical manipulation. The NN273

is trained by exploiting the training set resulting typically in the probability274
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calculation for each output. DNNs have similar advantages and disadvantages275

with ANNs, but since DNNs comprises more layers than ANNs, they often276

require more training data to attain better results compared to ANN.277

4.3. Convolutional Neural Network278

Convolutional neural network (CNN) is most commonly adopted in energy279

management, pattern recognition, and visual image processing. It is a revised280

form of a multilayer perceptron (MLP). The MLP is a fully-connected (FC)281

layer network, where each neuron is FC with all other neurons of another layer.282

The completely connected property leads to the problem of over-fitting. Hence,283

the CNN utilizes different methods for regularization of the results in order to284

avoid over-fitting issue. CNNs provide an acceptable accuracy especially when285

dealing with image data; however, large datasets are required for efficient results,286

which cause high computational cost and the need for high graphical processing287

units [33].288

CNN is also known as a shift variant based on the transition variant [49].289

The CNN operates as an NN, and it includes an input, an output, and several290

hidden-layers [50]. However, unlike ANN, CNN uses a collection of several291

layers as hidden layers, i.e., convolutional/pooling layers, FC layers, flatten292

layers, dropout layers, and normalization layers. An activation function hides293

the input and the output of the hidden layer. In CNN, the linear unit rectifier294

(Relu) is the most commonly adopted activation function and it includes a295

back-propagation method to generate more reliable weights.296

CNN’s convolutional layer is employed to detect patterns and features from
the input file. At this layer, filters are applied to the input file and activation
maps are generated. The following equation is used to generate the dimension
of the activation map [51].

N + 2P − F
S + 1

. (1)

In the ablove equation, N represents the dimension of input file, P is the
padding, S is the stride, and F represents the dimensions of the filter. After the
convolutional layer, the spooling layer downscales the data such that processing
is simpler, although the actual data remain the same. Through dimensional-
ity reduction, this layer reduces the scale of the input data and minimizes the
computational complexity required to process the data. It also extracts the
dominant features that help in efficient training of the model. There exist two
types of pooling layers: 1) average-pooling layer and 2) max-pooling layer. The
average-pooling layer calculates the average values of the data using the kernel
and the max-pooling layer uses the maximum values covered by the kernel in
the data. Max pooling is commonly used in a CNN. The following equation is
used to compute the output file [51].

N − F
S + 1

. (2)

The data is passed to the FC layer. In this layer, every neuron of each layer
is connected with each neuron of other layer, like MLP. In the FC layer, most
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of the parameters are occupied, which lead to the over-fitting problem. This
problem is resolved by the dropout layer. Using a threshold value starting at
0.5, some of the inputs are removed. The value is often reduced to 0.01 because
the increase in dropout leads to losing effective information. The actual weights
are then added after training the data at the initial stage. After dropout layer,
the data is passed to the flatten layer. It converts the data to a column vector
form. The feed-forward NN and the back-propagation methods are then applied
at every training step. After the flatten layer, the model is trained enough to
distinguish between the dominant features and the low-level features. Finally,
the softmax activation function is applied for classification purposes [52].

σ(Z)i =
ezi∑K
j=1 e

zj
. (3)

In this equation, Z represents the input vector of K real numbers. z is an ele-297

ment of input vector Z, such that Z = {z1, z2, z3, ..., zK} and i = {1, 2, 3, ...,K}.298

4.4. AutoEncoder299

AutoEncoder (AE) is one of the feed-forward NNs, which is employed to copy
input neurons to output neurons by passing through single or multiple hidden
layers [53]. The AE architecture consists on two key functions, namely, the en-
coder function h = f(x) and the decoder function x̂ = g(h). The mathematical
presentation of AE is expressed as:

x̂ = g(Wx+ b) (4)

where x and W represent the input and weights, respectively. An activation300

function is represented by g that can be a rectified or sigmoid function. The301

term b introduces bias in Equation 4. Figure 5 presents a typical architecture302

of AE, which shows input, output, and hidden layers. One advantage of AE is303

that it employs filters to fit a dataset in a better way, which can improve the304

performance of AE. Consequently, it takes additional training time, which is a305

main disadvantage of AE [33]306

4.5. Deep Belief Network307

A deep belief network (DBN) [55] contains multiple restricted boltzmann308

machines (RBMs) that are considered primary elements of the DBN [56]. The309

RBM is an updated form of a boltzmann machine [57] by adding node con-310

nections. The RBM contains two key layers, namely visible and hidden layers.311

Moreover, DBN uses both supervised and unsupervised learning. In particu-312

lar, unsupervised learning is used in the pre-training phase, whereas supervised313

learning is exploited in the fine-tuning phase. Selection of appropriate initial314

parameters, weights, and bias is performed by unsupervised learning using inde-315

pendent variables. In this way, the pre-training stage rebuilds training samples316

by tuning variables to enhance likelihood estimation. Supervised learning fur-317

ther tunes the weights and bias on the basis of initial parameters that are given318
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Figure 5: A typical architecture of AE [54]

by the pre-training stage. Overall, DBN networks train differently compared to319

DNNs and ANNs as they use energy-based training functions to propagate data320

throughout the unsupervised training mode. Based on a past critical analysis321

[33], DBN is highly capable to deal with similar image data; however, it has322

high computational complexity. Figure 6 presents a DBN model with L number323

of layers, where the input and output layers are presented on the left and right324

sides, respectively.325

4.6. Recurrent Neural Network326

For the processing of sequential data, a special form of NN, proposed by the327

research community, is known as recurrent neural network (RNN). The CNNs328

typically provide training independently to each sample; however, this form of329

independent training is not enough, particularly for sound, text, image, and330

time-related data. RNN solves this problem and it takes input sequentially. It331

includes feedback connections in the hidden layer units, as opposed to other332

feed-forward NNs. RNN will, therefore, undergo temporal processing and learn333

sequentially. In addition, the RNN exploits a hidden layer as a memory in order334

to store sequential information, unlike other NNs. In addition, the RNN em-335

ployes the same parameters (U, V,W ) for each layer, as opposed to conventional336

DNNs that use different parameters for each layer (see Figure 7). This figure337

unfolds RNN into a full network. Moreover, in RNN calculations, xt shows in-338

put at time t, while st and ot represent the hidden and output state at time339

t, respectively. The key advantages of RNN are that it remembers complete340

information based on time, it can deal with sequential data efficiently, and it341
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Figure 6: A typical architecture of DBN [57, 58]

provides acceptable accuracy while predicting based on time-series data. How-342

ever, long-range learning is difficult with RNNs because of exploding or gradient343

vanishing problems [59, 60]344
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Figure 7: A complex RNN architecture [61]

4.7. Long Short Term Memory345

RNNs were developed to process sequential data and are able to establish346

a temporal correlation of current circumstances with previous information. For347

instance, RNNs make decision at time step t on the bases of t − 1 and t. This348

type of RNN characteristics makes it able to efficiently solve the load forecasting349

and energy generation prediction of solar/wind energy sources. Moreover, RNNs350

are trained by back-propagation through time [62]. But, long-range learning is351

difficult with RNNs because of exploding or gradient vanishing problems [59, 60].352
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To solve the aforementioned problems in RNNs, Hochreiter et al. introduced353

long short term memory (LSTM) by including a memory cell [63], which was354

further enhanced by adding an extra forget gate [64]. LSTM is considered one355

of the most efficient NN architectures for time-series forecasting and modeling.356

Conventional NNs learn the correspondence among input and output from a357

static perspective. However, information is lost when time-series data is inde-358

pendently trained as input and output of NNs. The RNN makes a link between359

each pair of “input-output”, as presented in Figure 8, where x denotes input360

data, y shows output data, and h presents the hidden states. The terms Whx,361

Wyh, and Whh denote the matrices of weights, which show the relationship be-362

tween h and x, y and h, and h and h, respectively. Furthermore, unlike simple363

RNN, the LSTM has two hidden states ht and ct to capture the long-term de-364

pendencies. Hidden states ht and ct are designed to keep the short-term and365

long-term information, respectively. The hidden state c has an additional mech-366

anism that helps LSTM to strategically forget unnecessary information. LSTM367

has introduced three control gates to keep the information for the long-term, as368

presented in Figure 9. The LSTM is capable to solve vanishing gradient prob-369

lems and make shorter the pre-processing of data [33]. The main drawbacks of370

LSTMs are: they need huge amount of resources to deal with big data, training371

process is very difficult, and they need high memory-bandwidth because of the372

linear layers present in each cell, which makes them inefficient [64] .373

W yh

W hxW hxW hxW hx

W yhW yhW yh

W hh W hh

W hh

y t-1 y t y t+1

X t-1 X t X t+1X

y

h h hh

Figure 8: A typical structure of LSTM [65]

As shown in Figure 9, LSTM has three gates: forget gate (denoted by ft),374

input gate (denoted by it), and output gate (denoted by ot). The forget gate (ft)375

determines which information is kept from the last state and utilizes a sigmoid376

activation function. The second gate is the input gate (it) that determines which377

information should be considered as input for the current state. The last gate is378

known as output gate (ot) and calculates which information is treated as output379

while using the tanh activation function.380
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Figure 9: Inner structure of LSTM [65]

5. Deep Learning in Energy Management Systems381

Energy management is essential to efficiently integrate RESs and energy stor-382

age systems (ESSs) in power systems [66]. Energy management is the process383

of observing, planning, and controlling the operations of energy production and384

consumption units. With proper energy management, energy consumers can385

reduce their electricity bills and utility companies can reduce peak creations [1].386

Furthermore, an optimal utilization of RESs can be achieved by implementing387

an efficient energy management strategy, for instance, by shifting all the load388

and ESS charging to solar energy in day time instead purchasing from utility389

[1]. On the contrary, energy management is also necessary for enhancing the390

life of ESSs [67, 68]. Charging and discharging of storage systems up to specific391

limit can also enhance the life of batteries. For example, according to [69], for392

achieving higher efficiency of ESS, minimum and maximum storage levels of393

ESS are 10% and 90%, respectively.394

An accurate energy prediction is necessary to attain effective energy man-395

agement because of the intermittent power production from RESs. Researchers396

have developed various forecasting methods for load forecasting and renewable397

energy sources on the bases of their properties, such as wind speed, solar iradi-398

ance, temperature, etc. The forecasting of wind energy, solar energy, and load399

using DL follows three main steps, as presented in Figure 10. First, the data400

pre-processing step is performed to clean and normalize the input data, as well401

as to split it into training, validation, and testing datasets. Next, model train-402

ing is performed for creating an appropriate and validated prediction model.403

Finally, the forecasting is performed using the trained model and often visual-404

ized. In the next section, we uncover the works that use DL-based techniques405

to forecast wind energy, solar energy, and load demand.406
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Figure 10: A generic flowchart of wind energy, solar energy, and load forecasting using DL-
based methods

5.1. Wind Energy Forecasting407

In the last decade, noticeable attention has been given to wind energy owing408

to a cleaner source of energy. WTs are considered the lowest carbon emitters409

[56]. However, the uncertainty and fluctuations (due to weather conditions)410

of wind energy generation bring severe issues that hinder the economic opera-411

tions of the power system [18]. Hence, accurate forecasting of wind energy is412

of vital importance for the efficient operations of Energy Management Systems413

(EMSs) in the residential sector. Without accurate and reliable prediction of414

wind energy, maximum benefit from EMS cannot be achieved. Therefore, re-415

search community has spent much effort on developing wind energy forecasting416

methods, which are elaborated in detail in this section. Table 3 describes various417

datasets used in wind speed and energy forecasting, whereas Table 4 summa-418

rizes the efforts of the research community regarding forecasting of wind energy419

and speed. The majority of the wind speed datasets are collected in Asia, span420

two to three years, and contain fine-grained data (recording step ranges from 5421

minutes to 1 hour) of wind speed, wind direction, temperature, humidity, and422

pressure among others. Similarly, the developed methods focus on forecasting423

wind speed and wind power generation with a time horizon ranging from 5 min-424

utes to 1 hour. The key difference among the forecasting methods are in using425

different variations or combinations of the DL models discussed in Section 4,426

leading to different forecast accuracy results as listed in Table 4.427
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Table 3: Description of datasets used for wind speed and energy forecasting

Ref. Dataset Origin Description Total Time Period Recording
Step

[56] Weather stations of
Matsu and Kinmen
islands, Taiwan

Authors consider 11 attributes of weather that are
taken from [71]: wind speed, temperature, dew point
temperature, humidity, sea pressure, station pres-
sure, wind direction, max gust, the direction of
max gust, precipitation hours, precipitation amount,
and sunshine hours. (http://eservice.cwb.gov.tw/
HistoryDataQuery/index.jsp)

Training data: January 1, 2017 to
December 31, 2017; Testing data:
January 1, 2018 to January 14,
2018

Hourly

[70] Wind tower of National
renewable energy labora-
tory (NREL), National
wind technology center
(NWTC)

The tower is located in Boulder, Colorado, at latitude
of 39.91◦N, longitude of 105.23◦W, and elevation of
1855 m [72].

Training data: 2015 to 2016; Test-
ing data: 2017

15 minutes

[73] GEFCOM2012-WF:
Publicly available
dataset of seven wind
farms over a 3-year
period

The meteorological dataset attributes are the forecasts
of zonal and meridional components of surface winds,
wind speed, and wind direction [74].

Training data: July 01, 2009 to
December 31, 2010; Testing data:
January 01, 2011 to June 28, 2012

Hourly

[75] Real-time data from
wind farms in Bornholm
Island, Denmark

The wind farms energy generation capacity is 30 MW June 01-July 31, 2012 and Novem-
ber 01-December 31, 2012 (Train-
ing data 60%; Testing data 40%)

10 minutes

[76] WIND: Publicly avail-
able data from Dallas,
Texas, USA

The dataset is collected through wind integration na-
tional dataset (WIND) Toolkit from 711 wind sites
with total rated wind power capacity 9,987 MW [77]

January 01, 2007 to December 31,
2012

5 minutes

[78] Wind farms in China The dataset contain 700 samples of wind speed series
data, where 1-600 samples are employed for training
and testing, other 601-700 samples are exploited [79]

- Hourly

[80] Wind data from Inner
Mongolia, China

The wind farm is located in the monsoon region and
the annually average wind speed is 3.7 (m/s)

10-minutes case: November 23,
2012 to November 28, 2012;
hourly case: April 01, 2013 to
April 30, 2013 (Training data
70%; Testing data 30%)

10 minutes
and hourly

[81] Wind farms in Shandong
Province, China

Monthly wind speed data; data from day 1st to 25th
are used for training and data from the remaining days
of each month are used for testing

January 01, 2011 to December 31,
2011

15 minutes

[82] Wind speed data from
NREL

Wind speed and energy generation data from 32,043
WTs [83]

January 01, 2004 to December 31,
2006

Hourly

[84] Wind speed data from
Xinjiang Province,
China

Four different datasets, each containing 750 time-series
values. First 500 data values are used for training and
the remaining 250 values are employed for testing

- Hourly

[85] Wind farms in Xinjiang,
China

Four different datasets, each containing 700 time-series
values. First 600 data values are used for training and
remaining 100 values are employed for testing

- 10 minutes
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Table 4: Summary of wind speed and energy forecasting approaches

Ref. Method(s) Compared
Method(s)

Loca-
tion

Hori-
zon

Model Description Outcome/observation(s)

[56] DBNGA Seasonal au-
toregressive
integrated mov-
ing average and
least squares
support vec-
tor regression
with genetic
algorithm

Taiwan Hourly For forecasting of wind speed, seasonal
autoregressive integrated moving aver-
age (SARIMA) and least squares sup-
port vector regression for time series
with genetic algorithms (LSSVRTSGA)
are used. For genetic algorithm, 40
genes are used in form of binary num-
bers. Population size was set to 10.

The developed DBNGA shows effective-
ness to compared methods in terms of
forecast accuracy. [MAPE of DBNGA:
12.00 and MAPE of compared method:
13.95. RMSE of DBNGA: 0.621 and
RMSE of compared method: 1.326]

[70] WTD-
RNN-
ANFIS

WTD-ANN,
WTD-SVM,
WTD-RNN,
ANN, SVM,
RNN

- 15 min-
utes

Proposed forecasting model comprises
of WTD (to decompose and smooth his-
torical time series), RNN ensemble (six
RNNs with dissimilar architectures and
parameter) and ANFIS (utilized as the
top layer of the ensemble model).

It is verified from results that the
proposed WTD-RNN-ANFIS model is
superior and feasible for probabilistic
wind speed prediction. [RMSE of the
proposed method: 0.9678 and RMSE
of compared method: 1.0045. MAE of
WTD-RNN-ANFIS: 0.6516 and MAE
of compared method: 0.6989]

[73] BRT Conventional
unbiased fore-
casting methods

- Hourly Proposed model is based on the
cost-oriented boosted regression tree
method (COBRT).

The developed BRT method outper-
forms counterparts. [RMSE of pro-
posed BRT: 0.1389 and RMSE of com-
pared method: 0.1734]

[75] DQR Persistence,
BELM-Normal,
BELM-Beta,
RBFNN

Bornholm,
Den-
mark

10 min-
utes

Proposed model is based on statistical
description of the wind speed character-
istics given in the frequency domain to
simulate time series of output power

This work achieves higher accuracy
than well-known benchmark methods
of wind power forecasting. [The newly
developed method outperforms by 25%
and 20% the Persistence method and
the RBFNN, respectively.]

[76] p-WPRF,
GGMM
distribu-
tion

GMM Dallas,
Texas,
USA

5 min-
utes

Wind power forecasting is done based
on probabilistic modeling, which is then
used to calculate historical forecasting
errors by using a continuous generalized
Gaussian mixture model (GGMM).

The developed p-WPRF shows
supremacy in terms of accurate
and efficient wind ramp forecasting.
[The performance of proposed method
is improved by 21% over counterpart]

[78] EWT-
LSTM-
Elman

ARIMA, LSTM,
Elman, EWT,
GRNN

China Hourly Proposed model consists of EWT (to
decompose the raw wind speed data
into several sub-layers), LSTM network
(to predict the low-frequency sub-layer)
and Elman neural network (to predict
the high-frequency sub-layers)

The EWT-LSTM-Elman shows efficacy
over counterparts. [MAPE of proposed
model: 10.93 and MAPE of compared
model 24.95]

Continued on next page
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Table 4 – Continued from previous page

Ref. Method(s) Compared
Method(s)

Location Horizon Model Description Outcome/observation(s)

[80] EnsemLSTM ARIMA, SVR,
ANN, KNN,
GBRT

China 10 min-
utes
and
hourly

Proposed EnsemLSTM model has six
diverse LSTMs, where LSTM1 con-
tains 1 hidden layer and 50 neurons in
the hidden layer, LSTM2 has 1 hid-
den layer and 100 neurons in the hid-
den layer, LSTM3 comrpises of 1 hid-
den layer and 150 neurons in the hid-
den layer, LSTM4 is made of 2 hidden
layers and [50,50] neurons in the hidden
layers, LSTM5 has 2 hidden layers and
[50,100] neurons in the hidden layers,
and LSTM6 comprises of 2 hidden lay-
ers and [50,150] neurons in the hidden
layers

The proposed EnsemLSTM has higher
performance in terms of wind speed
forecasting accuracy. [MAE of pro-
posed method: 1.1410 and MAE of
compared model: 1.3753. RMSE of En-
semLSTM: 1.5335 and RMSE of com-
pared model: 1.8337]

[81] Hybrid of
WT and
CNN

SVM and back-
propagation

China 15 min-
utes

The proposed hybrid approach is based
on WT, CNN and ensemble technique.
The weights and biases of deep CNN are
trained by the back propagation rule
applying stochastic gradient descent

The proposed method efficiently tack-
les the uncertainties, while forecasting
of wind energy in all seasons and show
competency in forecasting accuracy.
[PINC99% for proposed method: -0.78
and PINC99% for compared method: -
3.11 ]

[82] LSTM-
EFG

LSTM, SVR,
KNN

United
States

Hourly Euclidean distance, K-Means, Spectral
Clustering, Agglomerative Clustering
and Birch methods are used for feature
extraction. SVR, KNN, LSTM, LSTM-
EFG are used as forecasting methods.

The LSTM-EFG with spectral clus-
tering demonstrates a higher accuracy
than the benchmarks. [The proposed
LSTM-EFG model shows 13.10%
higher performance than LSTM,
16.84% higher than KNN, and 18.30%
higher than SVR.]

[84] WPD-
Boost-
ENN-WPF

Two forecast-
ing strategies
(Recursive and
MIMO) and
two boosting
algorithms (Ad-
aBoost.MRT
and LPBoost)

Xinjiang,
China

Hourly Mother wavelet=db3, level of decom-
position=3. AdaBoost.MRT: number
of example = 0.9*N (number of in-
stances), iterations = 20, threshold =
random 0 to 1.

The developed hybrid method shows ef-
fectiveness in terms of MAE over com-
pared boosting and forecasting strate-
gies. [MAE of the proposed method:
0.9461 and MAE of compared method
1.7492]

[86] LSTMDE-
HELM

ARIMA, ANN,
SVR, ELM,
LSTM

Inner
Mon-
golia,
China

10 min-
utes
and
hourly

ARIMA: (p,d,q)=(2,0,1). ANN: 1 hid-
den layer, 10 neurons. SVR: C =18.8,
σ2=0.36. ELM: 1 hidden layer and 20
neurons. ELM = 1 hidden layer and 100
neurons, LSTMDE-HELM: LSTM1 has
1 hidden layers and 89 neurons, LSTM2
has 1 hidden layers and 135 neurons.

The proposed hybrid algorithm exploits
evolutionary algorithm DE to optimize
the hidden layers of LSTM and in this
way, the performance of the hybrid
method is enhanced over simple LSTM
and other counterparts in terms of fore-
cast accuracy. [RMSE of proposed
LSTMDE-HELM: 1.5956 and RMSE of
compared model: 1.6635]

Continued on next page
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Table 4 – Continued from previous page

Ref. Method(s) Compared
Method(s)

Location Horizon Model Description Outcome/observation(s)

[85] SSA-EMD-
CNNSVM

SVM,
CNNSVM,
EMD-BP,
EMD-RBF,
EMD-Elman

Xinjiang,
China

10 min-
utes

The proposed model is based on Singu-
lar Spectrum Analysis (SAA), Empir-
ical Mode Decomposition (EMD) and
Convolutional Support Vector Machine
(CNNSSVM)

The developed SSA-EMD-CNNSVM
shows efficacy for 1-step to 3-step
wind speed forecasting over bench-
marks. [The average performance pro-
motion in terms of MAPE, MAE, and
RMSE is 42.85%, 39.21%, and 39.25%,
respectively]

The authors of [56] propose a wind speed forecasting method for efficient en-428

ergy management, where they exploit DL, namely deep belief network (DBN)429

along with genetic algorithm (GA). GA is used for determining the DBN’s pa-430

rameters. They use real-time weather data from various regions of Taiwan.431

Both multivariate regression and time series datasets are exploited to forecast432

wind speed. They performed simulations to validate the effectiveness of their433

developed DBN and GA based forecasting model. Results demonstrate the434

productiveness of their developed model over counterparts. Cheng et al. also435

developed a wind energy forecasting model in a residential area [70]. The de-436

veloped model consists of an RNN, an adaptive neuro-fuzzy inference system437

(ANFIS), and wavelet threshold denoising (WTD). WTD is used to smooth the438

wind speed series to capture variation trends and RNN is trained on datasets439

that are provided by the WTD layer. Eventually, ANFIS is considered the top440

layer of the ensemble model and it performs final wind speed prediction, which in441

turn can be used for predicting wind power generation. The developed method442

is then evaluated on 1-hour-ahead wind speed prediction and results affirm its443

superiority over counterparts.444

The research presented at [73] has proposed a wind speed prediction model445

under cost-oriented loss functions, where a cost-oriented boosted regression tree446

(BRT) method is developed to formulate the efficient forecasting of wind speed.447

Various case studies with real-time datasets are presented to verify the produc-448

tivity of the presented method and a comparison with conventional unbiased449

forecasting methods is performed. Comparative results are evident of the ef-450

fectiveness of the proposed scheme. Another study proposed a direct quantile451

regression (DQR) method for wind power prediction that combines the quantile452

regression and extreme learning machine [75]. According to [87], wind energy453

shows higher volatility in intra-hour resolution (i.e., 10-minutes, 15-minutes,454

etc.) as compared to hourly wind power. Therefore, the work [75] considers455

multi-step probabilistic prediction of 10-minutes wind energy. A comparative456

study is also presented in this work, where various well-known methods of wind457

energy forecasting, such as RBFNN, Smart Persistence, BELM-Normal, and458

BELM-Beta, are compared against the performance of newly developed fore-459

casting method. Results show the efficacy of the newly developed 10-minutes460

wind power forecasting method.461

The authors of [76] proposed a data-driven probabilistic wind energy ramp462

forecasting (p-WPRF) technique that is based on a huge amount of simulated463

22



scenarios. A publicly available dataset from [88] (containing data for a location464

near Dallas, Texas, USA) is exploited to affirm the effectiveness of the proposed465

ramp forecasting model. The authors performed simulation studies to show the466

efficacy of p-WPRF model and results affirm the productiveness of this work467

with higher accuracy and reliability.468

Liu et al. [78] proposed a hybrid approach known as EWT-LSTM-Elman for469

wind speed prediction that is the combination of empirical wavelet transforma-470

tion (EWT) and two types of RNNs. The EWT is exploited to decompose the471

raw wind speed data into multiple sub-layers and the LSTM neural network is472

adopted to forecast the low-frequency wind speed sub-layers. At the end, an El-473

man neural network (ENN) is utilized to predict the high-frequency sub-layers.474

Furthermore, to measure the performance of the newly proposed EWT-LSTM-475

Elman forecasting algorithm, eleven different forecasting algorithms are consid-476

ered as benchmarks. Experimental results validate the developed algorithm in477

terms of high precision wind speed forecasting.478

Another study at [80] presents a hybrid method for time-series wind energy479

forecasting, which combines the non-linear learning ensemble of DL, support480

vector regression machine (SVRM), LSTM, and external optimization (EO)481

technique. The newly developed algorithm is named as EnsemLSTM. First,482

unlike a single DL approach, a cluster of LSTMs is adopted to exploit and483

explore time-series data of wind speed. Then, non-linear regression is exploited484

to aggregate the forecasting of LSTMs. The top-layer of the proposed model485

contains SVRM. EO and final ensemble forecasting of wind speed is given by486

fine-tuning of the top-layer. The datasets are used from the wind farms of487

Inner Mongolia to perform experiments to affirm the performance of the newly488

developed hybrid method. In addition, the work [80] considers two case studies:489

forecasting of wind speed considering (i) hourly time intervals and (ii) 10-minute490

time intervals. A comparative study also has been taken into account, where five491

forecasting algorithms are employed as benchmarks, i.e., GBRT, KNN, ANN,492

SVR, and ARIMA. It is observed from simulations that developed EnsemLSTM493

has higher performance than the compared algorithms.494

The work presented in [81] also tackles the wind forecasting problem and495

proposed a DL-based ensemble approach, where an advance point prediction496

model is developed based on the wavelet transform (WT) and CNN. WT de-497

composes wind speed data into various frequencies, while non-linear features498

of various frequencies, learned by CNN, are employed to enhance the forecast499

accuracy. To check the performance of the newly developed DL-based ensemble-500

based method, real-time datasets containing uncertainties are used from China.501

Further, the authors of [81] also implemented their proposed method for wind502

energy forecasting during the four seasons, i.e., summer, winter, spring, and503

autumn. Results from simulations demonstrated that the proposed method504

efficiently tackles the uncertainties and provides satisfactory performance.505

Ruiguo et al. developed an LSTM-enhanced forget-gate (LSTM-EFG) net-506

work for wind energy forecasting [82]. The developed method replaces the tanh507

activation function with the softsign activation function, excludes the input-508

gate of traditional LSTM, and subtracts the output of the forget-gate in the509
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way of the all-1 matrix. It utilizes the results as the input of the data update.510

In this way, the convergence speed is enhanced by the newly developed model511

LSTM-EFG. In addition, this model also exploits the feature extraction method512

that is hybridized with cluster methods in order to select the data having similar513

characteristics. Extensive experiments have been performed in the study and514

results show that the LSTM-EFG achieves minimum MSE value compared to515

well-established methods such as LSTM, SVR, and KNN.516

The study presented in [84] proposes a hybrid algorithm to forecast the big517

multi-step wind speed. ENN, wavelet packet decomposition (WPD), wavelet518

packet filter (WPF), and boosting algorithms are exploited to enhance the fore-519

cast accuracy. Furthermore, this study utilizes four time-series datasets to affirm520

the performance of the newly proposed WPD-Boost-ENN-WPF algorithm. Ex-521

perimental results show the efficacy of the proposed forecasting algorithm over522

counterparts in terms of big multi-step wind speed prediction.523

In [86], Hu et al. present a hybrid algorithm, namely LSTMDE-HELM, for524

long-term wind speed forecasting, where they perform hybridization by combin-525

ing the best features of hysteretic extreme learning machine (HELM), LSTM,526

non-linear combined mechanism, and differential evolution (DE) algorithm. The527

working of the developed hybrid method is as follows: firstly, a biological neural528

system property named hysteresis in the activation function of ELM is used529

to enhance its efficiency. Afterward, DE is adopted to optimize the number of530

hidden layers in the LSTM to maintain a balance between learning performance531

and complexity of the LSTM (as there is no clear mechanism in order to set532

the hidden layers of LSTM). Finally, the prediction results of each predictor533

in the developed hybrid algorithm are aggregated by the non-linear combined534

mechanism, which is the combination of LSTM and DE. Furthermore, extensive535

experiments are performed to affirm the effectiveness of the newly developed hy-536

brid forecasting method. For this purpose, they have exploited real-time wind537

speed data of Inner Mongolia and China. A comparative study has been per-538

formed to show the efficacy of the LSTMDE-HELM model. Results indicate the539

higher performance over the compared algorithms, namely, LSTM, ELM, SVR,540

ANN, and ARIMA, in terms of forecast accuracy.541

Another work [85] presents a hybrid algorithm, termed SSA-EMD-CNNSVM,542

which combines the best features of EMD, singular spectrum analysis (SSA),543

and CNNSVM for multi-step wind speed forecasting. In the newly developed544

hybrid algorithm, the SSA is employed to mitigate the noise and it extracts545

trends in the actual wind speed data. The EMD is employed to explore the546

fluctuation features from wind data and decompose time-series wind speed to547

multiple sub-layers. CNNSVM is utilized to forecast the wind speed sub-layers.548

Furthermore, to examine the forecasting efficiency of the newly developed hybrid549

algorithm, several benchmarks are taken into account and experiments are per-550

formed. According to experimental results, the proposed SSA-EMD-CNNSVM551

forecasting method has satisfactory performance over counterparts for 1-step-552

3-step wind speed forecasting with the MAPE = 42.85%, MAE = 39.21%, and553

RMSE = 39.25% average performance promotion.554
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The use of DNNs appears to be one of the most commonly used wind energy555

prediction techniques. When DNNs are combined with optimization techniques556

for tuning the large number of network parameters, the accuracy of the overall557

system can be greatly improved. Hence, a significant growth can be seen in558

research on the aforementioned hybrid techniques, which aim to complement559

the predictive stage with the optimization of parameter sets to allow higher560

degrees of precision. Under various conditions, such as limited data access561

or lack of weather stations near to the wind farms being tested, these hybrid562

models have made it possible to refine conventional statistical methods based on563

historical data and to offer solutions to climate variability issues for real wind564

farms. Figures 11 and 12 demonstrate this observation, where hybrid approaches565

outperform other conventional approaches. To make the comparison fair, we566

show the error values as reported in the original papers over that same two567

datasets, one taken from wind farms in China [79] and one from NREL National568

Wind Technology Center (NWTC), Boulder, Colorado [72]. An important factor569

to note is the evaluation process, of which the RMSE or the MAE are the most570

common means of evaluating the accuracy of the models in place.571
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Figure 11: Comparison of different wind forecasting methods that were implemented on the
same dataset, taken from wind farms in China [79]
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Figure 12: Comparison of different wind energy forecasting methods that were implemented
on the same dataset, taken from NREL National Wind Technology Center (NWTC), Boulder,
Colorado [72]

5.2. Solar Energy Forecasting572

Electricity demand is rising day by day due to the growing number of the573

population, which also generates a massive amount of greenhouse gases. Hence,574

people and organizations are moving towards sustainable sources of energy such575

as solar panels. However, because of the intermittent nature of solar power, the576

forecasting of solar energy needs to be accurate. Solar panel power generation577

may be forecasted on a 1-hour, 2-hour, 10-hour, or 1-day basis. State-of-the-art578

solar irradiance and energy forecasting studies have been included in this section579

that are critically analyzed in terms of methodologies, pros and cons. Table 5 de-580

scribes various datasets used in solar irradiance and energy forecasting, whereas581

Table 6 summarizes the efforts of the research community regarding forecasting582

of solar irradiance and energy. Unlike the wind speed datasets, the solar energy583

ones cover several locations worldwide (e.g., Europe, US, Asia) and primarily584

record hourly data spanning several months to years. Similarly, the proposed585

approaches forecast solar power generation in hourly steps, typically up to 24586

hours ahead. The majority of methods use a hybrid approach combining DNN,587

RNN, or LSTM as these methods work well in identifying temporal correlations588

among the data with varying degrees of success rates (see Table 5).589
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Gensler et al. proposed a solar energy forecasting approach by employing590

DL in [54]. Twenty-one PV panels are considered for generating energy, and591

day-ahead forecasting is made. In their work, a MLP [89], a type of feed-592

forward ANN, is employed as a base architecture consisting of several layers593

(recall Section 4). The results of the MLP forecast are compared with other594

models, such as ANN and physical models.595

The study presented in [90] proposes a statistical approach for short-term596

Spatio-temporal forecasting of solar power. This paper forecasts power for a597

very short-time period (1-6 hrs). For this study, distributed power plants are598

exploited along with their Spatio-temporal dependencies in order to improve599

prediction accuracy. In addition, their model’s computational complexity is600

low, making it simple to use, and is considered a suitable solution for industrial601

applications. The simulation results support (in terms of accuracy) the proposed602

model over current models. The work [91] designs an RNN-based prediction603

model for solar irradiance. Authors have used a version of RNN known as a gated604

recurrent unit (GRU) and LSTM [92]. Extensive simulations are carried out to605

check the efficiency of the proposed model in terms of precise solar irradiance606

prediction. It is validated through results that the GRU and LSTM are better607

suited to predict time-series irradiance as compared to simple RNN.608

The research at [93] presents a solar forecasting method using numerical609

weather prediction (NWP) and CNNs. A Gaussian process is employed to610

transfer the incoming values of PV power into the main grid and train the611

CNN. The developed CNN can also map outputs of 6 × 6 to 31 × 31 based on612

the transposed conversion operation. Experiments are performed to validate the613

developed CNN model and adequate accuracy is achieved in comparison with614

benchmark models, i.e., ridge regression, persistent method, and FC NN.615

In [94], Subhadip et al. present a deep NN, known as SolarisNet, for solar616

energy prediction. They employ limited weather parameters, i.e., maximum617

temperature, minimum temperature, and hourly solar radiation. Simulations618

were conducted to test the performance of the developed SolarisNet model, and619

data is used from India’s meteorological department. Findings from simulations620

present a higher performance of the proposed model relative to ANN [95, 96],621

SVR [97], and Gaussian process regression [98].622

Another solar power prediction approach is proposed, employing Deep RNN623

(DRNN), in [99]. The proposed method uses real-time data from the National624

Resources of Canada [100]. Results from simulations are compared with cur-625

rent forecasting approaches that show the efficacy of developed method. The626

authors of [101] propose a new hybrid adaptive learning model (ALM) for so-627

lar intensity prediction over the short and long term. A time-varying multiple628

linear model is built to deal with the linear and dynamic properties of data.629

A GA back-propagation NN (GABPNN) is then implemented in order to learn630

the non-linear relationship of data. The proposed hybrid ALM is capable of631

capturing the linear, nonlinear, and temporal relationship in data. Results from632

simulations confirm that the developed forecasting model shows efficiency over633

several benchmarks in both long and short-term solar intensity forecasting.634
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Abdel et al. designed a novel PV energy forecasting model in [102] employing635

deep LSTM-RNN. They also consider the temporal changes during prediction636

model building. This study analyzes five various LSTM models with differ-637

ent architectures in order to check their effectiveness. They consider several638

commonly used prediction models for comparison purposes, including ANNs,639

multiple linear regression (MLR), and bagged regression tree (BRT). Another640

research develops a high-precision deep CNN model called ‘SolarNet’ for solar641

radiation prediction [103]. Experiments are carried out to verify the perfor-642

mance of the proposed forecasting model. From the results, it is confirmed643

that the SolarNet model shows efficiency, in terms of accurate prediction, over644

counterparts.645

The research proposed in [104] constructs two forecasting methods, based on646

DNNs, to forecast daily solar and wind energy. The Kaggle dataset is used for647

the research and model preparation. Additionally, this research proposes DNN648

ensembles in order to enhance single DNN predictions by reducing variance and649

is illustrated by experiments showing the randomness in DNN training elements650

resulting in efficient and stable DNN ensembles. Another forecasting method651

for wind and solar energy is provided in [105]. The proposed method takes652

into account the gradient boosting algorithm and feature engineering technique653

that extracts the knowledge from the NWP grid. They also present a compar-654

ative analysis of the proposed method and the approach, which has only one655

NWP point for a particular location. The simulation results are evident that656

the forecast accuracy for solar and wind energy is increased (in terms of MAPE)657

by 16.09% and 12.85%, respectively. Another solar power forecasting method,658

based on ML, is built in [106]. They also conduct a comparative study with mul-659

tiple regression approaches to demonstrate their technique’s effectiveness. It is660

affirmed from simulation results that their proposed method forecasts with 27%661

higher accuracy than the current forecasting approaches. The study presented662

in [107] developed a DL-based hybrid algorithm for short-term solar irradiance663

prediction. The hybrid method combines GRU network with an attention mech-664

anism, where an Inception NN (INN) is developed for feature extraction from665

original data. The proposed inception-based hybrid GRU approach is tested on666

the dataset taken from [108], and results show higher performance over single667

LSTM and GRU in terms of forecast accuracy.668

Each prediction model has its own pros and cons in predicting solar irradi-669

ance and PV power generation; thus, it is difficult to determine which is the best670

among all the models. However, the following findings are suggested from the671

studies examined in this paper. For a single model, many studies demonstrate672

that LSTM has higher efficiency over RNN under all circumstances because673

the LSTM has intrinsic memory to resolve vanishing gradient issues arising in674

the RNN. In addition, multiple studies examined reveal that the hybrid models675

perform better than the standalone ones in the prediction of solar irradiance.676

This is evident in the Figures 13 and 14, which compare existing approaches677

using the same datasets, as reported in the original papers. However, in terms678

of computational or training time, GRU exhibits more efficiency compared to679

LSTM. Overall, taking into account training time and estimation accuracy, the680
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GRU model yields a satisfactory result for the forecasting of PV power and solar681

irradiance.682
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Figure 13: Comparison of different solar energy forecasting methods that were implemented
on two datasets (taken from Solar farms in Aswan and Cairo, Egypt [102])

5.3. Electric Load and Consumption Forecasting683

Load forecasting for buildings/homes, industrial areas, and the commercial684

sector plays a significant role in the modern era of the smart grid. An accurate685

load/demand forecasting for energy consumers is a challenging task because686

of their stochastic behavior regarding electricity consumption. However, a lot687

of research studies have focused to tackle this issue and this section critically688

analyses these studies along with their benefits and drawbacks. Table 7 describes689

various datasets used for forecasting electric load and consumption, whereas690

various studies on the forecasting of electricity load and electricity consumption691

are summarized in Table 8. The majority of datasets contain hourly load data692

spanning several months along with time information (e.g., month, day of week)693

and temperature, which are considered strong predictors of electric load for694

both commercial and residential consumers. Based on this data, the surveyed695

approaches employ a wide range of DL algorithms to make hourly forecasts696

for the next few hours to few days, and offer different degrees of forecasting697

performance as listed in Table 8.698
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Figure 14: Comparison of different solar energy forecasting methods that were implemented
on the dataset (taken from [109])

Table 5: Description of datasets used for solar irradiance and energy forecasting

Ref. Dataset Origin Description Total Time Period Recording
Step

[54] German Solar Farm,
Germany

Data from 21 photovoltaic facilities, with nominal
power ranging between 100kW and 8500kW [109]

Training data of 490 days; Vali-
dation data of 250 days; Testing
data of 250 days

Hourly

[90] Two datasets from mid-
west and south region of
France

1st dataset comes from 9 power plants with peak
power ranging between 45kWc and 5MWc; 2nd

dataset comes from 185 power plants with peak power
ranging between 32kWc and 58kWc

Training data of 15 months; Test-
ing data of 5-months

15 minutes

[91] Publicly available global
horizontal solar radia-
tion data

The dataset contains data for 10-years measured by a
French meteorological organization

Jan 1998 to Dec 2007 Hourly

[93] American meteorological
society

The dataset published within the context of a contest
[112]

Training data: Jan 01, 1994 to
Dec 31, 2006; Testing data: Jan
01, 2007 to Dec 31, 2007

Hourly

[94] Kalyani meteorological
site, Bengal, India

No additional information provided Training data: 80%; Testing data:
20%

Hourly

Continued on next page
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Table 5 – Continued from previous page

Ref. Dataset Origin Description Total Time Period Recording
Step

[99] Solar farms in Canada The data consists of global horizontal and global tilted
irradiance along with the corresponding time [113]

Training data: 70%; Validation
data: 10%; Testing data: 20%

Hourly

[101] UMASS Trace Reposi-
tory

Solar intensity measured in watts/m2; Dataset at-
tributes used: temperature, wind speed, humidity,
precipitation, and dew point [114]

Training data: Jan 01, 2015 to
Dec 31, 2016; Testing data: Jan
01, 2017 to Feb 28, 2017

5 minutes

[102] Solar farms in Aswan
and Cairo, Egypt

The data locations have subtropical desert low-
latitude arid hot climate

Training data: 70%; Testing data:
30%

Hourly

[103] Solar sites in Tainan,
Taiwan

Data collected through computer monitoring system
of PV sites; radiometer is used to capture at least one
record/minute

Training data: Jan 01, 2015 to
April 31, 2015; Testing data: May
01, 2015 to June 31, 2015

Hourly

[104] Publicly available Kag-
gle dataset

Contains solar radiation of 98 stations of Oklahoma’s
Mesonet network [115]

Training data: Jan 01, 1994 to
Dec 31, 2005; Validation data:
Jan 01, 2006 to Dec 31, 2006;
Testing data: Jan 01, 2007 to Dec
31, 2007

Hourly

[105] Solar farms in Porto,
Portugal

No additional information available April 28, 2013 to June 28, 2016 Hourly

[106] US National weather ser-
vice (NWS)

Solar radiation data of small city-size regions through-
out the US, with several metrics per hour [116]

Jan 01, 2010 to Oct 31, 2010 Hourly

[107] National Renewable En-
ergy Laboratory, USA

Solar radiation data of various places in Nevada, USA
[108]

Jan 01, 2001 to Dec 31, 2005 30 minutes

Table 6: Summary of solar irradiance and energy forecasting approaches

Ref. Method(s) Compared
Method(s)

Loca-
tion

Hori-
zon

Model Description Outcome/observation(s)

[54] Auto-
LSTM

ANN, LSTM,
MLP, DBN, and
DNN

Germany Hourly MLP consists of multiple FC layers of
neurons and a back propagation algo-
rithm. For Auto-LSTM, n = 2 previous
samples are used to predict a new value.
Furthermore, tanh activation function
is used except for output layer, where
a Rectified Linear Unit (ReLU) activa-
tion function is used.

The developed hybrid approach demon-
strates higher forecast accuracy; how-
ever, the efficiency of the DBN is
closer to the proposed method. [RMSE
of newly developed approach: 0.0713,
compared approach: 0.0714]

[90] Spatio-
Temporal
model

Autoregressive
and random
forest

France 15 min-
utes

This work applies a spatio-temporal
model to the stationarized series and
addresses the problem of high dimen-
sion data by using Lasso regularization.

The developed statistical forecasting
method indicates high performance
over counterparts in terms of compu-
tation complexity and accuracy. [The
performance improvement of nRMSE is
20% over counterparts]

Continued on next page
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Table 6 – Continued from previous page

Ref. Method(s) Compared
Method(s)

Location Horizon Model Description Outcome/observation(s)

[91] LSTM Naive, RNN, and
GRU

France Hourly A special Recurrent Neural Network
variations Long Short-Term Memories
and Gated Recurrent Unit models are
used.

The LSTM-based prediction technique
reveals superiority over comparative ap-
proaches. [nRMSE of newly developed
approach: 0.2115, compared approach:
0.2198]

[93] Gaussian
process
regression
based CNN

NN, and Ridge
regression, Per-
sistence

Oklahoma,
USA

Hourly Input of the network contains the val-
ues of the 87 features on a 6 by 6 grid,
and the output of the network is the
forecasts on a 31 by 31 grid. Three
types convolution operations are con-
sidered: regular convolution with 3×3
filters, transposed convolution with var-
ied sizes of filters, and regular convolu-
tion with one 1×1 filter.

The newly developed method shows ef-
ficacy in terms of minimum MAE [MAE
of the proposed method: 212642 and
compared method: 4399526]

[94] DNN
namely
’Solaris-
Net’

Gaussian process
regression, SVR,
and ANN

India Hourly A 6-layer deep neural network is con-
sidered. Input layer consists of 1x3
neurons and direct connection activa-
tion function. Non-linearity augmen-
tation layer has 2x2x3 neurons and
tan sigmoid function. Dimension-
ality embedding layer has 1x2 neu-
rons and log sigmoid activation func-
tion is used. Network is trained by
Levenberg-Marquardt (LM) back prop-
agation technique

The SolarisNet prediction model per-
forms efficiently in terms of high ac-
curacy. [SolarisNet RMSE: 1.7661 and
compared model RMSE: 2.7930]

[99] Deep RNN LSTM, SVR,
and FNN

Canada Hourly A deep recurrent neural network is con-
sidered for prediction of the solar irradi-
ance and LSTM neuron was introduced
to solve the exploding gradient prob-
lem.

The results from simulations confirm
that the proposed deep RNN out-
performs counterparts; performance is
measured as RMSE. [The RMSE of
proposed model: 0.068 and compared
method: 0.18]

[101] ALHM:
hybrid of
GABPNN
and multi-
ple linear
model

SVM and ANN - Hourly
and 5
min-
utes

An adaptive learning hybrid model us-
ing integration of the time-varying mul-
tiple linear model and a genetic al-
gorithm back propagation three-layer
neural network is used.

Experiments validate that the hybrid
model can accurately predict the en-
ergy produced from solar panels. [The
MAPE of ALHM: 13.68 and compared
method: 20.39]

[102] Hybrid
LSTM-
RNN

multiple lin-
ear regression,
bagged regres-
sion trees, and
ANN

Aswan
and
Cairo,
Egypt

Hourly Considered LSTM network comprises a
one-input visible layer, a hidden layer
with four LSTM blocks (neurons), and
an output layer that gives the predicted
power. Sigmoid activation function is
used for the LSTM blocks and We net-
work was trained for 20, 50, and 100
epochs with a batch size of 1.

The proposed hybrid model provides a
very small error rate as opposed to com-
pared methods. [The RMSE of LSTM-
RNN: 82.15 and compared method:
384.89]

Continued on next page
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Table 6 – Continued from previous page

Ref. Method(s) Compared
Method(s)

Location Horizon Model Description Outcome/observation(s)

[103] Deep CNN LSTM, MLP, de-
cision tree, SVM,
random forest

Tainan,
Taiwan

Hourly Proposed network comprises of three
1D convolution layers and three pool-
ing layers. Sigmoid activation function
is used. However, the rectified linear
unit (ReLU) is employed as an acti-
vation function of the convolution and
output layers to reduce the chance of
gradient vanishing.

The developed deep CNN reveals ef-
fectiveness in terms of minimum error
rate. [The average MAE of deep CNN:
112.26 and compared method: 143.27]

[104] DNN en-
semble
model

SVR Oklahoma,
USA

Hourly Architecture comprises of two initial
convolutional layers, two FC layers and
a final linear readout layer. Non-
symmetric ReLUs in the hidden layer
and Glorot–Bengio weight initialization
heuristic are used to dilate the Glo-
rot–Bengio uniform intervals by a factor
of 1.5.

The newly proposed DNN employs
minibatch preparation, weight initial-
ization, and dropout regularization to
intrude independent randomness; sim-
ulation results support the robustness
and higher accuracy of the DNN en-
semble model. [The average MAE of
DNN ensemble: 209.09 and compared
method: 222.52]

[105] Gradient
boosting
trees

Quantile Regres-
sion Forests

Porto,
Portu-
gal

Hourly Proposed model is based on the gradi-
ent boosting trees algorithm

First work to propose a method to
use domain knowledge to extract fea-
tures from NWP grid; this knowledge
can increase the forecast accuracy over
existing methods. [The newly devel-
oped methods indicates forecast im-
provement 16.09% over current meth-
ods]

[106] SVM-RBF Linear re-
gression and
past-predicts
future models

USA Hourly Models are based on multiple regression
techniques for generating prediction
models, including linear least squares
and support vector machines using mul-
tiple kernel functions

The SVM-RBF forecasting model de-
notes higher accuracy. [The accuracy
is enhanced using the proposed model
by 27% over compared methods]

[107] Inception-
based
hybrid
GRU

LSTM and GRU USA 5, 10,
20, and
30 min-
utes

The proposed hybrid model uses INN
for feature extraction and RNN for
model training. Then, a two-layer
GRU structure predicts solar irradi-
ance and an attention mechanism deals
with GRU output by assigning various
weights. Finally, hidden neurons are
discarded by dropout layer and FC NN
is used to show results.

The proposed hybrid inception-based
GRU shows higher accuracy over coun-
terparts. [The MAPE and MAE of pro-
posed method: 5.80 and 26.49, LSTM:
6.01 and 26.95, and GRU: 6.13 and
27.28]

The technique proposed in [110] developed a short-term load forecasting699

method by exploiting a DBN. The hourly load data of North Macedonia from700

2008 to 2014 is used for the modeling. The authors compare the obtained701

results not only with the actual hourly data of North Macedonia but also with702

another neural network, namely MLP. Results demonstrate efficacy in terms of703

reduced MAPE. Another work [111] also exploits a DBN model for power load704

forecasting on the basis of historical data. It considers real-time time-series705

historical load data of South Africa for demand forecasting. In addition, weather706
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parameters, like wind speed, temperature, etc. are also taken into account to707

check their impacts and to improve the forecast accuracy of the proposed model.708

Simulations have been performed to validate the model, while the temperature709

impact on forecast error is also analyzed. Results show the effectiveness of the710

developed model.711

Robinson et al. [117] developed a power demand forecasting model for com-712

mercial consumers using ML techniques. They developed a gradient boosting713

regression (GBR) based model to forecast the power demands of commercial714

buildings. In addition, they perform experiments on various datasets that are715

obtained from different locations of the United States. First, they exploit the716

data of New York city and the same forecasting model is implemented on the717

data of Atlanta city. Results validate the performance of the newly developed718

model. Another paper [118] considers a load forecasting problem in residential719

areas as well as in commercial buildings. A deep RNN is employed for medium720

to long term energy consumption forecasting. The datasets from commercial721

buildings of Salt Lake city, USA are exploited to perform simulations and a722

3-layer MLP forecasting model is implemented to examine the efficiency of the723

developed forecasting model. Simulation results show the effectiveness of the724

proposed deep RNN based model over MLP for load demand prediction of com-725

mercial buildings. However, 3-layer MLP shows efficacy in the forecasting of726

the residential load.727

The research work presented in [119] tackles the load forecasting problem of728

residential areas. Usually, volatility and uncertainty in household demand fore-729

casting are considered the key issues. Traditional techniques are used to solve730

these issues in various ways such as customer classification, load aggregation,731

and spectral analysis. However, this paper adopts a mechanism to learn directly732

from uncertainties and develops a new forecasting algorithm, termed pooling-733

based deep RNN (PDRNN). It utilizes the load profiles of several consumers as734

a pool of inputs, enabling the model to address the over-fitting problem. Fur-735

thermore, it is claimed that it is the first attempt to develop a DL application736

for residential consumers. Extensive simulations have been performed and data737

of 920 smart-metered consumers from Ireland are exploited. Additionally, to738

check the performance of the newly developed model, authors have performed a739

comparison with other benchmarks, i.e., ARIMA, SVR, and classical deep-RNN.740

A comparative study shows the efficacy of the PDRNN forecasting model.741

Another research work [120] also adapts DL based methods for load fore-742

casting. Specifically, a hybrid forecasting method is developed by combining743

the best features of CNN and K-means clustering. They used a large dataset744

obtained from the power grid, which is clustered into subsets using the K-means745

algorithm, and the obtained subsets are used to train the CNN. The authors746

also performed simulations for both seasons (summer and winter) to validate747

the productiveness of the proposed hybrid model and a comparative study is748

also taken into account, where several forecasting algorithms employing linear749

regression, linear regression+L-means, SVR, and CNN are considered. Results750

affirm the effectiveness of their hybrid CNN-K-means forecasting algorithm in751

terms of higher accuracy.752
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Xueheng et al. proposed a hybrid power demand forecasting algorithm that753

combines EMD and DBN [121]. To forecast the power demand, first, the histor-754

ical load demand series are decomposed into multiple intrinsic mode functions755

(IMFs) and then a DBN containing two RBMs is opted to model each IMF.756

Eventually, the prediction results of all IMFs are combined by either weighted757

or unbiased summation to attain an aggregated output for power demand. Fur-758

thermore, they performed experiments to show the legitimacy of their proposed759

forecasting method by employing the datasets from the Australian Energy Mar-760

ket Operator (AEMO) [122]. They utilized nine other forecasting methods as761

benchmarks for comparative purpose, i.e., persistence, SVR, ANN, DBN, ran-762

dom forest, EDBN, EMD-SVR, EMD-ANN, and EMD-RF.763

The study presented in [123] proposes a load and price forecasting method764

to balance electricity load demand and supply. For this purpose, a hybrid765

algorithm is developed on the bases of a multi-stage forecast engine (MFE)766

and dual-tree complex wavelet transform (DCWT). First, the signals enter the767

wavelet transform and then are filtered by a novel feature selection. Subse-768

quently, the signals are forecasted by MSFE in 3 steps and then an intelligent769

algorithm is opted to enhance the forecast accuracy. Eventually, an improved770

fusion algorithm collects the outputs of MSFE. To check the effectiveness of771

their proposed forecasting method, extensive simulations have been performed772

using the datasets from the energy department of Australia and England. Var-773

ious forecasting methods, like ARIMA, SVR, RBFNN, WT+RBFNN are also774

employed for comparative study.775

Gabriel et al. also tackled the load forecasting problem in [124] and pro-776

posed a load forecasting framework that built a wavenet ensemble for short777

term power demand forecasting. Firstly, data are transformed and normalized778

to remove trends, then an optimal time window is constructed and a subset of779

features is selected. Subsequently, the bootstrapping, cross-validation, simple780

mean, and median algorithms are employed for the ensemble aggregation of the781

wavenet learners. Finally, forecasted values are realized via a one-step-ahead782

strategy. The authors have considered different forecasting methods, such as783

MLP, single wavenet, and regression tree, for experiments and compared them784

with the proposed algorithm. In addition, they used real-time datasets from785

Global Energy Forecasting Competition, Italy to perform experiments.786

Another energy demand forecasting problem for the residential community787

is taken into account by Mujeeb et al. in [125]. They proposed a hybrid forecast-788

ing algorithm, namely deep LSTM (DLSTM) that combines the best qualities789

of LSTM and DNN. The proposed DLSTM uses the automatic feature learning790

mechanism from DNN and all other forecasting steps are performed by LSTM.791

To evaluate the newly proposed algorithm, they perform experiments by us-792

ing the datasets of New York city. They forecast day-ahead and week-ahead793

power demand. Furthermore, MAPE and RMSE are computed to check the794

performance of proposed and benchmark algorithms.795

The authors of [126] also consider the load forecasting problem and propose796

a solution for residential areas. An adaptive circular conditional expectation797

(ACCE) technique is developed based on circular analysis to define the sub-798
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residuals operation schedules. Next, an adaptive linear model (LM) is opted799

to forecast the residual component demand by exploiting the results of the800

ACCE process at each time step. Finally, the forecast performance is evaluated801

as the normalized mean absolute error (NMAE) and a comparison is performed802

with auto-regressive model (AR) [127] and auto-regressive with exogenous input803

(ARX) [128] forecasting model to validate the ACCE method.804

The Inception Time forecasting model, an ensemble of deep CNN, can be805

used for time-series forecasting. The fundamental building block of the incep-806

tion model is known as an inception module, which comprises of bottleneck,807

convolutional, max pooling, and depth concatenation layers. The concept of808

inception module is adopted from image processing in which network architec-809

tures like AlexNet, GoogleNet, etc., are used for image classification or recog-810

nition. Recurrent Inspection CNN (RICNN) model is proposed for short-term811

electricity load forecasting in [66]. In RICNN model, RNN is combined with812

1-dimensional CNN network to learn the spatial and temporal representations813

of electricity load. The RNN learns the long-term and short-term temporal814

dependencies present in the electricity load time-series data. Then, the CNN815

learns the low-level (spatially adjacent local) and high-level (valleys and peaks)816

features of the electricity load time-series. The electricity consumption dataset817

of 3 large electricity distribution complexes of Korea electric power corporation818

(KEPCO) is utilized for building the RICNN model. This model outperforms819

the benchmark model MLP in terms of MAPE.820

Ahmad et al. proposes a short-term load forecasting (STLF) method for821

industrial areas [129]. The primary objective of this work is to enhance fore-822

cast accuracy along with high convergence speed. For this purpose, the authors823

proposed a hybrid ANN that employees the mutual information (MI) for fea-824

tures selection, while enhanced differential evolution (DE) is exploited for error825

minimization. Consequently, execution time was reduced by 52.38% and 95.5%826

accuracy was recorded in simulation results, as compared to bi-level forecast827

strategy.828

Many of these deep learning-based forecasting algorithms have successfully829

addressed the forecasting analysis and have outperformed the forecasting chal-830

lenges of ML and NNs. There are a variety of issues related to the forecast831

study of the form of load, period, temperature, seasons, customer behavior,832

and holidays. For example, the prediction of household load use for individuals833

varies depending on the extent of the use of appliances. However, most of the834

studies in this paper show that hybrid approaches outperform the standalone835

or conventional models in terms of performance and accuracy. Indicatively, we836

have shown such comparison of some standalone models with a hybrid approach837

for load forecasting in Figure 15.838

6. Current Challenges and Future Research Directions839

DL-based approaches have been considered beneficial means of enhancing the840

efficiency of smart microgrids to provide potential strategic solutions for precise841

power generation forecasting from RESs and load demand forecasting. In this842
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Figure 15: Comparison of different load forecasting methods that were implemented on two
datasets (taken from Australian Energy Market Operator (AEMO) [130])

Table 7: Description of datasets used for energy consumption and load forecasting

Ref. Dataset Origin Description Total Time Period Recording
Step

[110] Electricity Transmis-
sion System Operator
(MEPSO) of North
Macedonia

Dataset consists of hourly load demand along with
hourly temperature [131]

2008-2014 Hourly

[111] South Africa Energy data is taken from a substation of South
African utility 88/11 kV, 80 MVA [132]; temperature
data is also collected separately

August 2012 to May 2016 Hourly

[117] Commercial buildings in
New York and Atlanta,
United States

Data collected from New York City Mayor’s Office of
Sustainability based on Local Law 84 Data Disclosures
and contains 13223 rows of data [133]

2015 Hourly

[119] Energy regulation com-
mission of Ireland

Dataset contains records of 5000 consumers (having
smart meters); current study used data of 920 smart
metered consumers [134]

July 01, 2009 to Dec 31, 2010 30 minutes

[121] Australian energy mar-
ket operator, Australia

Dataset includes data from 5 cities: NSW, Tasmania,
Queensland, South-Australia, and Victoria; the study
used 4 months in 2013, one from each season [130]

2013; Testing: first 3 weeks of
each month; Training: last week
of each month

Hourly

Continued on next page
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Table 7 – Continued from previous page

Ref. Dataset Origin Description Total Time Period Recording
Step

[118] The University of Utah,
Salk Lake City, UT,
USA

Data collected for a public safety building, which is a
net-zero, LEED platinum, having area of 175,000 Sq
ft.

Training data: May 18, 2015 to
May 18, 2016; Testing data: May
19, 2016 to Aug 08, 2016

Hourly

[124] Italy The two datasets are publicly available and taken
from Italy and Global Energy Forecasting Competi-
tion; both datasets consists of 8760 records for one
year

Jan 01, 2015 to Dec 31, 2015 Hourly

[125] New England (dataset
ISO-NE) and New York
(dataset NYISO)

ISO-NE contains data for 8 years and NYISO presents
data for 13 years; both datasets are publicly available

ISO-NE dataset: Jan 2011 to Mar
2018; NYISO dataset: Jan 2006
to Sept 2018

Hourly

[126] Single house located in
Montreal

Hourly load data combined with hourly outside tem-
perature

One year Hourly

[66] Three different areas of
South Kora

Dataset includes real-time data collected by sensors
from three different areas of South Korea, i.e., Incheon,
Gwangju, and Shihwa

503 days for Incheon, 517 days for
Gwangju, and 530 days for Shihwa

30 minutes

Table 8: Summary of energy consumption and load forecasting approaches

Ref. Method(s) Compared
Method(s)

Loca-
tion

Hori-
zon

Model Description Outcome/observation(s)

[110] DBN MLP North
Mace-
donia

Hourly A multi-layer feed forward perceptron
(MLP) is considered and a back prop-
agation algorithm is used for training.
Each pair of layers of the neural net-
work is pre-trained by using restricted
Boltzmann machine (RBM).

The authors validate the performance
of the developed model through MAPE
and their model shows supremacy over
counterparts. [MAPE of the proposed
model is minimized by 8.6% over coun-
terparts]

[111] DBN - South
Africa

Hourly First, unsupervised learning is used
and, to reduce the set of features, DBN
has been trained by contrastive diver-
gence. In the second step, supervised
training is used to train an appended
layer to pre-trained network.

They did not compare their model with
any benchmark; however, the obtained
errors were around 4%

[117] GBR Linear re-
gression, ET
regressor, RF
regressor

New
York
City
and
Atlanta,
USA

Hourly Proposed model is based on gradient
boosting regression method.

Experiments show that the developed
model attained higher accuracy; how-
ever, they performed experiments only
on datasets of commercial buildings.
[MAE of the proposed method: 0.24
and MAE of compared method: 0.45]

[119] PDRNN ARIMA, SVR,
classical deep-
RNN

Ireland 30 min-
utes

Proposed method uses load profiles
pooling and then deep-RNN.

Results from experiments demonstrate
the effectiveness of the proposed model
over counterparts in terms of RMSE
to ARIMA, SVR, and classical deep-
RNN by 19.5%, 13.1%, and 6.5%, re-
spectively

Continued on next page
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Table 8 – Continued from previous page

Ref. Method(s) Compared
Method(s)

Location Horizon Model Description Outcome/observation(s)

[129] AFC-STLF Bilevel and MI-
based ANN

USA Hourly Forecasting module consists of ANN
with 24 ANs, 1 hidden layer having 5
ANs.

This work achieved high forecast accu-
racy and execution time is reduced by
52.38% to compared approaches

[120] CNN +
K-means

Linear regres-
sion, linear
regression+L-
means, SVR,
CNN

USA Hourly Data was divided into training and test-
ing subsets by using K-Means cluster-
ing. The proposed CNN consists of Fil-
ter: 1*3, Pooling: 1*2, Layer Number:
2, and Parameter estimation algorithm:
AdomOptimizer.

The developed model shows efficacy as
higher accuracy. [MAPE of proposed
model: 3.055 and MAPE of benchmark
method: 3.95]

[121] EMD
+ DBN
Hybrid

EMD-ANN,
EMD-RF, EMD-
SVR, EDBN,
random forest,
DBN, ANN,
SVR, and Per-
sistence

Australia Hourly ANN and EMD-ANN: size of NN is
determined by the size of input vec-
tor. DBN: 2 RBMs are stacked for pre-
training with the size of [100 100]. Iter-
ations for back propagation = 500. RF
and EMD based RF: decision trees =
500

Experimental analysis reveals EMD-
based hybrid method outperforms the
corresponding single structure models
for time-series load prediction. [MAPE
of the proposed method: 0.9187 and
MAPE of compared method: 1.6580.
RMSE of the proposed method: 118.49
and RMSE of base method: 181.61]

[118] Deep RNN 3-layer MLP Salt
Lake
City,
USA

Hourly Layer 1 is provided with input at one
hour resolution. Layer 2 is the first
LSTM layer and acts as an encoder.
Layer 3 is used as decoder. Layer 4 is
used to concatenate the output of layer
3 with the original input vector. Fi-
nally, layers 5 and 6 comprise a multi-
layered perceptron neural network.

The proposed model shows efficiency
only for commercial load forecasting;
the compared algorithm MLP shows ef-
ficiency over deep RNN for residential
load forecasting. [MAPE of proposed
mode: 0.77 and MAPE of compared
model: 0.948]

[123] DCWT
and MFE

ARIMA, SVR,
RBFNN,
WT+RBFNN

Australia,
England

Hourly The proposed multistage hybrid fore-
cast model consists of ANN, RBFNN,
and SVM, where ANN is based on
the back-propagation NN and RBFNN
comprises of three layers.

The proposed hybrid algorithm shows
efficacy in term of forecast accuracy.
[NMAPE of the proposed approach:
7.63 and NMAPE of compared method:
10.43; NRMSE of newly developed
model: 6.73 and NRMSE of benchmark
method: 9.54]

[124] Enhanced
wavenet
ensemble

MLP, single
wavenet, regres-
sion tree

Italy Hourly Cross-validation like, Bootstrapping,
constructive selection, inputs decima-
tion, median, mode, simple mean, and
stacked generalization algorithms are
used for the ensemble aggregation of
wavenet learners. After ensembling,
one-step-ahead forecasting strategy is
used for predictions.

Experimental analysis shows produc-
tiveness of the wavenet ensemble-based
load forecasting method. [The perfor-
mance of the proposed method is in-
creased by 13% over counterparts]

[125] Deep
LSTM

LSTM, DNN,
ELM, ANN,
Nonlinear Au-
toregressive
network with
exogenous vari-
ables (NARX)

New
York
City,
USA

Hourly DLSTM comprises five layers: 1 input
layer, 2 LSTM layers, 1 FC layer, and
the regression output layer. The num-
ber of hidden units in LSTM layer 1 and
2 is 250 and 200 respectively.

They exploited real-time data and their
proposed DLSTM shows efficacy in
terms of convergence rate and highest
accuracy. [MAE of deep LSTM: 2.9
and MAE of benchmark method: 9.7;
NRMSE of the proposed method: 0.087
and MAPE of compared method: 0.2]

Continued on next page
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Table 8 – Continued from previous page

Ref. Method(s) Compared
Method(s)

Location Horizon Model Description Outcome/observation(s)

[126] Adaptive
ACCE

AR, ARX Canada Hourly Proposed model is based on an Adap-
tive Circular Conditional Expectation
(ACCE) method.

The newly developed algorithm shows
effectiveness in terms of higher accu-
racy. The performance is measured in
NMAE. [The newly developed method
improves forecasting accuracy by 23%
over benchmark models]

[66] RICNN MLP South
Korea

30 min-
utes

In the proposed inception-based hybrid
model, a CNN captures local significant
relationship and RNN handles a vari-
able length of sequential data. Then,
an inception module with four 1-D con-
volution of various sizes is included be-
tween the last LSTM layer and first FC
layer to make forecasting on the basis
of past information as well as predicted
future information.

The newly inception-based RICNN ap-
proach demonstrates higher perfor-
mance in terms of higher accuracy. The
performance is measured in MAPE.
[The MAPE of RICNN for 7 days train-
ing is: 7.832 and compared method:
11.260. The MAPE of RICNN for 3
days training is: 8.086 and compared
method: 10.002]

section, this study outlines the research challenges/directions of DL methods843

applied for precise wind, solar, and power demand forecasting.844

6.1. Serving DL with a Huge Amount of Data845

A superior performance can be achieved by DL approaches only when huge846

and high quality data is available [135]. The quantity and quality of historical847

data have significant importance during training of large and complex architec-848

ture, as DL models have numerous parameters to be learned and configured.849

This challenge still remains open in EMSs, because unfortunately, unlike other850

research domains like image processing, natural language processing, and com-851

puter vision, good-quality labeled datasets are still lacking for energy manage-852

ment along with load/energy forecasting applications. The key reason behind853

this is that utility companies and service providers keep real-time and historical854

data confidential because of various security and privacy concerns. Since the855

data is usually gathered through sensors, several over issues also exist, such as856

duplication, mislabeling, and temporary loss of data streams. Hence, there is857

exigent need of integrated technologies for building intelligent systems in smart858

microgrids such as combining DL and Internet of Things (IoT) technologies for859

data collection as well as a streamlining platform for data processing. Blockchain860

enabled IoT technologies can also help with advanced DL applications in smart861

grid area.862

6.2. Higher Computational Cost and Complexity863

ML and DL based approaches entirely rely on historical data, and based on864

this data, they perform forecasting. A strong dependency on big data, how-865

ever, demands a large number of storage devices. In addition, high processing866

is another major challenge, when utilizing approaches focused on DL [136]. Un-867

necessary features and duplication of data are a main cause of high computation868
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cost and complexity. The higher processing time is required to train redundant869

data as opposed to train clean data. ML-based approaches and different classifi-870

cation methods can be used to eliminate redundancy from data and speed up the871

training cycle, while enhancing classification and regression accuracy. Hence,872

for building reliable, accurate, and low-cost forecasting system, researchers can873

take the benefits from todays’ computing technologies, such as in-database pro-874

cessing, in-memory processing, and parallel processing. Overall, reducing the875

computational complexity is a fundamental direction for further research.876

6.3. Spatiotemporal Forecasting877

Probabilistic forecasting of load demand and power generations from RESs878

plays an important role for optimizing operations of future smart microgrid. It879

is observed from current literature that a lot of forecasting studies related to en-880

ergy generation from PV and wind turbines mainly use on-site information and881

propose solution for single wind or solar farm [137, 138]. Nonetheless, energy882

farms are geographically distributed and form a network in a distribution sys-883

tem. Regarding load forecasting, most of the current works develop DL-based884

prediction models only for a single home; however, utility companies are expect-885

ing load prediction for a smart community or smart city from researchers [136].886

Spatiotemporal prediction approaches are considered more accurate and feasi-887

ble for future smart microgrid than the single-location techniques [139]. Hence,888

the development of novel DL models that deal with spatiotemporal dynamics of889

solar and wind energy along with load demand will enhance the performance of890

future smart grids.891

6.4. ANN Accuracy for Long Term Prediction892

ANNs are more efficient and effective means for short-term wind speed and893

wind power forecasting than physical and statistical forecasting techniques [34].894

However, in the case of long-term prediction, the requirement of historical data895

increases and consequently, ANN accuracy decreases. This weakness needs spe-896

cial attention and ANN-based techniques need to be made accurate for long897

term predictions, as well.898

6.5. Heterogeneous Users899

Heterogeneous users and their variant skill levels is another issue that urges900

the research community to implement ML in a way that is beneficent and un-901

derstandable for expert as well as novice users. For instance, several papers902

discussed above only focus on either residential or commercial consumers. In903

addition, ML models should be capable to support big and small heterogeneous904

data and remain equally efficient for small and big data [140].905

6.6. Mobility due to Emerging Applications906

Thanks to the emerging Information and Communication Technologies (ICT),907

which are making us capable to compliment the traditional energy portfolios908

with RESs, while at the same time, electrification of energy is occurring at the909
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load side such as integration of Unmanned Aerial Vehicles (UAVs), Electric Ve-910

hicles (EVs) and Internet of Shipping [141]. It is to be noted that owing to the911

mobile nature of above-mentioned technologies, prediction of demands or loads912

is becoming more challenging. Hence, more sophisticated DL-based prediction913

schemes are required that consider the mobility models too. Similarly, due to914

the emerging concepts of Vehicles to Grid (V2G) and expected billions of IoT915

devices with some having capability of wireless energy harvesting, source side916

power prediction will become more challenging.917

6.7. Federated Learning918

The data that is gathered for load forecasting or distributed RESs, is typi-919

cally obtained in private settings, which is why, it is prone to privacy concerns.920

Moreover, excessive transmission of data towards a central cloud or data center921

via wireless communication links requires expensive communication equipment922

cost and may lead to high latency. This makes it impractical to transmit all the923

data to a centralized location for training DL models. To overcome the above-924

mentioned problems, it is important to devise new DL schemes, which can be925

trained locally at the distributed devices on the bases of the data gathered and926

collaboratively building a common regional learning platform, a process termed927

as Federated Learning.928

6.8. Uncertainty Quantification929

Uncertainty quantification helps in several important decisions today. Fore-930

casting made without uncertainty quantification cannot be reliable and trust-931

worthy [142]. In order to comprehend the DL working, it is necessary to first932

understand uncertainty quantification. For instance, the DL methodology starts933

with the collection of more appropriate datasets, selection of an appropriate934

DL model based on performance goals, training the model by employing a la-935

beled dataset, and optimization of various learning parameters that will help in936

achieving satisfactory performance. There exist multiple uncertainties involved937

in the DL steps, which need to be quantified. For instance, they include se-938

lection/collection of training data, accuracy and completeness of training data,939

comprehending the DL models along with their performance bounds and limita-940

tions, as well as uncertainties based on operational data [142, 143]. The primary941

objective of uncertainty quantification is to disclose reliable confidence scores942

for forecasting results that are generated by DL approaches and what the DL943

method has not learned properly. In the energy management and forecasting944

area, the uncertainty quantification has attracted noticeable attention from re-945

search community in last couple of years. Current studies show its applications946

and advantages, i.e., energy management application in smart grid [144], and947

uncertainty quantification in wind power forecasting [139, 145]. Hence, this948

area still remains open for future work in order to enhance the reliability and949

accuracy of DL models.950
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6.9. Growing and Pruning DL Models951

Growing and pruning are novel approaches that can be employed to enhance952

the accuracy and reduce computational complexity of DL models. In this ap-953

proach, first, a DL architecture is designed with least necessary hidden layers954

and neurons. Then, new layers and neurons are built in the architecture by955

applying the growing approach. On the contrary, by employing the pruning956

approach, a number of neurons along with hidden layers are removed from the957

DL architecture. Both the growing and pruning approaches-based architectures958

repeat three key operations until acceptable performance is achieved [146]: i)959

training the model, ii) changing weights based on growing or pruning criteria,960

and iii) retraining the model. In the last couple of years, the field of growing961

and pruning in DL models has earned huge attention from research community962

and several studies have discussed its effectiveness in various research domains,963

including speech emotion recognition [147], self care activities [146], and health964

services enhancement [148]. Hence, the implementation of growing and pruning965

approaches for DL models in energy management and forecasting area are still966

an open direction for researchers and industry.967

6.10. Forecasting of Ocean, Bio, and other Renewable Energies968

It is observed from current literature that DL methods are commonly adopted969

for day-ahead and real-time forecasting from solar and wind energy sources.970

However, there exist several sources of renewable energy other than solar and971

wind, for instance, hydro energy, geothermal energy, ocean energy, and bio en-972

ergy [27]. Although ML- and DL-based method can be applied in these energy973

sources, their applications for energy prediction are scarce. For example, ML974

and DL approaches have been employed for geothermal map generation [149],975

site location modeling for geo thermal [150], scheduling of hydropower plant976

[151], sea-level variation forecasting for ocean energy [152], output voltage fore-977

casting in geothermal energy [153], and density prediction in bio energy [154].978

However, all of the aforementioned works are 6 to 26 years old, and fairly out-979

dated. Therefore, forecasting of energy from geothermal, bio, and other RESs980

by single and hybrid DL approaches is an unexplored area with a potentially981

significant research value.982

7. Conclusion983

The intermittent nature of renewable energy sources leads to unreliable en-984

ergy generation from renewable energy sources, which ultimately necessitate re-985

search regarding renewable energy forecasting. Reliable forecasting of solar and986

wind power can help in improving the quality of service and efficient power man-987

agement. ML- and DL-based forecasting techniques are considered effective and988

efficient methodologies for energy forecasting that utilize historical data. In this989

survey, we performed comprehensive state-of-the-art literature review regarding990

energy and load forecasting using DL-based techniques. The scope of a set of991
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forecasting models is reviewed in terms of energy types (i.e., wind energy and so-992

lar energy) building types (i.e., commercial and non-commercial buildings), and993

temporal granularities of forecasting (i.e., 5-minutes, 10-minutes, 15-minutes,994

30-minutes, and hourly). Furthermore, the properties of the datasets that are995

used for training and testing forecasting models are also investigated, including996

data types (i.e., benchmark data, real-time data, and simulation data), dataset997

features (i.e., data origin, features related to indoor environmental conditions998

and outdoor weather conditions), dataset recording step (i.e., 10-minutes, 15-999

minutes, 30-minutes, and hourly), and dataset sizes (i.e., total time duration).1000

The performance levels of studied models are also summarized in terms of fore-1001

cast accuracy (MAPE, nMAPE, MAE, and RMSE). Each DL-based forecasting1002

model has its own advantages and disadvantages in predicting wind energy, solar1003

energy and load forecasting, thus, it is difficult to determine which is the best1004

among all the models. However, our findings suggest that for all the forecast-1005

ing applications under consideration, hybrid DL algorithms achieve a high level1006

of performance in terms of prediction accuracy. Moreover, hybrid DL schemes1007

exhibit more tolerance to data incompleteness as compared to pure DNN-based1008

DL. Despite the many advances in DL-based forecasting, a large set of challenges1009

remain unresolved that motivate interesting future research directions, includ-1010

ing DL with huge amount of data, lowering computational cost and complexity,1011

spatiotemporal forecasting, mobility due to emerging applications, uncertainty1012

quantification, and use of pruned DL models in smart microgrids.1013

References1014

[1] S. Aslam, An optimal home energy management scheme considering grid con-1015

nected microgrids with day-ahead weather forecasting using artificial neural net-1016

work, Ph.D. thesis, Masters Thesis, COMSATS University Islamabad, Islam-1017

abad, Pakistan (2018).1018

[2] M. S. H. Nizami, J. Hossain, E. Fernandez, Multi-agent based transactive energy1019

management systems for residential buildings with distributed energy resources,1020

IEEE Transactions on Industrial Informatics.1021

[3] L. Park, Y. Jang, S. Cho, J. Kim, Residential demand response for renewable1022

energy resources in smart grid systems, IEEE Transactions on Industrial Infor-1023

matics 13 (6) (2017) 3165–3173.1024

[4] M. H. K. Tushar, A. W. Zeineddine, C. Assi, Demand-side management by1025

regulating charging and discharging of the ev, ess, and utilizing renewable energy,1026

IEEE Transactions on Industrial Informatics 14 (1) (2017) 117–126.1027

[5] R. H. M. Zargar, M. H. Y. Moghaddam, Development of a markov-chain-based1028

solar generation model for smart micro-grid energy management system, IEEE1029

Transactions on Sustainable Energy.1030

[6] L. Ruan, Y. Yan, S. Guo, F. Wen, X. Qiu, Priority-based residential energy1031

management with collaborative edge and cloud computing, IEEE Transactions1032

on Industrial Informatics.1033

44



[7] M. Dicorato, G. Forte, M. Trovato, C. B. Muñoz, G. Coppola, An integrated dc1034
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M. H. Donovan, H. Madsen, Power fluctuations from large wind farms, IEEE1260

Transactions on Power Systems 22 (3) (2007) 958–965.1261

[88] C. Draxl, A. Clifton, B.-M. Hodge, J. McCaa, The wind integration national1262

dataset (wind) toolkit, Applied Energy 151 (2015) 355–366.1263

[89] K. Colchester, H. Hagras, D. Alghazzawi, G. Aldabbagh, A survey of artifi-1264

cial intelligence techniques employed for adaptive educational systems within1265

e-learning platforms, Journal of Artificial Intelligence and Soft Computing Re-1266

search 7 (1) (2017) 47–64.1267

[90] X. G. Agoua, R. Girard, G. Kariniotakis, Short-term spatio-temporal forecasting1268

of photovoltaic power production, IEEE Transactions on Sustainable Energy1269

9 (2) (2017) 538–546.1270
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