Shenjie Zhou

Shenjie Zhou
British Antarctic Survey | BAS · BAS Research Centre

Doctor of Philosophy

About

9
Publications
1,916
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
80
Citations
Citations since 2017
9 Research Items
80 Citations
201720182019202020212022202305101520
201720182019202020212022202305101520
201720182019202020212022202305101520
201720182019202020212022202305101520
Introduction
Ocean's response to stochastic atmospheric variability

Publications

Publications (9)
Article
Full-text available
The Weddell Gyre is a major feature of the Southern Ocean and an important component of the planetary climate system; it regulates air–sea exchanges, controls the formation of deep and bottom waters, and hosts upwelling of relatively warm subsurface waters. It is characterised by low sea surface temperatures, ubiquitous sea ice formation, and wides...
Article
Full-text available
Antarctic Bottom Water (AABW) is pivotal for oceanic heat and carbon sequestrations on multidecadal to millennial timescales. The Weddell Sea contributes nearly a half of global AABW through Weddell Sea Deep Water and denser underlying Weddell Sea Bottom Water that form on the continental shelves via sea-ice production. Here we report an observed 3...
Article
Full-text available
The 5-year Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) programme and its 1-year extension ENCORE (ENCORE is the National Capability ORCHESTRA Extension) was an approximately 11-million-pound programme involving seven UK research centres that finished in March 2022. The project sought to radically improve...
Article
Full-text available
The Southern Ocean greatly contributes to the regulation of the global climate by controlling important heat and carbon exchanges between the atmosphere and the ocean. Rates of climate change on decadal timescales are therefore impacted by oceanic processes taking place in the Southern Ocean, yet too little is known about these processes. Limitatio...
Preprint
Full-text available
The Weddell Gyre is a major feature of the Southern Ocean and an important component of the planetary climate system; it regulates air-sea exchanges, controls the formation of deep and bottom waters, and hosts upwelling of relatively warm subsurface waters. It is characterized by extremely low sea surface temperatures, ubiquitous sea ice formation,...
Article
Full-text available
The ocean is forced by the atmosphere on a range of spatial and temporal scales. In numerical models the atmospheric resolution sets a limit on these scales and for typical climate models mesoscale (<500 km) atmospheric forcing is absent or misrepresented. Previous studies have demonstrated that mesoscale forcing significantly affects key ocean cir...
Article
Full-text available
A coordinated atmosphere-ocean research project, centered on a rare wintertime field campaign to the Iceland and Greenland Seas, seeks to determine the location and causes of dense water formation by cold-air outbreaks. The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere-ocean research program investigating climate processes in the...
Article
Full-text available
The role of high-frequency (sub-daily time scales) weather systems in modulating the sea surface temperature (SST) and the mixed layer (ML) depth in the central Arabian Sea is investigated using one-dimensional mixed-layer models for different monsoon seasons. Simulations forced by sub-hourly sampled meteorological variables, including surface wind...

Questions

Question (1)
Question
I am working on with the ERA 5 hourly dataset and try to determine the stochastic components of the air-sea fluxes from it. I have come across the doubt that should I simple apply a cut-off frequency to extract the high-frequency variability from the dataset and regard this as stochastic components, or is there any legitimate procedure to do so, because some stochastic parameterization schemes are involved in the data assimilation and forecasting programs to generate the products, so perhaps there is a way to derive the stochastic components in response to those stochastic schemes. Maybe it is an impractical idea so I am open to all thoughts, thanks!

Network

Cited By