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Mapping the Precipitation Type Distribution Over the
Contiguous United States Using NOAA/NSSL

National Multi-Sensor Mosaic QPE
Sheng Chen, Jian Zhang, Esther Mullens, Yang Hong, Ali Behrangi, Yudong Tian,

Xiao-Ming Hu, Junjun Hu, Zengxin Zhang, and Xinhua Zhang

Abstract—Understanding the Earth’s energy cycle and water
balance requires an understanding of the distribution of precipita-
tion types and their total equivalent water budget estimation.
The fine distribution of precipitation types over the contiguous
United States (CONUS) is not yet well understood due to either
unavailability or coarse resolution of previous satellite- and
ground radar-based precipitation products that have difficulty
in classifying precipitation. The newly available NOAA/National
Severe Storms Laboratory ground radar network-based National
Multi-Sensor Mosaic QPE (NMQ/Q2) System has provided pre-
cipitation rates and types at unprecedented high spatiotemporal
resolution. Here, four years of 1 km/5 min observations derived
from the NMQ are used to probe spatiotemporal distribution
and characteristics of precipitation types (stratiform, convective,
snow, tropical/warm (T/W), and hail) over CONUS, resulting in
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assessment of occurrence and volume contribution for these pre-
cipitation types through the four-year period, including seasonal
distributions, with some radar coverage artifacts. These maps in
general highlight the snow distribution over northwestern and
northern CONUS, convective distribution over southwestern and
central CONUS, hail distribution over central CONUS, and T/W
distribution over southeastern CONUS. The total occurrences
(contribution of total rain amount/volume) of these types are
72.88% (53.91%) for stratiform, 21.15% (7.64%) for snow, 2.95%
(19.31%) for T/W, 2.77% (14.03%) for convective, and 0.24%
(5.11%) for hail. This paper makes it possible to prototype a
near seamless high-resolution reference for evaluating satellite
swath-based precipitation type retrievals and also a potentially
useful forcing database for energy–water balance budgeting and
hydrological prediction for the United States.

Index Terms—Radar, snow.

I. INTRODUCTION

ACCURATE identification and classification of precipita-
tion type is the prerequisite to reliably quantify the spatial

distribution of precipitation on regional and global scales using
ground radar-based or spaceborne observations. A common ba-
sic delineation for precipitation type is convective or stratiform
[1]. However, for ground radar observations, precipitation can
be further classified into five forms (i.e., stratiform (strati), con-
vective (convect), snow, tropical/warm (T/W), and hail) based
on the shape of the vertical profile of reflectivity (VPR) and the
ground temperature [2], [3]. Radar-based retrieval algorithms
heavily depend on the drop size distributions of a given precip-
itation type, introducing great variation in the relationship be-
tween reflectivity (Z) and precipitation rate (R). It is therefore
highly advantageous to utilize information on precipitation type
to acquire more accurate retrieval. Furthermore, different types
of precipitation have different latent heat profiles associated
with their specific thermodynamic and microphysical proper-
ties. Knowledge of regional and global distributions of pre-
cipitation type may advance our understanding on the Earth’s
energy cycle and water balance, as well as the interrelation
between the atmospheric circulation and the thermodynamical
and precipitation process [4], [5].

At the present time, continental-scale precipitation classi-
fication has largely relied on satellite observations. TRMM
Precipitation Radar (PR) provides semiglobal precipitation type
products (convective and stratiform) over the tropics and sub-
tropics. However, PR is limited in the aforementioned areas
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(38◦S–38◦N), and its sensitivity does not permit the retrieval of
snow and very light rainfall [6]. In addition, the PR has a coarse
temporal resolution. NASA CloudSat satellite, carrying a first-
of-its-kind W-band (94-GHz) cloud profiling radar [7], provides
scientific communities with global snowfall observations [8],
[9]. However, it is limited by a swath width of ∼1.4 km and
a nadir footprint size of ∼ 1.4× 1.7 km, also suffering from
low temporal resolution. A few studies have shown that pas-
sive microwave (PMW) observations can be used to separate
convective and stratiform precipitation [10]–[12], but due to
the coarser spatial resolution of PMW sensors, the classifica-
tion cannot capture small-scale features, particularly convective
systems. It is widely known that precipitation frequency is a
function of spatial and temporal scales [13]; high-resolution
data are needed for more reliable classification of precipitation.

In this paper, we used a recently developed, multiyear, and
high-resolution precipitation product over contiguous United
States (CONUS). The NOAA/National Severe Storms Labo-
ratory ground radar-based National Multi-Sensor Mosaic QPE
(NMQ/Q2) System provides a suite of very high spatiotemporal
resolution 1 km/5 min precipitation products, including 2-D and
3-D QPE products over the CONUS, e.g., precipitation rate,
precipitation type, and radar reflectivity. [3]. Q2 identifies sev-
eral precipitation types, including stratiform, convective, snow,
T/W, and hail [2], [3]. Because of its high spatiotemporal
resolution and large-scale coverage over CONUS, Q2 has been
accepted as an ideal platform to evaluate and validate satellite-
based observations and products [14]–[16] and has been used
to derive a hydrological model for real-time flash flooding
simulation and monitoring over CONUS [17]. Therefore, the
Q2 products present a unique opportunity to comprehensively
understand the characteristics of precipitation in the USA.

The objective of this paper is to reveal the domain char-
acteristics of precipitation, including its occurrence, and the
fractional contributions to the total water budget. Hopefully, the
effort can provide an evaluation reference for remote sensing of
precipitation from space and an aid for hydrological modeling
of CONUS, for example, in areas where solid precipitation
(snow) and snowmelt are known to be important to river flow,
and regions sensitive to flooding from heavy precipitation. This
paper is organized as follows. Section II introduces the study
domain and the data sets used. Section III provides an analysis
of occurrence and contribution of different precipitation types.
A summary of key results is given in Section IV.

II. DATA AND METHODS

The NMQ/Q2 precipitation rate products, i.e., precipitation
type (Q2PCPFlag) at both 5 min and hourly temporal resolu-
tion, from July 2009 to May 2013 have been used in this paper.
All the products had high spatiotemporal resolution (1 km/
5 min). The hourly gauge-corrected Q2 precipitation rate
(Q2RadGC) was applied to correct the 5-min radar-only precip-
itation rate (Q2Rad5min) and obtain the gauge-corrected 5-min
precipitation rate (Q2RadGC5min) [14]–[16]. The precipitation
types evaluated in this paper include stratiform, convective,
snow, T/W, and hail. The hourly temperature and dew point
temperature model analyses from NOAA/National Centers for

Environmental Prediction’s Rapid Update Cycle (RUC; [18])
were used in the classification of precipitation. The logic of
classification is to identify the snow, hail, T/W, convective, or
stratiform in sequential order. First, snowfall is identified by us-
ing the conditions that: 1) the hybrid scans’ reflectivity (i.e., the
radar’s lowest elevation scan reflectivity that clears the surface)
must exceed 5 dBZ; 2) the surface temperature is below 2 ◦C
and the surface wet bulb temperature is below 0 ◦C. Second,
if the precipitation is not snow, then the vertically integrated
liquid (VIL) [19] density (VILD) [20] is computed. If the VILD
value exceeds 1 gm−3, then the precipitation is hail. Third, if
the precipitation is not hail, then the hourly mean volume scan
VPRs from each radar are examined to see whether the slope
of a VPR below the freezing level is negative (i.e., reflectivity
increases as height decreases). If yes, then the radar is identi-
fied as T/W PR, and all echoes above an adaptable threshold
(default = 35 dBZ) within an influence radius of the T/W
PR will be classified as T/W precipitation when the surface
temperature is greater than 10 ◦C. Finally, if the precipitation
is not classified as snow or T/W or hail, then the composite
reflectivity is judged if it is greater than 50 dBZ. If yes,
then the precipitation is labeled as convective precipitation;
otherwise, the precipitation will be labeled as stratiform precip-
itation. More details about the classification logic and precipi-
tation retrieval can be found in [2] and [3]. Each precipitation
type is computed as instantaneous precipitation rate with unit
of millimeters per hour. The precipitation volume of a certain
precipitation type in 5 min can be obtained by dividing the
instantaneous precipitation rate by 12.

In this paper, it was useful to define two frequencies for each
of the five precipitation types. Assuming that at a given grid
box, there are N total observations under all weather conditions
(both precipitating and clear), and among them, there are total
M observations with precipitation observed, i.e., r > 0 where r
is the precipitation rate, and the numbers of observations for the
five types are T1, T2, . . . , T5, respectively, with M=T1 + T2 +
· · ·+ T5, then the (unconditional) precipitation frequency is

P0 =
M

N
. (1)

In addition, for each precipitation type Ti, the (uncondi-
tional) frequency is

Pi =
Ti

N
. (2)

The conditional precipitation frequency, defined relative to
the total number of precipitating observations, for precipitation
type Ti, is defined as

P (Ti|r > 0) =
Ti

M
. (3)

Moreover, it is related to the unconditional frequency via

P (Ti|r > 0) =
Pi

P0
. (4)

Similarly, the ratios between the total volume of precipitation
from each type and from all types together can be also defined,
which we term “volume fractions.” For example, in a given
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Fig. 1. (a)–(e) Conditional precipitation frequency of different rain types. (f) Cumulative probability distribution of occurrence with interval of 0.1%. (g) Total
occurrence of different types over CONUS. (h) HRSH.

period in a given grid box, the five precipitation types have
their total precipitation V1, V2, V3, V4, and V5, respectively;
then, the total precipitation in the grid box is V=V1+V2+
V3+V4+V5, and the volume fraction of ith precipitation type
is defined as Vi/V . There is no difference in conditional or
unconditional volume fractions as the denominator (total pre-
cipitation volume) is the same for both. The conditional distri-
butions of occurrence and volume fractions are provided in this
paper. In order to obtain enough samples, the spatial conditional
distribution of occurrence and volume fractions were defined
from0.25◦ × 0.25◦ grids for the four-year and seasonal analyses.

III. RESULTS AND DISCUSSION

A. Four-Year Statistics

Fig. 1 shows the spatial distribution of conditional precipi-
tation frequency [see Fig. 1(a)–(e)], the cumulative probabil-
ity distribution function of occurrence [CDFo; see Fig. 1(f)],
and the total occurrence for different precipitation types [see
Fig. 1(g)] over CONUS, including a map of hybrid scan re-
flectivity height (HRSH). The stratiform type dominates with
an occurrence rate of 72.88%, followed by snow (21.15%),
T/W (2.95%), convective (2.77%), and hail (0.24%). As shown
in Fig. 1(f), hail precipitation has low occurrence (< 1%) for
almost all over CONUS; convective and T/W precipitation have
similar cumulative probability distribution with high percentage
(> 90%) of areas seeing low occurrence (< 10%); snow shows

most snowfall areas with occurrence between 20% and 50%;
and stratiform precipitation has high occurrence (> 50%) over
nearly the entire CONUS. It is noted that these precipitation
types have different terrain-dependent spatial patterns. Snowfall
is common at higher elevations throughout the intermountain
west and in northern CONUS (> 40 ◦N) east of the Rocky
Mountains. Snowfall occurrence is higher than 30% for ap-
proximately 32% of the snowfall area. Stratiform precipitation
prevails over CONUS, particularly in the southeast and west-
ern coastal regions. About 98.50% of the domain has a high
occurrence of stratiform (> 40%), with nearly 67% of CONUS
indicating occurrence ratio above 70%. Convective precipita-
tion mainly occurs in the central USA (e.g., Great Plains) and
is scattered over the intermountainous West, with less than 10%
occurrence for 94.00% of CONUS. The Great Plains is a clima-
tologically favorable zone for convection. Interaction between
developing synoptic lows, topography of the Rocky Mountains,
and warm humid air advection from the Gulf of Mexico by a
southerly low-level jet can create an environment of high po-
tential instability, associated with an elevated mixed layer and
dry-line front. Low-level mass convergence along the dry line
is a well-known focus for the initiation of convection [21]. The
intermountain western CONUS commonly experiences solar-
driven diurnal variation in pressure, which, in conjunction with
the topography, provides ascent, promoting scattered convec-
tion [22]. Furthermore, large-scale convection in the southwest-
ern USA during summer is associated with the North American
Monsoon circulation and onshore flow of humid air from the
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Fig. 2. (a)–(e) Fraction of precipitation volume from each precipitation type. (f) Cumulative probability distribution of volume contribution with interval of
0.1%. (g) Total volume contribution of different types over CONUS.

subtropical Pacific [23]. It should be noted that some localized
convection-intensive regions [e.g., areas arrowed by the red let-
ters “A” and “B” in Fig. 1(c)] correspond to the patterns of high
HSRH (> 5 km), indicating that the precipitation classification
in these regions has high uncertainty and needs further study
by incorporating other information (e.g., the VPR derived from
spaceborne radar observations). Hail has a similar distribution
pattern in central CONUS to convective precipitation and a low
occurrence (< 1%) for 98.14% of CONUS. This pattern is likely
related to the aforementioned air masses for the Great Plains
promoting more vigorous convection and vertical velocities
suitable for the growth of hailstones, whereas outside of this re-
gion, a greater proportion of nonsevere storms may be observed
[24]. In the western mountainous region, disorganized ordi-
nary and multicellular-mode convections are generally most
common [25], and the relative absence of severe supercellular
convection likely accounts for generally low frequencies of hail.
It is noted that there is a hot spot of hail northeast of San Fran-
cisco where problematic KPIX radar data were used. KPIX is
commercial radar that only provides one tilt of reflectivity data
(whereas WSR-88Ds have 5–14 tilts with reflectivity, velocity,
and other fields). The limited data of KPIX made it very difficult
to segregate precipitation from non-precipitation echoes. This
showcases the challenges surrounding using commercial radar
as a gap filler, where observations are limited and the radar may
not be well calibrated or properly operated, disallowing use of
effective quality control. The T/W precipitation dominates the
southern CONUS with localized high occurrence (> 10%) in

western Louisiana (LA), Mississippi (MS), southern Alabama
(AL), and northwestern Florida (FL). This may be due to the
contribution to precipitation from landing tropical cyclones.
The CDFo shown in Fig. 1(f) also indicates that the T/W
precipitation has a less than 10% occurrence for roughly 95%
of the T/W area.

Fig. 2 displays the contribution fraction of different precip-
itation types to the total precipitation [see Fig. 2(a)–(e)], the
cumulative probability distribution function of volume [CDFv;
see Fig. 2(f)], and the total volume contribution [see Fig. 2(g)].
It is evident that the contributions of different types are not pro-
portional to their occurrence ratios. The total volume contribu-
tions are calculated to be: stratiform (53.91%), T/W (19.31%),
convective (14.03%), snow (7.64%), and hail (5.11%). Fur-
thermore, the CDFv indicates that hail, convective, and T/W
precipitation account for significant constituent of the total pre-
cipitation for a lot of areas. Stratiform precipitation has a high
contribution (> 60%) in the western and northeastern CONUS
and a low contribution (< 60%) in the central and southeastern
USA. Along the western coast, stratiform precipitation con-
tributes more than 80%. Snow contributes more than 20% in the
northeastern CONUS and more than 40% in the intermountain
west. Convective precipitation has high contribution in the
central and southwestern CONUS and contributes more than
20% in 34.69% of CONUS. T/W precipitation has a similar
CDFv trend with convective precipitation for bins greater than
20% [see Fig. 2(f)]. About 26% of CONUS has a contribution
of greater than 20% from T/W precipitation. It is worth noting
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Fig. 3. (a)–(t) Spatial distribution of conditional precipitation frequency for each precipitation type over CONUS in four seasons. (u)–(x) Cumulative probability
distributions in four seasons.

that the T/W contribution is much higher than its occurrence
in the coastal area of Texas (TX), North Carolina (NC), South
Carolina (SC), Georgia (GA), and central/southern FL. This
is likely due to large volume of precipitation associated with
tropical cyclone activity [26].

B. Seasonal Statistics

Geographical maps of seasonal frequency of precipitation
occurrences are shown in Fig. 3(a)–(t) for each precipitation
type. The CDFos in each season are illustrated in Fig. 3(u)–(x).
Results support some large seasonal changes in the spatial
patterns for each type. Snow has a high occurrence (> 60%) in
the northern and northwestern CONUS in winter (account for
approximately 54% of the total snowfall region). Areas include
northeastern Washington (WA), southeastern Oregon (OR),

Nevada (NV), Montana (MT), Idaho (ID), Wyoming (WY),
Utah (UT), Colorado (CO), northern New Mexico (NM), North
Dakota (ND), South Dakota (SD), Nebraska (NE), north-
western Kansas (KS), Minnesota (MN), Iowa (IO), northern
Missouri (MO), Wisconsin (WI), northern Indiana (IN), Michi-
gan (MI), northern Ohio (OH), Maine (ME), Vermont (VT),
New Hampshire (NH), New York (NY), Massachusetts (MA),
Connecticut (CT), and Pennsylvania (PA). In spring and au-
tumn, snowfall mainly occurs in and near the mountainous
zones of the northwestern CONUS (MT, ID, and WY) with an
occurrence ratio greater than 20%. In summer, the snowfall area
is markedly reduced, only being observed for the northwestern
mountainous zone. Stratiform precipitation prevails over the
whole CONUS during all seasons. It dominates precipitation
events with a high occurrence (> 70% for ∼41% of area) over
CONUS except in the mountainous northwest in winter where
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Fig. 4. (a)–(t) Spatial distribution of volume contribution of different precipitation types over CONUS in four seasons. (u)–(x) Cumulative probability
distributions.

snow phase precipitation dominates. In summer, stratiform
events are most frequent to the western CONUS with an oc-
currence ratio greater than 90% but still have high occurrence
ratio greater than 75% in the eastern USA. In autumn, stratiform
precipitation continues to dominate all but mountainous areas
in the northwestern CONUS, again due to the greater prepon-
derance of snowfall for the latter region (occurrence > 20%).
Convective, hail, and T/W precipitation have low occurrence
ratios in every season. The maxima in occurrence of convec-
tive precipitation are evident in the southwestern and central
CONUS. Convective precipitation is comparatively frequent in
the southwestern TX, western, and southern Oklahoma (OK),
particularly in the spring associated with the peak in the cli-
matological frequency of severe storms. Hail precipitation has
a small occurrence (< 3%) over CONUS and shows a similar

spatial pattern to the convective precipitation in central
CONUS. The T/W precipitation is mainly distributed in the
eastern CONUS from spring to autumn and in the southwestern
CONUS in winter. It is noted that the T/W precipitation has
a high occurrence (> 10%) strip ranging from the MS to
southern Illinois (IL) and northern Kentucky (KY) in summer
(potentially from northward transport of subtropical moisture
via a low-level jet during episodes of organized precipitation)
and has another high occurrence (> 10%) strip extending from
southeastern TX northeastward to eastern Arkansas (AR) and
northern MS. Since precipitation regimes are geographically
and seasonally dependent, the different spatial patterns of oc-
currences of different precipitation types lead to the differences
in the shapes of cumulative probability distribution function of
conditions (CDFos) between different precipitation types.
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Fig. 5. Seasonal occurrence (volume) percentage for different precipitation types over CONUS.

Fig. 4 illustrates the contributions of the resolved types to the
total precipitation volume and the corresponding CDFvs in each
season. The spatial patterns of the contributions are generally
consistent with the occurrence patterns except that the strati-
form contribution in spring in the southern CONUS is much
lower than its occurrence ratio. In addition, the snow contribu-
tion is slightly lower than its occurrence ratio. Correspondingly,
the contributions from convective, hail, and T/W precipitation
are much higher than their occurrence ratio. In particular, dur-
ing summer time, the T/W precipitation contributes more than
20% in 37% area, and hail contributes more than 5% in 68%
area. Compared with CDFos in Fig. 3(u)–(x), the CDFvs in
Fig. 4(u)–(x) also show corresponding higher contribution ra-
tios than the occurrence ratios. In addition, the different spatial
patterns of occurrences of different precipitation types lead to
the differences in the shapes of CDFos between different pre-
cipitation types.

Fig. 5 shows the overall statistics of seasonal occurrence
and contribution. It is noted that the stratiform and snowfall
dominate occurrence in spring, autumn, and winter. The total
occurrence of other types of precipitation only accounts for less
than 10% [see Fig. 5(a)] in all seasons except summer. In terms
of contribution, the snow and stratiform have much smaller con-
tributions than their occurrence ratios. In addition, a study by
Smalley et al. [27] showed that ground radar captured less light
snow than CloudSat, which indicates that this underdetection
may have little impact on snow volume but can be consider-
able for fraction of occurrence. Contributions from the three
remaining types (convective, hail, and T/W) were calculated as
approximately 36% in spring, 56% in summer, 35% in autumn,
and 18% in winter. This is consistent with the contribution map
shown in Fig. 4.

IV. DISCUSSION

The Q2 data sets used in this paper has unprecedented high
spatial and temporal resolution on the continental scale but still
possesses limitations including: 1) potentially poor detection of
light snow because the quantity control model in the NMQ to
filter out weak signals (< 5 dBZ); 2) severe mountain blockage
in areas of topography, particularly western CONUS [28];
3) beam overshooting and broadening of ground radar; and
4) the invariant empirical relation Z = 75 R2.0 applied in Q2
convert reflectivity to snow liquid water equivalent rate (R, in
millimeters per hour). In addition, the procedure of correcting

5-min Q2Rad with hourly gauge-corrected Q2RadGC may
raise error, particularly with snow because most of the rain
gauges in the Hydrometeorological Automated Data System,
which are used in NMQ to yield the Q2RadGC, are not suited
for snow hourly quantitative estimation. In addition, the NMQ
classification has been evolving with time (e.g., the tropical
classification has been tuned several times because the tropical
rainfall amounts tend to be significantly overestimated relative
to observations in north central plains). In addition, to examine
the reliability of NMQ’s classification scheme, we also com-
pared our results with TRMM PR observations in our previous
study [29]. The fraction of stratiform systems is very consistent
between the two. However, TRMM PR detected much fewer
convective events. These differences are mostly likely caused
by the spatial resolution of the two systems. TRMM PR has
a horizontal resolution of ∼5 km, whereas NMQ has 1 km.
Since most convective systems are small and tend to embed
in large-scale stratiform systems, the coarser resolution of
TRMM PR will underestimate the number of convective sys-
tems when compared with the 1-km NMQ data. These factors
could degrade Q2’s measurement of precipitation (particularly
snow) particularly in complex terrain and for light precipita-
tion. However, the study by Chen et al. in 2013 [16] showed
that the hourly Q2RadGC, when compared with Stage IV,
still has promising performance with high correlation coeffi-
cient about 0.80, root-mean-square difference about 0.76, and
relative difference about -4.09% over one year of observation
from December 2009 to November 2010. The precipitation type
occurrence and contribution fraction distribution may provide
an evaluation reference for remote sensing of precipitation from
space and hydrological modeling and provide an improved
resource over satellite-only derived data sets. For example,
the intermountain snowfall distribution patterns (important to
the water budget of the western states) are generally consis-
tent with those of precipitation underestimated by Version 6
and Version 7 real-time multi-satellite precipitation analysis
(TMPA-RT; see [16, Fig. 8]. The snowfall distribution east of
the Rocky Mountains is also similar to the distribution of pre-
cipitation overestimated by the TMPA-RT in northern CONUS
(see [16, Fig. 8]). This result indicates that the satellite-only
precipitation retrieval algorithm has a certain limitation in
accurately estimating the snowfall. In addition, for several
reasons, the limited skill of the sensor-level retrieval of snow
can contribute to such discrepancies between TMPA-RT and
ground observations.
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An additional source of uncertainty included areas of high-
frequency convective precipitation [marked by “A” and “B”
in Fig. 1(c)] corresponding to gaps between radars where
the HRSH [see Fig. 1(h)] was relatively high and potentially
intersecting the melting layer in the warm season. The enhanced
reflectivity in the melting layer (the so-called “bright band”
in the radar reflectivity field) might have falsely triggered the
convective precipitation identifications sometimes. This limita-
tion of single-polarization radar techniques is likely mitigated
by dual-polarization radar techniques that can delineate the
bright band more precisely and avoid such false classifications
of convection. Otherwise, precipitation classifications in most
areas (HSRH < 2 km) showed physically reasonable geograph-
ically dependent patterns. Further study by incorporating other
kinds of information (e.g., the VPR derived from spaceborne
radar observations) will potentially improve the precipitation
classifications across multiple modes of topographic variability.

V. CONCLUSION

This paper has presented a first attempt to investigate the pre-
cipitation type distribution over CONUS using four-year (July
2009 to May 2013) high-spatiotemporal-resolution NMQ/Q2
products in order to reveal the spatial distributions and seasonal
patterns for five types of precipitation: snow, stratiform, con-
vective, hail, and T/W. Our key findings include.

1) Stratiform dominates the total precipitation occurrence
(72.88%), followed by snow (21.15%), T/W (2.95%),
convective (2.77%), and hail (0.24%).

2) Stratiform contributes ∼54% of total precipitation vol-
ume. Contribution from other types of precipitation (near-
est integer) includes T/W (19%), convective (14%), snow
(8%), and hail (5%).

3) Snowfall mainly occurs in the intermountain west and
northern CONUS (> 40 ◦N) east of the Rocky Mountains.
Snow accounts for more than 30% of precipitation occur-
rence for 32% of all snow area. Its occurrence (volume
contribution) is 18% (7%) in spring, 0.07% (0.01%) in
summer, 9% (3%) in autumn, and 50% (23%) in winter.

4) Stratiform prevails for all seasons over CONUS and par-
ticularly in the southeast and along the western coastline.
About 98.5% of CONUS has the occurrence ratio greater
than 40%. Stratiform has the occurrence (contribution) of
77% (57%) in spring, 89% (44%) in summer, 85% (62%)
in autumn, and 47.5% (58.4%) in winter.

5) Convective precipitation is mainly distributed in central
CONUS and is scattered over the intermountain West, with
less than 10% occurrence for 94% of the domain. It has a
high occurrence ratio in southeastern NM, southwestern
TX, western and southern OK, southern AR, and eastern
LA. From spring to winter, its occurrence (contribution)
ratio is 2.5% (12%), 6% (22%), 2% (11%), and 0.9%
(6%), respectively.

6) Hail has a similar distribution pattern in central CONUS to
convective precipitation and a low occurrence (< 1%) over
98% of CONUS. From spring to winter, its occurrence
(contribution) ratio is 0.2% (4%), 0.6% (9%), 0.2% (3%),
and 0.05% (2%), respectively.

7) T/W precipitation dominates the southern CONUS with
high occurrence (>10%) in localized regions of south-
eastern TX, western LA, Mississippi, southern AL, and
northwestern FL. Its occurrence (relatively higher volume
contribution) ratio from spring to winter is 2.6% (19.4%),
4.4% (24.5%), 3.7% (21%), and 1.5% (10%), respectively.

Precipitation type distribution information is useful in bench-
marking the accuracy of quantitative precipitation estimate us-
ing spaceborne sensors and is helpful for the modeling research
of regional and global climate, ecobiology, and hydrology. In
particular, this paper makes it possible to prototype a near seam-
less high-resolution reference for evaluating satellite swath-
based precipitation type retrievals and also a useful forcing
database for energy–water budgeting and hydrological predic-
tions over many regions of CONUS. However, given the inher-
ent limitations of ground radar network such as beam blockage
in mountainous areas, beam broadening as the radar range
increases, and the single-polarization algorithms, the character-
istics of precipitation occurrence and contribution analyzed in
this paper represent only early attempts toward those aforemen-
tioned objectives. Fortunately, the NEXRAD network has been
upgraded in the second half of year 2013 with dual-polarization
capability. The Global Precipitation Measurement (GPM) mis-
sion, with more advanced dual-frequency radar onboard, has
been launched in early 2014. We can envision that a synthetic
approach of incorporating the observations from ground-based
dual-polarization radars and spaceborne dual-frequency radars,
together with other advanced modeling studies, will greatly
advance the understanding of spatiotemporal distribution of
regional and global precipitation estimation in rates and types.
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