
NoSQL Databases: Critical Analysis and Comparison
Adity Gupta, Swati Tyagi, Nupur Panwar, Shelly Sachdeva

Jaypee Institute of Information Technology, India
aditygupta4@gmail.com, tswati934@gmail.com,

nupurpanwar42@gmail.com, shelly.sachdeva@jiit.ac.in

Upaang Saxena
Minjar Cloud Services Private Limited, India

upaang.saxena@minjar.com

Abstract— The current research explores and differentiates

between various forms in which NoSQL databases exist. It
examines the need of NoSQL and how they have become an
important alternative to relational databases. NoSQL databases
can be categorized into four major classifications which are: key
value stores, graph databases, wide column stores, and document
stores. These categories are compared on the basis of functional
features and non-functional features. The non-functional features
include performance, scalability, flexibility, structure and
complexity. The functional features include de-normalization,
joins, atomicity, aggregation and keys. Then for further analysis,
one database is selected from each of these categories that is,
MongoDB (document stores), Cassandra (wide column stores),
Redis (key value stores), and Neo4j (graph databases). Selected
databases are compared on their data model, CAP theorem,
distributive properties and other factors. By performing the
comparison on non-functional features, it has been found that a
document store can be used if high performance, flexibility and
scalability are required and if we have represented the data in
JSON format. Column store can be used for semi structured data
which requires high performance and scalability. Redis is anin-
memory store and performs exceptionally fast in the case of
single shard operation. Graph databases can be used when it
comes to highly interconnected data and continuously evolving
data models. The comparison between MongoDB, Cassandra,
Redis and Neo4j concluded that all of them follow horizontal
scaling and are schema free. Except Neo4j, others don’t have
complete ACID properties. Write and delete operations are fast
for databases MongoDB, Redis and Cassandra, whereas read
operation is comparatively slow in Cassandra. In case of Neo4j,
REST performance is similar to MongoDB, whereas embedded is
comparatively slow. We also discuss how these databases work in
a distributed environment.

Keywords—database; NoSQL; comparison; database
systems;

I. INTRODUCTION
The recent advancements in distributed web applications and
cloud computing have generated large volumes of data which
cannot be managed by single nodes systems. Thus, distributed
storage offers the solutions that provide high availability and
scalability are needed. Examples of distributed (non-relational
storage) are Dynamo by Amazon and Google’s Big Table.

A. Relational Database
Initially, every record was maintained manually, but the
advent of technology has led to drastic changes over the years.
To make maintaining data easier databases were created. A
database varies from a simple text document to much more
complex databases. These databases have to be refined
periodically to remove any kind of redundant, inconsistent or

dirty data so as to perform effectively. The most common,
well-known conception to store this data is through relational
model. Structured Query Language (SQL) extracts relevant
data from the pool of database.
Relational databases are the most common type of database
because of its simplicity. In an RDBMS [26] data is broken
into several tables which can be accessed as per the
requirements without actually making changes in the table.
Operations like join, aggregation, addition, creation, retrieval
and deletion are easily performed in relational databases and it
is also very easy to extend or modify existing tables.
Examples: SQL Server [23], Oracle Database [24] and MySQL
[25].

B. Why NoSQL Databases are used?
The major challenge with the growing data is its non-
uniformity. Due to this problem, in recent years, a non-
relational database is needed to scale the growing need of
industry and at the same time, must be highly efficient. This
gave rise to NoSQL databases which are highly scalable,
efficient and can store large amount of data.
Though RDBMS are able to manage all three kinds of data
i.e., structured, semi-structured and unstructured, but labor and
compromises are required to achieve efficient storage of
unstructured and semi-structured data. RDBMS stores
structured data as it is because they are already in required
form. But, storing the semi-structured data involves a few
complexities. The semi-structured data needs to be converted
in relational data before storage. Also, in case of unstructured
data the data is saved as a blob object and is not stored
directly.
Hence, to satisfy this non-uniformity of data a fresh thought
was given to the storage of data, leading to the creation of
NoSQL (Not only SQL) Databases.
NoSQL databases have emerged as an important substitute to
relational databases and we choose them according to features
like scalability, availability, and fault tolerance. They do not
follow the general table/row/column approach which is
practiced by all RDBMSs. NoSQLs are primarily called
distributed or non-relational database. They support horizontal
scalability, so to scale number of servers are increased rather
than upgrading hardware of the system which happens in
RDBMS where vertical scalability is performed.

C. Importance of NoSQL
NoSQL [16][39]databases are geared towards management of
large, varied and continuously changing data sets. They are
often used in distributed systems or cloud databases. In

293978-1-5386-0627-8/17/$31.00 c©2017 IEEE

NoSQL databases rigid schemes and many other limitations
are avoided. They were initially introduced as databases to
provide an alternative to the long existing relational databases.
For these NoSQL databases scalability, fault tolerance and
availability are the most important deciding factors. They do
not follow the strict schema approach of RDBMSs [26].
NoSQLs have a certain edge over relational databases as they
are able to tackle big data efficiently, provide high velocity,
and can handle variety of data with varied complexities. As
they are horizontally scalable, managing them is also simpler,
which can be done by the addition of a new node to the cluster
which will handle load efficiently. To avoid failure as the data
is distributed amongst several servers, so even if one fails
others are still in working condition, and hence can easily
continue the work of the faulty node. This guarantees that
single point of failure doesn’t exist in the database and also
depicts true fault tolerance of a NoSQL database. In case of
data and function, it also enjoys the ability of built-in
redundancy.

There are four general types of NoSQL databases where
every database has its own properties:

 Graph database: The basis of this type of databases is
graph theory. Examples: Neo4j [27] and Titan [28].

 Key-Value store: In this database, we store the data in
two parts, namely key and value. Examples: Redis
[29], DyanmoDB [30], Riak [31].

 Column store: Here, data is stored in the form of
sections of columns of data. Examples: HBase[32],
BigTable[18][20] and Cassandra [33].

 Document database: This database is higher version of
key-value stores. Here values are saved as documents
which are data in the form of complex structures (like
JSON). Examples: MongoDB [34] and CouchDB
[35].

CAP [19] theorem explains the limitation posed on all
databases. It states that anyone can pick only any two out of the
three features abbreviated as CAP in which C stands for
Consistency, A for Availability, and P stands for Partition
tolerance. The main statement of Brewer's theorem says that
for any shared-data system, a maximum of two properties can
be exist from these properties [36].

II. LITERATURE SURVEY
The detailed summary of related papers has been presented in
appendix (Table 5).
Figure 1 depicts that we surveyed papers from different
sources such as, VLDB, IEEE, ACM and SIGMOD etc. These
papers have been categorized into six groups (NoSQL,
SQL/RDBMS, Redis, MongoDB, Cassandra and Neo4j) and
critical analysis of each group has been performed.

 NoSQL:

NoSQL, Not Only SQL, is distributive data model that does not
follow relational database guidelines. It supports huge data
storage, horizontal scaling and massive- parallel data

processing [9]. NoSQL also supports data which cannot be
easily expressed in terms of SQL [17].

Figure 1: Classification of relevant papers

Hence NoSQL databases have been adopted as a
widespread substitute to conventional SQL databases,
especially in the scenario where we are managing extremely
large scale of data [13]. NoSQL was developed to overcome
the disadvantages of relational databases. Therefore, many
companies invested into researching the field of these
databases [9]. Nowadays ACID properties can be achieved by
NoSQL databases also with the help of middleware [3].
NoSQL databases rely on the services and capabilities of the
underlying storage systems [8].

 RDBMS/SQL

Relational databases are the most common type of
database because of its simplicity. In an RDBMS [26] data is
divided into multiple tables which are usually in their
normalized form for more efficiency. While accessing data it
can be reassembled as per the requirements of the user.
Structured Query Language (SQL) consists of four types of
queries that are data definition language (DDL), data control
language (DCL) and data manipulation language (DML). Each
one has its own set of queries which are executed to define
data i.e. create table, alter table etc. , to manipulate existing
data as per the requirements using update, insert etc. and
define the control of transaction using queries like roll back,
commit etc. respectively. A detailed comparison of NoSQL
versus RDBMS on features such as data validity, query
language, data type, data storage, schema, flexibility,
scalability and ACID compliancy is presented [40] Generally
in NOSQL, only single record transactions and an eventual
consistency replica system are supported, where it is assumed
that transactions are commutative. Thus, ACID transactions
are compromised for performance [41].

 Document store (MongoDB):

MongoDB resides on the CP side of CAP theorem.
MongoDB supports format BSON [37] which is JSON [38]
like document with dynamic schemas which make data
integration easier and faster. Some of the common features of
MongoDB are that it has a document-oriented storage layer and

294 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN)

for replication of data between servers it uses asynchronous
replication [15]. In MongoDB and other NoSQL databases
additional implementation decisions are made which were not
required in SQL databases. These decisions have an effect on
the performance of databases[12]. Other advantages of using
MongoDB include easy replication, MapReduce, and
clustering [11].

 Column store (Cassandra):

Cassandra resides on the AP side of CAP theorem. It
provides its users scalability as it’s linearly scalable and
availability without compromising with its performance.
Cassandra is easily capable of managing heaps of data across
number of commodity servers while maintaining high
availability without any single point of failure. [6][10]

 Key value store (Redis):

Redis resides on the CP side of CAP theorem. Redis key-
value data store with a choice for data durability. It is an in-
memory NoSQL database, Redis supports various data
structure servers like strings, lists, sets, hashes and sorted sets.
It can be replicated using relax master slave architecture.

 Graph database (Neo4j):

Neo4j utilizes labeled property graph model. In Neo4j
nodes and edges can have properties associated with them.
Nodes can be further associated with labels which categorize
different them according to their roles. Neo4j is a full ACID
transaction compliant graph database. It can be used as both
standalone server (REST interface) or in embedded form [22].

III. COMPARITIVE ANALYSIS OF NOSQL DATABASES

A. Comparison of NoSQL databases on the basis of
functional and non functional requirements.
Table1: Different NoSQL databases on basis of Non-functional features

Data
model

Perform
ance of
queries

Scalability
of data

Flexibility
of schema

Structure
of
database

Complexity
of values

Key-
value
store

High High High Primary
key with
some value

None

Column
Store

High High Moderate row
consisting
multiple
columns

Low

Document
Store

High Variable
(High)

High JSON in
form of
tree

Low

Graph
Database

Variable Variable High Graph –
entities and
relation

High

Table 1 compares key-value store, column store, document
store and graph database based on their non-functional
features such as, Performance of queries, Scalability of data,
Flexibility of schema, Structure of database and Complexity of
values.Table1 depicts that for a simple data that can be
represented as a key-value pair form easily; key value store
may be chosen as it will provide high performance, scalability
and flexibility. If the value can be represented in column from

and is semi structured, then column store is the appropriate
database as it will provide high performance and scalability. If
data can be represented in JSON format, then document store
should be preferred as it has high performance, flexibility and
usually high scalability. If we need to store data which can be
represented using graph theory or if the data is strongly inter-
related, then we use graph store model which provides high
stability, but performance and scalability is variable.

Table 2 compares the four categories of NoSQL databases
on the basis of functional features, such as, De-normalization,
Single aggregate (adding multiple composite keys to a single
key), Atomicity, Unordered Keys, Derived Table (a table can
be created on the basis of master class this helps in sorting
according to multi-dimensional indices), Composite Key,
Composite Aggregation, Aggregation, Aggregation and Group
by, Adjacency Lists (each node is designed as an
individualistic record that accommodates arrays of immediate
ancestors or descendants), Nested Sets and Joins.

Key value store should be avoided if we want to use
composite key, joins or derived table operations on the
database.

Document Store should be avoided if we want to use de-
normalization, unordered key, composite key, composite
aggregation, joins or derived table operations on the database.

Wide Column store should be avoided if we want to use
unordered keys, aggregation and group by, adjacency lists,
nested sets or joins operations on the database.

Graph Store should be used if we want to perform just de-
normalization.

Table 2: Different NoSQL databases on basis of functional features

S.
No
.

Features Key Value
Store

Document
Store

Wide
Column
store

Graph
Store

1. Denormalization Applicable Not
Applicable

Applicable Applicable

2. Single Aggregate Applicable Applicable Applicable Not
Applicable

3. Atomicity Applicable Applicable Applicable Not
Applicable

4. Unordered Keys Applicable Not
Applicable

Not
Applicable

Not
Applicable

5. Derived Table Not
Applicable

Not
Applicable

Applicable Not
Applicable

6. Composite Key Not
Applicable

Not
Applicable

Applicable Not
Applicable

7. Composite
Aggregation

Applicable(
ordered)

Not
Applicable

Applicable Not
Applicable

8. Aggregation Applicable Applicable Applicable Not
Applicable

9. Aggregation and
Group by

Applicable Applicable Not
Applicable

Not
Applicable

10. Adjacency Lists Applicable Applicable Not
Applicable

Not
Applicable

11. Nested Sets Applicable Applicable Not
Applicable

Not
Applicable

12. Joins Not
Applicable

Not
Applicable

Not
Applicable

Not
Applicable

2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN) 295

Table 3: Differentiation of Cassandra, MongoDB, Redis, Neo4J and MySQL.

S.
No.

Feature Wide Column Store
(Cassandra)

Document Store
(MongoDB)

Key Value Store
(Redis)

SQL (MySQL) Graph
Database
(Neo4j)

1 Database
Model

Wide column store Document Store Key-Value Store Relational DBMS Graph database

2 Description It is one of the most
popular wide column
store database. It is
based on the concept
of BigTable

It is one of the well-
known document store
database

It is an in-memory
data structure store
and an important key
value store

Widely used open
source RDBMS

Open source
graph database

3 DB Key space Database Database Database Graphs
4 Table Column Family Collection Hash set, List, Set,

Sorted set and String
Relation Label

5 Value Rows Documents Key value pair Rows Node and edges
6 Read

Operations
Slow[4] Fast[4] Fast[5] Slow (Join dependent) Data dependent

7 Write
Operations

Fast[4] Fast[4] Fast[5] Slow Data dependent

8 Delete
Operations

Fast [4] Fast[4] Fast[5] Slow Data dependent

9 Language Java C++ C[14] C and C++ Java, Scala
10 License Open Source Open Source Open Source Open Source Open Source
11 Data scheme Schema-free No particular schema

is followed but usually
contents of same
documents as a
convention have
similar structures
though it is not
mandatory

Schema-free Yes Schema-free

12 Predefined
types

Yes; ASCII, int,
blob, counter,
decimal, double, list,
map, set, text,
timestamp, varchar

Yes; Boolean, date,
object_id, String,
Integer, double.

Partial; data types
supported for value
are strings, Bit
arrays, hyper logs,
hashes, lists, sets,
sorted sets, and
geospatial indexes

Yes; int, float, double,
date, time, bit, char,
enum, binary, blob,
Boolean

Yes; Boolean,
byte, short, int
long, float,
double, char,
string

13 Server side
scripts

No JavaScript Lua Yes Yes

14 Triggers Yes No No Yes Yes
15 Partitioning

methods
Sharding (In this
very large databases
are divided or
partitioned into
much smaller and
manageable units
called shards)

Sharding with no
individual point of
failure

Sharding Horizontal
partitioning, sharding
with MySQL Cluster
or MySQL Fabric

Partitioning
should be
avoided in Neo4j

16 Foreign Keys No Usually, not used,
however equivalent
operation with DBRef
can be done

No Yes Yes

17 Transaction
Concepts

Atomicity and
Isolation are
supported for single
operations

Atomic operations can
be performed within
single document

Optimistic locking,
atomic execution of
command blocks and
scripts

ACID ACID

18 User
Concepts

Access rights for
users can be defined
per object

Access rights for users
and roles

Simple password –
based access control.

Users with fine
grained authorization
concepts; no user
groups or roles

Users, roles and
permissions

19 Website cassandra.apache.org www.mongodb.org redis.io www.mysql.com

www.neo4j.com

20 Developer Apache Software
Foundation

MongoDB, Inc. Salvatore Sanfilippo Oracle Neo Technology

21 Initial
Release

2008 2009 2009 1995 2007

296 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN)

B. Comparison on the basis of categories of NoSQL
databases.

In Table 3, comparison is made using features such as,
Database Model, Description, Database, Table, Value, Read
Operations, Write Operations, Delete Operations, Language
License, Data scheme, Predefined types, Server side scripts,
Triggers, Partitioning methods, Replication Methods, Scaling,
Foreign Keys, Transaction Concepts, User Concepts, Website,
Developer, Initial Release and Current Release.

The current research has taken databases from each
category of NoSQL databases that is Cassandra, MongoDB,
Redis) and Neo4j. Table 3 presents the differentiation of
various NOSQL databases with an example from each
category. SQL is a Relational DBMS; Cassandra falls under
the category of Wide Column stores which are based on the
ideas of BigTable and DynamoDB. MongoDB is a Document
Store, whereas Redis follows the concepts of a Key-Value
Store.

Cassandra has a keyspace analogous to a database in SQL
and a column family instead of a table. MongoDB makes a
collection, while Redis has options of hashes, lists, sets and
sorted sets instead of a table.

Read operations are slower in Cassandra and SQL
compared to the other two. For both write and delete
operations, SQL falls short in comparison to all NoSQL
databases. In case of Neo4j, even though the embedded
version is slow REST’s performance is roughly similar to
MongoDB[21]. For partitioning methods, SQL is the only one
to use Horizontal Partitioning, while the rest use sharding.
Also SQL is the only one which uses the concept of foreign
keys. Coming to the transaction concepts, SQL and Neo4j
follow the ACID properties. For single operations, atomicity
and isolation are supported in Cassandra. Atomic operations
are possible inside a long document in MongoDB, while Redis
supports optimistic locking and atomic execution of command
blocks and scripts.

MongoDB supports access rights for different types of
users. For Cassandra, access rights can be established per
object. Redis supports uncomplicated password based access
control [44]. In MongoDB, authorization and authentication
are disabled by default. Here, the authorization is provided by
following a role-based approach on a per-database level.
Provision for authentication on a per-database level has been
made available in basic MongoDB where the users subsist
particularly for a single logical database [42]. Authorization
and authentication is enabled by default in Neo4j [45].

C. Comparison on the basis of distributive properties
Table 4 explains how the four databases work when

database is spread on multiple computers which may or may
not be in same physical location. In case of MongoDB auto
sharding is used to partition data amongst multiple nodes in
order preserving manner. MongoDB supports horizontal
scaling which enables it to scale data across multiple nodes.
The load is distributed equally across nodes an if balance is
disrupted it automatically redistributes the load equally.

Table 4: Analysis of NOSQL databases based on distributive properties.

Feature Wide
Column
Store
(Cassandra)

Document
Store
(MongoDB)

Key
Value
pair
Store
(Redis)

Graph
Database
(Neo4j)

Sharding
and
Partitioning

Auto sharding
and order
preserving

Built in and
order
preserving

Auto
sharding
and no
order

Supports
sharding
but should
be avoided

Scaling Horizontal Horizontal Horizontal Horizontal
Replication Selectable

Replication
Factor

Master slave Relaxed
Master
slave

Causal
Clustering
using Raft
protocol
(master
slave)

In Cassandra vast quantity of data is divided across many
nodes which imparts user with very high availability and
without failure. It also supports horizontal scaling, selectable
replication factor and cross data center replication.

Redis is designed for in-memory data using master-slave
architecture. Categorically, Redis supports less strict practice
of master-slave replication, wherein information from any
master is easily replicated to whatever number of slaves,
whereas a slave itself can act as a master to other slaves. This
database doesn’t partition data across nodes in an order
preserving manner.

Subject to Neo4J scalability package is noted as high
availability. It does not support partitioning and complete
dataset is replicated across whole cluster.

IV. CONCLUSIONS
SQL databases are scale vertically (hardware) while the

NoSQL databases are horizontally scalable (server). This paper
has the aim of giving a thorough overview and introduction of
NoSQLs, which have recently emerged in the market as an
alternative to predominant relational database management
systems. The first half discusses the motives and rationales
behind the development and usage of non-relational
management systems, while the next half categorizes NoSQLs
into types, namely, Document stores, Key-value stores and
Column based stores, and then elucidate on their models and
workings. Each database performs and behaves in a different
manner and all of them are constantly evolving. The current
research has taken databases from each category that is
Cassandra (wide column store), Neo4j (Graph database) Redis
(Key value pair store) and MongoDB (Document store) and
compared them on the basis of data models, distributive
properties and other features. The research compares them on
their non-functional features. It has been found that for a
simple data that can be represented in the form of key value
easily, a key value store should be chosen as it will provide
high performance, scalability and flexibility. If the value can
be represented in column form, and is semi structured, then
column store is the appropriate database as it will provide high
performance and scalability. If data can be represented in
JSON format, document store should be preferred as it has
high performance, flexibility and usually high scalability. If
the graph theory represents the data then we use graph store
model which provides us high stability, but performance and
scalability is variable. Following this, the comparison is made

2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN) 297

on the basis of functional features. It has been concluded that
Key value store ought to be avoided if one needs to use
composite key, joins or derived table operations on the
database. Document Store ought to be avoided if one needs to
use de-normalization, unordered key, composite key,
composite aggregation, joins or derived table operations on the
database. Wide column store should be avoided if we want to
use unordered keys, aggregation and group by, adjacency lists,
nested sets or joins operations on the database. Graph Store
should be used if we want to perform just de-normalization.
Redis is not optimized for maximum security [43] but for
maximum performance and simplicity. Stonebraker [41]
considered various performance arguments in support of
NOSQL databases and observed them insufficient. Thus, these
systems have various limitations also.

V. REFERENCES
[1] AvriliaFloratou, Nikhil Teletia , David J. DeWitt, Jignesh M. Patel,

Donghui Zhang, “Can the Elephants Handle the NoSQL Onslaught?”,
Proceedings of the VLDB Endowment, 2012

[2] Tilmann Rabl, Mohammad Sadoghi, Hans-Arno Jacobsen, Sergio
G´omez Villamor, Victor Munt´es Mulero and Serge Mankovskii,
“Solving Big Data Challenges for Enterprise Application Performance
Management”, The 38th International Conference on Very Large Data
Bases, August 27th - 31st 2012, Istanbul, Turkey. Proceedings of the
VLDB Endowment,2012

[3] Bogdan George Tudorica, Cristian Bucur, “A comparison between
several NoSQL databases with comments and notes”, RoEduNet
International Conference 10th Edition: Networking in Education and
Research, 2011

[4] Yishan Li and Sathiamoorthy, “A performance comparison of SQL and
NoSQL databases.”, IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, 2013

[5] Laurie Butgereit, “Four NoSQLs in Four Fun Fortnights: Exploring
NoSQLs in a Corporate in a Corporate IT Environment”, SAICSIT
'16 Proceedings of the Annual Conference of the South African Institute
of Computer Scientists and Information Technologists, 2016

[6] Avinash Lakshman, Prashant Malik, “Cassandra - A Decentralized
Structured Storage System”, Operating Systems Review, 2010

[7] John Klein, Ian Gorton, Neil Ernst, Patrick Donohoe, Kim Pham,
Chriisjan Master, “A comparison between several NoSQL databases
with comments and notes”, PABS '15 Proceedings of the 1st Workshop
on Performance Analysis of Big Data Systems, 2015

[8] Jiri Schindler, “I/O performance of NoSQL Databases(VLDB)”,
SIGMETRICS '13 Proceedings of the ACM;
SIGMETRICS/international conference on Measurement and modelling
of computer systems, 2013

[9] Amal W. Yassien, Amr F. Desouky, “RDBMS, NoSQL, Hadoop: A
Performance-Based Empirical Analysis”, AMECSE ‘16 Proceedings of
the 2nd Africa and Middle East Conference on Software Engineering,
2016

[10] Hua Fan, Aditya Ramaraju, Marlon McKenzie, Wojciech Golab,
Bernard Wong, “Understanding the Causes of Consistency Anomalies in
Apache Cassandra”, Proceedings of the VLDB Endowment, 2015

[11] Sumitkumar Kanoje, Varsha Powar, Debajyoti Mukhopadhyay,”Using
MongoDB for Social Networking Website: Deciphering the Pros and
Cons”, IEEE Sponsored 2nd International Conference on Innovations in
Information Embedded and Communication Systems, 2015

[12] Zachary Parker, Scott Poe, Susan V. Vrbsky, “Comparing
NoSQLMongoDB to an SQL DB”, ACMSE '13 Proceedings of the 51st
ACM Southeast Conference, 2013

[13] Gansen Zhao, Weichai Huang, Shunlin Liang, Yong Tang,”Modelling
MongoDB with Relational Model”, Fourth International Conference on
Emerging Intelligent Data and Web Technologies, 2013

[14] Rick Cattell, “Scalable SQL and NoSQL Data Stores”, SIGMOD
Record, December 2010 (Vol. 39, No. 4), 2010

[15] Lanjun Wang, Shuo Zhang, Juwei Shi, Limei Jiao,Oktie Hassanzadeh,
Jia Zou, Chen Wangz, “Schema Management for Document Stores”,
Proceedings of the VLDB Endowment, 2015

[16] http://www.planetcassandra.org/what-is-nosql/
[17] Concurrent Programming for Scalable Web Architectures

(2012),Benjamin Erb Research Assistant, University of Ulm Distributed
Systems (Cited by 14):http://berb.github.io/diploma-
thesis/original/061_challenge.html

[18] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah
A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E.
Gruber, "Bigtable: A Distributed Storage System for Structured Data",
ACM Transactions on Computer Systems,Volume 26, issue 2,Article 4,
June 2008

[19] Seth Gilbert, Nancy Lynch, “Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services”, ACM SIGACT
NewsVolume 33 Issue 2, June 2002 ,Pages 51-59
http://dl.acm.org/citation.cfm?id=564601

[20] "Google Bigtable, Compression, Zippy and BMDiff". 2008-10-12.
Archived from the original on 1 May 2013. Retrieved 14 April 2015..

[21] Santosh S. Ravi, Kalyanaraman santhanam , “Performance of Neo4j
versus MongoDB for social actions”; 2014

[22] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin
Chen, Dawn Wilkins, “A Comparison of a Graph Database and a
Relational”, ACM SE '10 Proceedings of the 48th Annual Southeast
Regional Conference; 2010

[23] DatabaseSQL Server by Microsoft: https://www.microsoft.com/en-
us/sql-server/sql-server-2016

[24] Oracle Official website: https://www.oracle.com/database/index.html
[25] MySQL Documentation: https://dev.mysql.com/doc/refman/5.7/en/what-

is-mysql.html
[26] Definition of RDBMS:

http://searchsqlserver.techtarget.com/definition/relational-database-
management-system

[27] Neo4j Official Website: https://neo4j.com/developer/graph-database/
[28] TITAN’s (a distributed graph database) Official website:

http://titan.thinkaurelius.com/
[29] Redis Documentation: https://redis.io/documentation
[30] Amazon DynamoDB Official Page:

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Int
roduction.html

[31] Riak Official Website: http://basho.com/products/
[32] Apache HBASE official website: https://hbase.apache.org/

[33] Cassandra Documentation by Datastax Academy:
https://academy.datastax.com/resources/brief-introduction-apache-
cassandra

[34] MongoDB Official Website: https://www.mongodb.com/what-is-
mongodb

[35] Apache CouchDB Official Website: http://couchdb.apache.org/
[36] Brewer’s CAP Theorem:

http://www.royans.net/wp/2010/02/14/brewers-cap-theorem-on-
distributed-systems/

[37] BSON Official Website and Documentation: http://bsonspec.org/
[38] JSON Official Website and Documentation: http://www.json.org/
[39] NoSQL Explanation by Datastax

Academy:http://www.planetcassandra.org/what-is-nosql/
[40] Antonios Makrisa, Konstantinos Tserpesa, Vassiliki Andronikoub,

Dimosthenis Anagnostopoulosa, “A classification of NoSQL data stores
based on key design characteristics”, Cloud Futures: From Distributed to
Complete Computing, CF2016, 18-20 October 2016.

[41] Michael Stonebraker. 2010. SQL databases v. NoSQL
databases. Commun. ACM 53, 4 (April 2010), 10-11. DOI:
https://doi.org/10.1145/1721654.1721659.

[42] “MongoDB Security Guide Release3.2.1”, MongoDB,Inc. February09,
2016,©MongoDB,Inc.2008–2015.

298 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN)

[43] IBM systems power solution for redis: https://www-
304.ibm.com/partnerworld/wps/servlet/download/DownloadServlet?id=
6sXLmWUMhJJiPCA$cnt&attachmentName=ibm_power_systems_sol
ution_for_redis.pdf&token=MTQ1NTc4NTMxMTgzMA==&locale=en
_ALL_ZZ

[44] Security: http://redis.io/topics/security/
[45] Neo4j Security, https://neo4j.com/docs/operations-

manual/current/security/checklist/

VI. APPENDIX
Table 5: Summary of Related Work

S.No Paper Title Authors Publication
Details

Description

1 Can the
Elephants Handle
the NoSQL
Onslaught?

Avrilia Floratou,
Nikhil Teletia ,
David J. DeWitt,
Jignesh M.
Patel, Donghui
Zhang

2012;Proceeding
s of the VLDB
Endowment

Comparative study between
SQL and NoSQL is done on
interactive data serving and
decision support analysis. With
the help of this evaluation
conclusions are drawn and
future trends are speculated.

2 Solving Big Data
Challenges for
Enterprise
Application
Performance
Management

Tilmann Rabl,
Mohammad
Sadoghi, Hans-
Arno Jacobsen,
Sergio G´omez
Villamor, Victor
Munt´es Mulero
and Serge
Mankovskii

2012; The 38th
International
Conference on
Very Large Data
Bases, August
27th - 31st 2012,
Istanbul,
Turkey.
Proceedings of
the VLDB
Endowment

Various benchmark programs
are run on DBMSs i.e.
Cassandra, HBase, Voldemort,
MySQL and Redis and the
throughput and the latencies of
operations like read write etc
and create graphs for these
comparisons

3 A comparison
between several
NoSQL databases
with comments
and notes

Bogdan George
Tudorica,
Cristian Bucur

2011; RoEduNet
International
Conference 10th
Edition:
Networking in
Education and
Research.

The paper explains the
relevance of SQL and NoSQL
databases in different
environments. NoSQL database
models are those databases in
which fixed schemas are not
required, scaling in done
horizontally, joins are avoided
and SQL interface isn’t exposed.

4 A performance
comparison of
SQL and NoSQL
databases.

Yishan Li and
Sathiamoorthy

2013; IEEE
Pacific Rim
Conference on
Communications
, Computers and
Signal
Processing

This paper compares the
performance on the basis of key-
value store implementations on
NoSQL and SQL databases.
Various (CRUD) operations are
performed on various NoSQL
and SQL databases and drastic
variations are recorded as a
result, even among the NoSQL
databases

5

Four NoSQLs in
Four Fun
Fortnights:
Exploring
NoSQLs in a
Corporate in a
Corporate IT
Environment

Laurie Butgereit

2016; SAICSIT
'16 Proceedings
of the Annual
Conference of
the South
African Institute
of Computer
Scientists and
Information
Technologists.

NoSQL databases are been
divided into groups: key-value
stores, columnar databases,
graph databases, and document
databases. One database has
been picked from each category:
Redis, Cassandra, Nep4j and
MongoDB

6 Cassandra - A
Decentralized
Structured
Storage System

Avinash
Lakshman,
Prashant Malik

2010; Operating
Systems Review

This paper explains how
Cassandra works. Cassandra is a
distributed storage system which
is used to manage a large
amount of structured data

7 A comparison
between several
NoSQL databases
with comments
and notes

John Klein, Ian
Gorton, Neil
Ernst, Patrick
Donohoe, Kim
Pham, Chriisjan
Master

2015 ;PABS '15
Proceedings of
the 1st
Workshop on
Performance
Analysis of Big
Data Systems.

This paper describes methods
and the corresponding results of
a study that is conducted for the
three selected NoSQL databases
when we consider the scenario
of the data of a large healthcare
organization.

8 I/O performance
of NoSQL
Databases

Jiri Schindler 2013;
SIGMETRICS
'13 Proceedings
of the ACM;
SIGMETRICS/i
nternational
conference on
Measurement
and modelling of
computer
systems.

The paper aims to evaluate the
architecture of a few selected
NoSQL databases to lay the
foundations for understanding
the functioning of the new
emerging database systems.
They base their work on an
electronic healthcare record
(HER) System where they were
given use cases by a customer
that he primarily wanted them to
work on.

9 RDBMS, NoSQL, Amal W. 2016; AMECSE This paper aims to provide an

Hadoop: A
Performance-
Based Empirical
Analysis

Yassien, Amr F.
Desouky

‘16 Proceedings
of the 2nd
Africa and
Middle East
Conference on
Software
Engineering

insight into choosingthe suitable
data model by conducting a
benchmark usingYahoo! Cloud
Serving Benchmark (YCSB) on
three types of database systems
i.e., MySQL for RDBMS,
MongoDB for NoSQL data
model, and HBase for Hadoop
framework.

10 Understanding
the Causes of
Consistency
Anomalies in
Apache
Cassandra

Hua Fan, Aditya
Ramaraju,
Marlon
McKenzie,
WojciechGolab,
Bernard Wong

2015;Proceeding
s of the VLDB
Endowment

This paper studies the staleness
of values returned by read
operations applied to Cassandra
which supports eventual
consistency using quorum-based
replication.

11 Using MongoDB
for Social
Networking
Website:
Deciphering the
Pros and Cons

Sumit kumar
Kanoje, Varsha
Powar,
Debajyoti
Mukhopadhyay

2015; IEEE
Sponsored 2nd
International
Conference on
Innovations in
Information
Embedded and
Communication
Systems

This purpose focuses on the
drawbacks and advantages
offered by MongoDB, so that
the developer can make a wise
decision while choosing a
database for a social networking
website.

12 Comparing
NoSQLMongoDB
to an SQL DB

Zachary Parker,
Scott Poe, Susan
V. Vrbsky

2013; ACMSE
'13 Proceedings
of the 51st ACM
Southeast
Conference

A comparison has been made
between one of the NoSQL
solutions, MongoDB, to the
standard SQL relational
database, SQL Server. The
performance, in terms of
runtime, of these two databases
for a modest-sized structured
database has been compared

13 Modelling
MongoDB with
Relational Model

Gansen Zhao,
Weichai Huang,
Shunlin Liang,
Yong Tang

2013; Fourth
International
Conference on
Emerging
Intelligent Data
and Web
Technologies

This paper explores the
problems by modelling of
MongoDB, with relational
algebra. The dissimilarities of
semantic expression powers
have been highlighted between
RDBMS and MongoDB.

14 Scalable SQL
and NoSQL Data
Stores

Rick Cattell 2010; SIGMOD
Record,
December 2010
(Vol. 39, No. 4)

This paper compares many SQL
data stores against the various
NoSQL data stores which are
meant to scale simple DLTO-
style application loads. The new
data models sacrifice some
dimensions like consistency,
availability, high scalability etc.

15 Schema
Management of
Document Stores

Lanjun Wang ,
Oktie
Hassanzadeh,
Shou Zhang,
Juwei Shi, Limei
Jiao, Jia Zou,
Chen Wang

2015;
Proceedings of
the VLDB
Endowment

A schema management
framework has been presented
in this paper for document
stores. The simplicity offered by
JSON document stores can
cause snags in certain database
management tasks.

16 Brewer's
conjecture and
the feasibility of
consistent,
available,
partition-tolerant
web services

Seth Gilbert,
Nancy Lynch

June 2002,
ACM SIGACT
News Volume
33 Issue 2

CAP theorem has been
explained in this paper.

17 MongoDB vs
Oracle - database
comparison

Alexandru
Boicea, Florin
Radulescu,
Laura Ioana
Agapin

2012, Emerging
Intelligent Data
and Web
Technologies
(EIDWT), Third
International
Conference

This paper describes the
distinctions we come across
while comparing an SQL
database i.e. Oracle database
and NoSQL form of database
i.e. document store database.

18 Comparative
Study of SQL &
NoSQL
Databases

Supriya S. Pore,
Swalaya B.
Pawar

5, May 2015,
International
Journal of
Advanced
Research in
Computer
Engineering &
Technology

This research paper aims to
evaluate and compare these two
SQL & NOSQL databases and
examines which of these is
better when it comes to
performance and scalability.
Index Terms— RDB

19 NoSQL
Databases:
MongoDB vs
Cassandra

Veronika
Abramova,
Jorge
Bernardino

2013, C3S2E '13
Proceedings of
the International
C* Conference
on Computer
Science and
Software
Engineering

This research paper revolves
around NoSQL databases, their
features and operational
principles. It compares and
evaluates two NoSQL
databases i.e. MongoDB and
Cassandra.

20 Have Your Data
and Query It
Too:
From Key-Value
Caching to Big
Data
Management

Dipti Borkar,
Ravi Mayuram,
Gerald Sangudi,
Michael Carey

2016,
SIGMOD’16
Proceedings of
the 2016
International
Conference on
Management of
Data

This paper explains the
architectural alterations that are
vital to be made to tackle the
requirements of future
generation applications which
employ databases.

2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN) 299

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

