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Abstract

Passenger prescreening is a critical component of aviation security. This paper intro-

duces the Multilevel Allocation Problem (MAP), which models the screening of passen-

gers and baggage in a multilevel aviation security system. A passenger is screened by one

of several classes, each of which corresponds to a set of procedures using security screen-

ing devices, where passengers are differentiated by their perceived risk levels. Each class

is defined in terms of its fixed cost (the overhead costs), its marginal cost (the additional

cost to screen a passenger), and its security level. The objective of MAP is to assign each

passenger to a class such that the total security is maximized subject to passenger as-

signments and budget constraints. This paper shows that MAP is NP-hard, introduces

two dynamic programming algorithms for solving MAP in pseudo-polynomial time, and

introduces a Greedy heuristic that obtains approximate solutions to MAP that use no

more than two classes. Examples are constructed using data extracted from the Official

Airline Guide (OAG). Analysis of the examples suggests that fewer security classes for

passenger screening may be more effective and that using passenger risk information

can lead to more effective security screening strategies.

Keywords: aviation security, policy modeling, integer programming, heuristics, dynamic pro-

gramming.

Introduction

On September 11, 2001, four commercial aircraft were hijacked and used as bombs to

destroy the World Trade Center twin towers and inflict severe damage to the Pentagon.

These acts of violence have lead to widespread aviation security policy and operational
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changes throughout the nation’s airports. A critical component in aviation security

systems is the prescreening of passengers with their checked and carry-on baggage prior

to boarding an aircraft. However, developing strategies to effectively and efficiently

screen passengers, as well as the allocation and utilization of screening devices, can be

quite challenging. Moreover, even after such systems are in place, it can be very difficult

to measure their effectiveness.

Aviation security operations in the United States began in 1970 with surveillance

equipment in airports in response to hijacking attempts. When hijacking attempts per-

sisted, air carriers were required to physically screen all passengers with metal detectors

(beginning in December 1972), with passenger prescreening operations not significantly

changing from that time until 1996 (National Research Council 1996). The Commis-

sion on Aviation Safety and Security, established on July 25, 1996 and headed by (then)

Vice-President Al Gore, recommended that the aviation industry improve security us-

ing existing explosive detection technologies, automated passenger prescreening, and

positive passenger-baggage matching. Moreover, the Federal Aviation Administration

(FAA) had been working with the airlines to annually purchase and deploy explosive

detection systems (EDSs) at airports throughout the United States. From 1998 until

September 11, 2001, EDSs were only used to screen checked baggage of selectee pas-

sengers, those who were not cleared by a computer risk assessment system (i.e., the

Computer-Aided Passenger Prescreening System—CAPPS) developed in conjunction

with the FAA, Northwest Airlines, and the United States Department of Justice. The

checked baggage of nonselectee passengers, those who were cleared by such a system,

received no additional security attention. There were no further differences between

selectee and nonselectee passengers.

The terrorist events on September 11, 2001 prompted the Inspector General for the

United States Department of Transportation to prescribe additional security procedures

to be implemented (Mead 2002; Mead 2003), including screening all checked baggage

for explosives. Given such a policy, there would no longer be any distinction between

selectee and nonselectee passengers, since all checked baggage would be screened. An

FAA official once remarked that the FAA is in “...hot pursuit of equipment and pro-

cedures that can spot these [explosive] devices with high degrees of confidence for the

nearly one billion pieces of [baggage] and 500 million passengers traveling annually on

2



United States carriers” (Malotky 1994). Note that in 2000, there were over 600 mil-

lion passengers, with forecasts of nearly one billion passengers by 2013 (FAA 2002).

The primary objective of all these efforts is to improve security operations at all of the

nation’s airports. To meet this objective, the Transportation and Security Administra-

tion (TSA), part of the Department of Homeland Security, must develop new security

system paradigms that can optimally use and simultaneously coordinate several secu-

rity technologies and procedures. Aviation security devices deployed at airport stations

(e.g., terminals) provide a level of security for passengers, and determining the type of

security devices to deploy can be challenging. Moreover, once such devices are deployed,

the practical issue of determining how to optimally use them can be difficult.

Alternatively, experts suggest that greater scrutiny of passengers perceived as greater

risks (from a security standpoint) is a more effective approach to aviation security. But-

ler and Poole (2002) suggest that the TSA’s policy of 100% checked baggage screening

is not cost-effective and that enhancing the binary screening paradigm to a multilevel

screening system would be a more effective approach to process airline passengers. Poole

and Passantino (2003) endorse risk-based airport security, partitioning passenger and

baggage security devices in proportion to perceived risk. They suggest that multiple

levels of security for processing passengers may be more effective than treating all pas-

sengers the same (from a security standpoint).

The TSA responded to these proposals through the development of CAPPS II, an

enhanced computer-based system for systematically prescreening passengers. CAPPS

II partitions passengers into three risk classes (as opposed to two classes by CAPPS).

A frequently mentioned criticism of any system designed to classify passengers into risk

classes, including CAPPS and CAPPS II, is that such systems can be gamed through

extensive trial and error sampling by a variety of passengers through the system (Barnett

2001; Chakrabarti and Strauss 2003). Martonosi and Barnett (2003) note that trial and

error sampling may not increase the probability of a successful attack and that CAPPS

II may not substantially improve aviation security if the screening procedures for each

type of passenger are not effective. Barnett (2004) suggests that CAPPS II may only

improve aviation security under a particular set of circumstances and recommends that

CAPPS II be transitioned from a security centerpiece to one of many components in

future aviation security strategies. On July 14, 2004, the TSA announced that CAPPS
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II has been dismantled over privacy concerns despite having invested $100M for its

development (Hall and DeLollis, 2004). However, it appears that the TSA plans to

replace CAPPS II with an automated system akin to CAPPS II (i.e., a system designed

to partition passengers into risk classes) for passenger prescreening (Singer 2004).

This paper describes a systematic approach for designing an enhanced passenger

screening system using discrete optimization models and algorithms, by formulating a

problem that models multilevel passenger prescreening strategies. Multilevel screening

considers no fewer than three levels of security to screen passengers, as opposed to the

binary system in place prior to September 11, 2001. Therefore, the primary contribution

of this effort is to identify models for designing multilevel screening security systems,

and show how these models can be used to provide insights into the operation and

performance of such systems. Note that this research assumes that a system such as

CAPPS has been implemented and is highly effective in identifying passenger risk (TSA

2003a) .

The following definitions are needed to describe these models. An attack is any event

in which willful human intent disrupts air service. A threat is a passenger or baggage

directly involved in a planned attack targeted at an aircraft. For example, hijackers

and terrorists with bombs in their checked baggage are threats. A device is an aviation

security technology and/or procedure used to identify a threat. Examples of devices

include metal detectors, EDS devices, and detailed hand search by an airport security

official. A class is defined by a preassigned subset of devices and a procedure through

which passengers are processed prior to boarding an aircraft. A risk assessment system,

such as CAPPS, assigns each passenger an assessed threat value, which quantifies the

risk associated with the characteristics of the passenger. The fixed cost of a class is the

purchase and overhead costs for the devices associated with the class. Note that the

fixed cost of a class is assessed against the budget only if there are passengers assigned

to the class. The marginal cost associated with a class is the direct cost to screen each

passenger or bag assigned to the class. These values may be acquired or estimated

from statements and press releases given by the TSA and published articles on aviation

security in the public domain.

Secondary screening is needed to resolve alarms in each class. In practice, the same

secondary screening procedures may be used to resolve alarms in all of the classes, which
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suggests a degree of overlap between the classes. However, this research focuses on the

primary screening procedures associated with each class, and it assumes that there

are enough resources for resolving alarms. Hilkevitch (2003) describes the secondary

screening procedures used at Heathrow International Airport in London.

Several articles formulate aviation security problems as integer programming and

discrete optimization models. Jacobson et al. (2001) provide a framework for measur-

ing the effectiveness of a baggage screening security device deployment at a particular

station. Jacobson et al. (2002) introduce three performance measures for baggage

screening security systems and use these models to assess the security effect for single

or multiple stations. Jacobson et al. (2005) formulate problems that model multiple

sets of flights originating from multiple stations subject to a finite amount of resources.

These problems consider three performance measures, and examples suggest that one of

the performance measures may provide more robust screening device allocations. Virta

et al. (2002) consider the impact of originating and transferring passengers on the effec-

tiveness of baggage screening security systems. In particular, they consider classifying

selectees into two types; those at their point of origin and those transferring. This is

noteworthy since at least two of the hijackers on September 11, 2001 were transferring

passengers.

Other research has focused on the experimental and statistical analysis of risk and

security procedures on aircraft. For example, Barnett et al. (2001) performed a large-

scale two-week experiment at the nation’s airports to test which costs and disruptions

would arise from using positive passenger baggage matching (PPBM), an aviation se-

curity procedure, for all flights. Barnett et al. (1979) and Barnett and Higgins (1989)

study mortality rates on passenger aircraft and perform a statistical analysis on this

data.

The paper is organized as follows. Section 2 introduces the Multilevel Allocation

Problem (MAP), a discrete optimization model that considers budget allocation based

on class costs and shows that this problem is NP-hard. Section 3 introduces a heuristic

that provides approximate solutions to MAP, and describes two dynamic programming

algorithms that solve MAP in pseudo-polynomial time. Section 4 provides a real-world

example using data extracted from the Official Airline Guide (OAG). Section 5 provides

concluding comments and directions for future research. The Appendix contains the
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proofs of the theorems and lemmas. A companion paper analyzes theoretical aspects of

MAP as it is formulated as a knapsack problem (McLay and Jacobson 2003).

1 Discrete Optimization Model

This section introduces the Multilevel Allocation Problem (MAP), a general framework

for multilevel security screening, and formulates it as a discrete optimization problem.

MAP is first stated as an optimization problem and then formulated as an integer

programming model. The objective is to assign N passengers to M classes such that

the total security is maximized subject to budget and assignment constraints. The

classes are defined in terms of their fixed and marginal costs, which are determined

by the set of devices that define the classes. Although this problem assigns passengers

to classes, it ultimately determines how the budget should be allocated to the various

classes and which classes should (and should not) be used. MAP is formally stated.

The Multilevel Allocation Problem (MAP)
Given:

A set of N passengers, each of which is characterized by an assessed threat value
AT1, AT2, . . . , ATN with 0 < ATi ≤ 1, i = 1, 2, . . . , N ,

a set of M classes,

a fixed cost associated with each class FC1, FC2, . . . , FCM ,

a marginal cost associated with each class MC1,MC2, . . . , MCM ,

the total budget B,

the security level of each class, Li, where 0 ≤ Li ≤ 1, i = 1, 2, . . . , M .

Denote passenger assignments for the N passengers to the M classes by A1, A2, . . . , AM ,
where Ai ⊆ {1, 2, . . . , N} represents the subset of passengers who are assigned to class i,
and define the risk level Ri of class i = 1, 2, . . . ,M as the proportion of assessed threat
values of the passengers assigned to class i. Hence,

Ri =
1∑N

j=1 ATj

∑

j∈Ai

ATj , i = 1, 2, . . . , M (1)

Find passenger assignments A1, A2, . . . , AM such that
⋃M

i=1 Ai = {1, 2, . . . , N} and Ai1∩
Ai2 = ∅ for i1, i2 = 1, 2, . . . , M , i1 6= i2, and such that the budget constraint is satisfied
(i.e.,

∑M
i=1 |Ai| MCi +

∑
{i:|Ai|>0} FCi ≤ B) and the total security is maximized (i.e.,∑M

i=1 LiRi).

The assessed threat values, the security levels and the risk levels can be set with

information and data available from CAPPS and the TSA. The assessed threat values

provide risk assessment measures for each passenger (scaled between zero and one). It is
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assumed that the assessed threat values are accurate representations of the passengers’

true level of risk (i.e., passengers with higher assessed threat values are more likely to be

a threat than passengers with lower assessed threat values). Another way to interpret

passenger risk is to base the assessed threat values on passenger and baggage attributes

(e.g., a checked bag having a large amount of metal shielding has a larger assessed threat

value than a bag without shielding), and hence, the assessed threat values are assigned

as passengers check in for their flights.

The security level of each class (scaled between zero and one) is based on security

procedures of each device used to screen passengers in that class. In this case, the

security level for class i is defined as the true alarm rate, the probability that a passenger

who is a threat is detected given that they are assigned to class i. Likewise, the risk level

for class i is defined as the conditional probability that class i contains a passenger who

is a threat given that the passenger population contains a passenger who is a threat. In

order for the risk levels to be interpreted as this conditional probability, each assessed

threat value must be proportional to the probability that the passenger is a threat.

The total security is then the overall true alarm rate, the probability that a threat is

detected given that there is a passenger who is a threat. To see this, define the following

events:
D = a threat is detected in the passenger population,
T = the passenger population contains a threat,
Ci = class i contains a passenger who is a threat, i = 1, 2, . . . ,M .

By conditioning on which class contains a threat, the total security can be expressed as

P (D|T ) =
M∑

i=1

P (D|Ci, T ) P (Ci|T ) =
M∑

i=1

Li Ri.

Since each of the passengers in class i are screened individually, Li is the probability of

detecting a class i passenger who is a threat. It is a function of the detection probabilities

associated with the devices and the procedures used to screen passengers in class i.

MAP is formulated as an integer program (2) with binary decision variables xij =

1(0) if passenger j is (not) assigned to class i for i = 1, 2, . . . ,M , j = 1, 2, . . . , N , and

yi = 1(0) if there is (not) at least one passenger assigned to class i = 1, 2, . . . ,M .

max
M∑

i=1

LiRi =
1∑N

j=1 ATj

M∑

i=1

N∑

j=1

LiATjxij (2)
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subject to
M∑

i=1

N∑

j=1

MCixij +
M∑

i=1

FCiyi ≤ B

M∑

i=1

xij = 1, j = 1, 2, . . . , N

1
N

N∑

j=1

xij − yi ≤ 0, i = 1, 2, . . . ,M

yi ∈ {0, 1}, i = 1, 2, . . . ,M

xij ∈ {0, 1}, i = 1, 2, . . . , M, j = 1, 2, . . . , N.

In (2), the objective is to maximize the total security, which is represented by the

sum of the products of the security and risk levels. The first constraint is the budget

feasibility constraint. The second set of N constraints ensures that each passenger is

assigned to exactly one class. The third set of M constraints ensures that the fixed

costs are included for all nonempty classes. The last two sets of M(1 + N) constraints

restrict the yi and xij to being 0-1 binary variables.

Theorem 1 shows that MAP is NP-hard.

Theorem 1: MAP is NP-hard.

Note that MAP can be restricted in several ways and still remain NP-hard. First,

since the polynomial Turing reduction considered fixed costs of zeros, MAP remains

NP-hard when FCi = 0, i = 1, 2, . . . , M . Secondly, MAP remains NP-hard when

the assessed threat values for all passengers are identical (i.e., when passengers are

indistinguishable). Since Theorem 1 shows MAP is NP-hard for a particular risk level

form, MAP remains NP-hard for general risk level forms R1, R2, . . . , RM . However,

when M = 2, MAP is solvable in polynomial time (see Lemma 3 in Section 3.1).

2 Heuristics and Dynamic Programming

This section introduces a Greedy heuristic, the Two Class Greedy Heuristic, that obtains

approximate solutions to MAP in polynomial time, and two dynamic programming

algorithms that obtain optimal solutions to MAP in pseudo-polynomial time. Without

loss of generality, assume that AT1 ≤ AT2 ≤ . . . ≤ ATN and L1 ≤ L2 ≤ . . . ≤ LM .

The heuristics and algorithms find the number of passengers assigned to each class

and then construct the exact passenger assignments. Lemma 1 indicates that for any
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feasible solution to MAP, the passengers with higher assessed threat values are assigned

to classes with higher security levels. Therefore, if nM passengers are assigned to class

M, the class with the highest security level, then the nM passengers with the largest

assessed threat values are assigned to class M. Lemma 2 shows that MAP is polynomial

solvable for a fixed number of classes.

Lemma 1: Given an instance of MAP with AT1 ≤ AT2 ≤ . . . ≤ ATN and L1 ≤ L2 ≤
. . . ≤ LM , the optimal way to assign the N passengers to the M classes given that ni

passengers are assigned to class i = 1, 2, . . . , M is to assign the first n1 passengers to

class 1, the next n2 passengers to class 2, until the last nM passengers are assigned to

class M.

Lemma 2: MAP is polynomial solvable when there are a fixed number of classes (i.e.,

M is fixed).

2.1 The Two Class Greedy Heuristic

The Two Class Greedy Heuristic (2GH) obtains the solution to MAP with the highest

objective function value using no more than two classes. To describe 2GH, let CN+
=

{
i :

⌊
B−FCi

MCi

⌋
≥ N

}
, the subset of classes such that the budget is sufficiently large for

each class to screen all N passengers, and let CN−
=

{
i :

⌊
B−FCi

MCi

⌋
< N

}
, the remaining

subset of classes. Note that CN−
and CN+

are mutually exclusive and exhaustive

subsets of {1, 2, . . . , M}. Two trivial special cases are CN+
= ∅, when there is no

feasible solution (i.e., the budget is not large enough to assign all N passengers to the

M classes), and CN−
= ∅, when the optimal solution value is equal to the largest

security level (i.e., the budget is sufficient to assign all N passengers to the class with

the largest security level).

To find the solution to MAP with the highest objective function value using no

more than two classes, 2GH selects the solution from a set of candidate solutions with

the highest objective function value. The candidate solutions are selected from the set

of feasible solutions to MAP, where the remaining (non-candidate) feasible solutions

can be pruned by assigning individual passengers to classes (see Lemma 1). The set

of candidate solutions are obtained as follows: 2GH begins by partitioning the classes

into CN−
and CN+

and finding the best solution using a single class. The optimal

solution using exactly one class assigns all N passengers to the class in CN+
with the
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largest security level. 2GH then obtains candidate solutions by considering solutions

using exactly two classes, with one class in CN−
and one in CN+

, where each such

pair of classes results in at most one candidate solution. The best solution using classes

i+ ∈ CN+
and i− ∈ CN−

assigns the maximum number of passengers into the class with

the highest security level such that the assignment and budget constraints are satisfied

(i.e., the solution is feasible). Once the number of passengers assigned to each class

is known, individual passengers are assigned to the two classes (see Lemma 1). Only

classes i− ∈ CN−
and i+ ∈ CN+

such that Li+ < Li− need to be considered; otherwise

the resulting solutions would be no better than the best solution using a single class.

In the 2GH pseudo-code, zh is the current best objective function value, the vector

x of length MN is its associated passenger assignment, and Bh is the interim cost of

this passenger assignment. For each candidate solution considered, z′h is the objective

function value, bni−c and dni+e are the number of passengers assigned to i− ∈ CN−

and i+ ∈ CN+
, respectively, and the vector x′ is the passenger assignment.

2GH executes in O(max{N log N, M2N}) time. The initial sorting of the assessed

threat values and the partitioning of the classes into CN+
and CN−

requires O(M +

N log N) time. Note that 2GH considers all combinations of two classes such that one

of these classes is in CN+
and the other class is in CN−

. Therefore, 2GH obtains

|CN− | |CN+ | ≤ M2 candidate solutions in the worst case, and requires O(N) time to

compute the objective function value for each candidate solution. If the assessed threat

values are identical, then 2GH obtains a solution in O(M2) time since the assessed

threat values do not need to be sorted and the objective function values are computed

in constant time.

Lemma 3 states that 2GH finds an optimal solution to MAP when there are two

classes (i.e., M = 2). Theorem 2 applies only to the particular case of MAP when

passengers are indistinguishable. Theorem 2 shows that in this case, 2GH always obtains

solutions which are at least 1/2 of the optimal objective function value.

Lemma 3: MAP is polynomial solvable when there are two classes.

Theorem 2: 2GH always obtains solutions to MAP that are at least 1/2 of the optimal

solution value when passengers have identical assessed threat values.
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algorithm 1 The Two Class Greedy Heuristic

procedure 2GH
Sort assessed threat values such that AT1 ≤ AT2 ≤ . . . ≤ ATN

Partition the set of classes into CN−
and CN+

zh = max{Li : i ∈ CN+}
xij = 0, i = 2, . . . , M, j = 1, 2, . . . , N ; xC+

1 j = 1, j = 1, 2, . . . , N

Bh = N ·MCC+
1

+ FCC+
1

for all i+ = CN+
, i− = CN−

do
Solve the linear equations:
(1) (MCi+)n+ + (MCi−)n− = B − FCi+ − FCi−

(2) n+ + n− = N
if 0 < n− < N then

compute z′h, x′ based on putting the dn+e passengers with the lowest AT values in
class i+ and the remaining bn−c passengers with the highest AT values in class i−

if z′h > zh then
zh = z′h, x ← x′

Bh = FCi+ + FCi− + dn+eMCi+ + bn−cMCi−

end if
end if

end for
return x, zh, Bh

end procedure

2.2 Dynamic Programming

This section introduces two dynamic programming algorithms which obtain optimal

solutions to MAP in pseudo-polynomial time. For both algorithms, the passengers are

sorted such that AT1 ≤ AT2 ≤ . . . ≤ ATN and the security levels are sorted such that

L1 ≤ L2 ≤ . . . ≤ LM . This ensures that the dynamic programming algorithms assign

the passengers with the highest assessed threat values to the (nonempty) class with the

largest security level (see Lemma 1).

These dynamic programming algorithms assume that the marginal costs, the fixed

costs, and the budget assume values that are multiples of a base unit α. For example,

the costs may be defined in multiples of $10, which results in α = 10. Moreover,

the intermediate budgets B̂ may only take on a set of β discrete values such that

B̂ = α, 2α, . . . , βα = B, where the recursion cannot consider other intermediate budget

values. Note that if α = 1, then β = B in the worst case, hence B̂ = 1, 2, . . . , β = B.

To describe the first dynamic programming algorithm for MAP, let gm,n(B̂) denote

the optimal solution to the problem defined over the first m = 1, 2, . . . , M classes, and
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n = 1, 2, . . . , N passengers, with budget B̂ = α1, α2, . . . , αβ = B,

gm,n(B̂) = max





1∑N
j=1 ATj

m∑

i=1

n∑

j=1

LiATjxi,j

∣∣∣∣∣∣

m∑

i=1

n∑

j=1

MCixi,j +
m∑

i=1

FCiyi ≤ B̂;

m∑

i=1

xi,j = 1, j = 1, 2, . . . , n;
1
N

n∑

j=1

xi,j − yi ≤ 0, i = 1, 2, . . . , m



 ,

where xi,j ∈ {0, 1}, i = 1, 2, . . . , m, j = 1, 2, . . . , n and yi ∈ {0, 1}, i = 1, 2, . . . ,m.

The optimal solution of MAP is given by gM,N (B). Initially, g1,n(B̂) = L1
∑n

j=1 ATj if

FC1 +MC1n ≤ B̂ and −∞ otherwise, B̂ = α1, α2, . . . , αβ, n = 1, 2, . . . , N . Subsequent

values of gm,n(B̂) are found by the recursion

gm,n(B̂) = max





gm−1,n(B̂),

maxt=1,2,...,T {gm−1,n−t(B̂−FCm−MCmt)+Lm
∑n

j=n−t+1 ATj}

where T = min{n, b B̂−FCm
MCm

c}. At each step of the recursion, either no passengers are

assigned to class m, in which case the fixed cost is not assessed against the budget,

or between 1 and T unassigned passengers with the highest assessed threat values are

assigned to class m. Since b B̂−FCm
MCm

c = N in the worst case, each step in the recursion

can call at most N other recursions and the recursion is called at most M N β other

times, resulting in a total time bound of O(N2M B) in the worst case. Storing the

values of gm,n(B̂) requires space bound O(M N B).

To describe the second dynamic programming algorithm, let gm,n(B̂) be defined as

before, and let fm,n(B̂), m = 1, 2, . . . , M, n = 1, 2, . . . , N, B̂ = α1, α2, . . . , αβ = B be

the optimal solution over the first m classes and n passengers with budget B̂ given that

at least one passenger is assigned to class m:

fm,n(B̂) = max





1∑N
j=1 ATj

m∑

i=1

n−1∑

j=1

LiATjxi,j + LmATn

∣∣∣∣∣∣

m∑

i=1

n−1∑

j=1

MCixi,j+

m−1∑

i=1

FCiyi ≤ B̂ − FCm −MCm;
m∑

i=1

xi,j = 1, j = 1, 2, . . . , n− 1;

1
N

n−1∑

j=1

xi,j − yi ≤ 0, i = 1, 2, . . . ,m− 1





with xi,j ∈ {0, 1}, i = 1, 2, . . . ,m, j = 1, 2, . . . , n− 1 and yi ∈ {0, 1}, i = 1, 2, . . . , m− 1.

The optimal solution of MAP is again given by gM,N (B). Initially, f1,n(B̂) = g1,n(B̂) =

L1
∑n

j=1 ATj if FC1 + MC1n ≤ B̂ and −∞ otherwise. Additionally, fm,1(B̂) = −∞
for m = 1, 2, . . . ,M , B̂ < FCm + MCm, and fm,1(B̂) = LmAT1 for m = 1, 2, . . . , M ,
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B̂ ≥ FCm + MCm. Moreover, fm,n(B̂) = −∞ if FCm + MCm < B̂ for m = 1, 2, . . .,

n = 1, 2, . . . , N . Subsequent values of fm,n(B̂) are found by the recursion

fm,n(B̂) = max





gm−1,n−1(B̂−FCm−MCm) + LmATn

fm,n−1(B̂−MCm) + LmATn}.
(3)

Subsequent values of gm,n(B̂) are found by the recursion

gm,n(B̂) = max{gm−1,n(B̂), fm,n(B̂)}. (4)

At each step of (4), either no passengers are assigned to class m, in which case the

fixed cost of class m is not assessed against the budget, or at least one passenger is

assigned to class m by (3). This dynamic programming algorithm runs in O(N M B)

time. The values gm,n(B̂) and fm,n(B̂) require O(N M B) space. When the dynamic

programming algorithm is complete, the number of passengers assigned to each class

can be determined from iterating back from gM,N (B) and fM,N (B). Once the number

of passengers assigned to each class is known, the passenger partitions are determined

by Lemma 1.

3 Computational Results

This section provides computational results for MAP. The results incorporate data

extracted from the Official Airline Guide (OAG) for the domestic flights of a single

airline carrier at distinct stations in the United States. The data provided by the OAG

includes the set of flights, the number of available seats on each flight, and the departure

time of each flight. It is assumed that all passengers have exactly one checked and one

carry-on bag.

A total of 270 scenarios are considered, where these scenarios were designed using

three passenger sets (i.e., the number of passengers), three assessed threat distributions,

three types of classes, and ten budget values. The three passenger sets are defined based

on data extracted from the OAG, which consider 10, 30, and 60 minute windows of

time. To find the number of passengers in these time segments, passengers are assumed

to arrive randomly according to a uniform distribution between 30 and 90 minutes

prior to the departure time of each flight. This arrival interval is recommended by

airlines for domestic flights (e.g., see www.nwa.com, www.ual.com, www.aa.com, and
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www.delta.com). Moreover, each flight is assumed to have an enplanement rate of 80%

(i.e., the number of passengers divided by the number of available seats). The data set

is chosen based on finding the largest expected number of arriving passengers in 10, 30,

and 60 minute windows, resulting in 1230, 3690, and 6200 passengers, respectively. The

flights associated with each group of passengers can be identified and grouped together

resulting in three subsets of flights for the different scenarios.

The scenarios consider three hypothetical assessed threat value distributions based on

information from the TSA. Initially, all passengers are assumed to be identical resulting

in a degenerate distribution with all assessed values equal to one. This corresponds to

the case when no information is known about the passengers (call this Type I). The

next two assessed threat distributions are taken to be exponential distributions with

means 1/8 and 1/16, respectively, that are truncated to allow only values less than

one (Ross 2000). Call these two cases Type II and Type II, respectively. Note that

the Type II and Type III assessed threat distributions result in approximately 80% of

the passengers having assessed threat values less than 0.2 and 0.1, respectively. These

assessed threat distributions model situation where few passengers are perceived to be

potential risks, hence most passengers have low assessed threat values.

Table 1 contains the security screening device data used for all the scenarios. It is

divided into three areas: checked baggage, passenger, and carry-on baggage screening

devices. The device values are estimated using information available in the public

domain (Butler and Poole 2002; Virta et al. 2003). The yearly costs are computed based

on the purchase costs, the expected lifetime of the device, and the yearly maintenance

costs. In Table 1, the unadjusted fixed cost FC ′ is the fixed cost per hour per 1000

passengers, and it is based on the yearly fixed costs divided by the hours of operation

per year (360 days a year, 6 peak hours per day), normalized by the capacity.

Three cases are considered consisting of three, five, and eight classes. The three-

class scenarios are motivated by the TSA CAPPS II description, while allowing all

passengers are allowed to board an aircraft (TSA 2003b). The five-class and eight-class

scenarios correspond to environments with passengers of varying perceived risk levels

using existing security screening devices. The marginal costs, fixed costs, and security

level associated with each class for all three class scenarios are summarized in Table

2. The costs given are in (United States) dollars. These are computed from the values
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Table 1: Security device data
Device False
Category Device Type Clear FC′ MC Units/hour
Checked EDS 0.12 4.167 1.00 125
Baggage Open Bag Trace (OT) 0.15 1.199 0.83 28

Metal Detector (MD) 0.30 0.051 0.28 90
Passenger Hand Wand Inspection (HW) 0.20 0.009 1.25 20

X-ray Machine (XR) 0.20 0.720 0.28 90
Carry-on Detailed Hand Search (DHS) 0.20 0 1.25 20
Baggage Open Bag Trace/

Detailed Search (OTDS) 0.15 1.199 1.29 18

associated with each the devices in each class and the number of passengers.

The marginal costs are computed by summing the marginal costs of the devices used

by the class. The fixed costs are computed by summing the fixed costs of the devices

used by the class and scaling to account for the length of the time window and the

number of passengers. The fixed cost associated with open trace is only assessed once,

even if both types of open trace are used in the class. Furthermore, if there are M

classes, then the fixed cost values are divided by M. This is done to compensate for

the fact that not all passengers are screened by all devices and that some classes share

security screening devices.

The security levels for these examples are the overall true alarm rate, the probability

that a threat is detected given that there is a threat. A passenger who is a threat is

assumed to be detected if at least one security device gives an alarm response. Ad-

ditionally, it is assumed that it is equally likely for a threat to be in a checked bag,

carry-on bag, or on a person. This assumption is reasonable since no data exists that

suggests a distribution among these means of attack.

Each scenario is addressed using the 2GH implemented in Matlab. All the scenarios

are also formulated as integer programming models (IPs) and solved using CPLEX 7.0.

All the computational experiments were executed on a Pentium III 550 MHz processor

with 1048 MB of RAM. Tables 3, 4, and 5 contain the 2GH and IP values for the

scenarios, as well as the CPU times for the IPs. For each IP, CPLEX was halted

after 170,000 CPU seconds (approximately 2 CPU days) if it had not found an optimal

solution. This value is sufficiently long to give CPLEX a reasonable amount of time

to solve the problems. If the IP was not solved to optimality, an asterisk (*) is listed
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Table 2: Security class costs and security levels
Class Devices FC FC FC MC L

N=1230 N=3690 N=6200
1 EDS, MD, XR 67.49 202.47 340.19 1.56 0.793
2 EDS, MD, HW, XR DHS 67.62 202.85 340.83 2.81 0.927
3 EDS, OT, MD, HW, XR, OTDS 93.10 279.30 469.29 4.93 0.964
1 MD, XR 18.98 56.94 95.68 0.56 0.500
2 EDS, MD, XR 121.48 364.44 612.35 1.56 0.793
3 EDS, MD, XR, DHS 121.48 364.44 612.35 2.81 0.847
4 OT, MD, HW, XR, DHS 48.70 146.10 245.47 2.64 0.917
5 EDS, OT, MD, HW, XR, OTDS 167.58 502.74 844.72 4.93 0.964
1 MD, XR 23.73 71.18 119.60 0.56 0.500
2 MD, HW, XR 24.01 72.03 121.03 1.81 0.580
3 EDS, MD, XR 151.85 455.56 765.43 1.56 0.793
4 EDS, MD, HW, XR 151.85 455.56 765.43 2.81 0.847
5 EDS, MD, XR, DHS 152.14 456.41 766.87 2.81 0.873
6 OT, MD, HW, XR, DHS 60.87 182.62 306.84 3.89 0.917
7 OT, MD, HW, XR, OTDS 81.35 244.05 410.06 3.93 0.920
8 EDS, OT, MD, HW, XR, OTDS 209.48 628.43 1055.90 4.93 0.964

as its IP value. Therefore, all the IP values listed are optimal values. All 90 three-

class scenarios finished in the allotted time, whereas 87 and 72 five-class and eight-class

scenarios, respectively, finished in the allotted time. The Type II and Type III solutions

always have larger objective function values than the corresponding Type I solution

with the same number of passengers and budget value. This suggests that models that

incorporate such information about passengers are more effective than models which

assume that passengers are indistinguishable. For small budget values, the Type II

and Type III solutions have significantly higher objective values than the corresponding

Type I solution. As the budget increases, these differences become less pronounced,

which suggests that when a large budget is available, it is less critical to distinguish

between passengers (since nearly all passengers can then be assigned to the class with

the highest (and most costly) security level).

For all of the Type I IPs, the scenarios with indistinguishable passengers finished in

under 2 CPU seconds regardless of the number of classes or the number of passengers.

The Type II and Type III IPs took no less than 1.95 CPU seconds to complete. Of the

90 three-class IPs, 89 finished in less than one CPU hour, and 81 finished in less than

one CPU minute. Of the 87 five-class IPs that finished, 74 finished in less than one

CPU hour, and 47 finished in less than one CPU minute. Of the 72 eight-class IPs that
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Table 3: Solutions for three-class scenarios
Type I Type II Type III

2GH IP IP CPU 2GH IP IP CPU 2GH IP IP CPU
N B ($) value value time (sec) value value time (sec) value value time (sec)

1230 2202.47 0.8000 0.8000 1.33 0.8199 0.8199 2.39 0.8192 0.8192 2.16
1230 2646.91 0.8388 0.8388 0.98 0.8894 0.8894 3.27 0.8868 0.8868 3.14
1230 3091.36 0.8774 0.8774 1.00 0.9172 0.9176 18.9 0.9161 0.9161 32.2
1230 3535.80 0.9162 0.9162 0.97 0.9266 0.9346 3.27 0.9265 0.9335 5.45
1230 3980.25 0.9312 0.9312 1.03 0.9402 0.9458 2.70 0.9399 0.9447 3.16
1230 4424.69 0.9375 0.9375 1.02 0.9511 0.9533 2.83 0.9504 0.9525 3.05
1230 4869.14 0.9438 0.9438 0.97 0.9574 0.9583 2.92 0.9569 0.9578 2.94
1230 5313.58 0.9501 0.9501 1.02 0.9612 0.9616 2.94 0.9609 0.9612 2.92
1230 5758.03 0.9564 0.9564 0.98 0.9632 0.9633 2.28 0.9631 0.9632 2.38
1230 6202.47 0.9627 0.9627 0.98 0.9640 0.9640 1.95 0.9640 0.9640 2.17
3690 6407.41 0.7942 0.7942 1.06 0.7997 0.7997 8.78 0.7998 0.7998 8.52
3690 7762.97 0.8336 0.8336 1.00 0.8827 0.8827 9.59 0.8819 0.8819 13.1
3690 9118.52 0.8730 0.8730 1.00 0.9147 0.9158 8.95 0.9143 0.9155 9.37
3690 10474.08 0.9124 0.9124 0.98 0.9262 0.9338 8.98 0.9262 0.9334 12.2
3690 11829.63 0.9310 0.9310 1.00 0.9399 0.9453 9.63 0.9398 0.9448 8.84
3690 13185.19 0.9374 0.9374 1.03 0.9508 0.9529 8.75 0.9506 0.9526 10.1
3690 14540.74 0.9438 0.9438 1.03 0.9572 0.9581 10.6 0.9571 0.9580 10.4
3690 15896.30 0.9503 0.9503 1.00 0.9612 0.9615 8.08 0.9611 0.9614 10.5
3690 17251.85 0.9567 0.9567 0.97 0.9633 0.9633 9.83 0.9632 0.9633 8.63
3690 18607.41 0.9631 0.9631 0.98 0.9640 0.9640 8.41 0.9640 0.9640 8.19
6200 10720.57 0.7935 0.7935 1.05 0.7958 0.7958 33.9 0.7960 0.7960 7359
6200 13042.79 0.8336 0.8336 0.95 0.8822 0.8822 47.8 0.8814 0.8814 105
6200 15365.01 0.8738 0.8738 1.02 0.9148 0.9148 73.1 0.9145 0.9145 75.2
6200 17687.24 0.9139 0.9139 1.00 0.9263 0.9333 226.5 0.9263 0.9330 45.2
6200 20009.46 0.9310 0.9310 1.03 0.9400 0.9451 67.0 0.9399 0.9447 35.6
6200 22331.68 0.9376 0.9376 1.03 0.9509 0.9529 61.3 0.9506 0.9527 30.8
6200 24653.90 0.9441 0.9441 1.02 0.9573 0.9582 67.3 0.9572 0.9581 33.9
6200 26976.13 0.9507 0.9507 0.98 0.9613 0.9616 54.3 0.9612 0.9615 31.6
6200 29298.35 0.9572 0.9572 1.05 0.9633 0.9634 61.0 0.9633 0.9634 24.0
6200 31620.57 0.9637 0.9637 1.02 0.9640 0.9640 31.2 0.9640 0.9640 12.9
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Table 4: Solutions for five-class scenarios
Type I Type II Type III

2GH IP IP CPU 2GH IP IP CPU 2GH IP IP CPU
N B ($) value value time (sec) value value time (sec) value value time (sec)

1230 800 0.5068 0.5068 1.19 0.5326 0.5326 10648 0.5328 0.5328 16884
1230 1400 0.6358 0.6358 1.19 0.7534 0.7534 86201 0.7456 0.7456 79460
1230 2000 0.7787 0.7787 1.19 0.8524 0.8524 3214 0.8471 0.8471 19554
1230 2600 0.8407 0.8407 1.19 0.9005 0.9005 139 0.8982 0.8983 43.7
1230 3200 0.8980 0.8980 1.19 0.9166 0.9222 190 0.9165 0.9206 16.7
1230 3800 0.9226 0.9226 1.19 0.9344 0.9406 19.6 0.9340 0.9396 8.19
1230 4400 0.9326 0.9326 1.19 0.9503 0.9522 17.6 0.9494 0.9513 26.8
1230 5000 0.9426 0.9426 1.19 0.9585 0.9591 1555 0.9580 0.9585 6.7
1230 5600 0.9526 0.9526 1.19 0.9626 0.9627 286 0.9624 0.9625 5.6
1230 6200 0.9626 0.9626 1.19 0.9640 0.9640 6.42 0.9640 0.9640 3.14
3690 2400 0.5070 0.5070 1.19 0.5347 0.5347 6618 0.5350 0.5350 3597
3690 4200 0.6359 0.6359 1.17 0.7515 0.7515 159 0.7485 0.7485 469
3690 6000 0.7789 0.7789 1.19 0.8504 0.8504 240 0.8492 0.8492 808
3690 7800 0.8407 0.8407 1.19 0.8997 0.8997 157692 0.8988 0.8988 84619
3690 9600 0.8982 0.8982 1.19 0.9166 0.9219 158 0.9165 0.9213 519
3690 11400 0.9226 0.9226 1.19 0.9345 0.9404 51.1 0.9344 0.9398 126
3690 13200 0.9326 0.9326 1.19 0.9500 0.9519 130 0.9497 0.9515 109
3690 15000 0.9426 0.9426 1.19 0.9583 0.9589 1310 0.9582 0.9587 1029
3690 16800 0.9526 0.9526 1.19 0.9626 0.9626 29.9 0.9625 0.9625 35.8
3690 18600 0.9626 0.9626 1.19 0.9640 0.9640 14.9 0.9640 0.9640 10.3
6200 4000 0.5060 0.5060 1.19 0.5307 0.5307 6934 0.5310 0.5310 16624
6200 7033.33 0.6348 0.6348 1.19 0.7492 * 0.7462 0.7462 1165
6200 10066.67 0.7782 0.7782 1.19 0.8488 * 0.8478 0.8478 4233
6200 13100 0.8406 0.8406 1.17 0.8991 0.8991 78617 0.8985 *
6200 16133.33 0.8984 0.8984 1.19 0.9166 0.9216 153615 0.9165 0.9211 353.8
6200 19166.67 0.9227 0.9227 1.19 0.9346 0.9402 117 0.9344 0.9397 128.2
6200 22200 0.9327 0.9327 1.19 0.9499 0.9517 91.1 0.9497 0.9514 112.2
6200 25233.33 0.9427 0.9427 1.19 0.9583 0.9588 85.3 0.9582 0.9586 114.8
6200 28266.67 0.9528 0.9528 1.19 0.9626 0.9626 86.8 0.9625 0.9625 86.6
6200 31300 0.9628 0.9628 1.19 0.9640 0.9640 35.7 0.9640 0.9640 27.8
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Table 5: Solutions for eight-class scenarios
Type I Type II Type III

2GH IP IP CPU 2GH IP IP CPU 2GH IP IP CPU
N B ($) value value time (sec) value value time (sec) value value time (sec)

1230 800 0.5033 0.5033 1.19 0.5133 * 0.5134 *
1230 1400 0.6274 0.6274 1.19 0.7364 0.7364 114570 0.7320 0.7320 14505
1230 2000 0.7704 0.7704 1.19 0.7930 0.8135 740.9 0.7921 0.8105 2053.9
1230 2600 0.8133 0.8133 1.19 0.8503 0.8611 132.2 0.8487 0.8578 197.4
1230 3200 0.8438 0.8438 1.17 0.8891 0.8968 2074.6 0.8863 0.8927 59.03
1230 3800 0.8773 0.8773 1.19 0.9205 0.9233 133.4 0.9173 0.9203 46.9
1230 4400 0.8972 0.8972 1.19 0.9405 0.9417 4547.8 0.9385 0.9397 276.7
1230 5000 0.9200 0.9200 1.19 0.9534 0.9538 21.64 0.9521 0.9525 47.91
1230 5600 0.9370 0.9370 1.19 0.9606 0.9606 1075.4 0.9602 0.9602 274.4
1230 6200 0.9590 0.9590 1.17 0.9639 0.9639 7.28 0.9639 0.9639 8.19
3690 2500 0.5060 0.5060 1.19 0.5305 * 0.5308 *
3690 4300 0.6355 0.6355 1.19 0.7410 0.7410 128020 0.7401 *
3690 6100 0.7784 0.7784 1.19 0.7947 * 0.7932 0.8153 83785
3690 7900 0.8147 0.8147 1.19 0.8528 * 0.8521 0.8608 4852
3690 9700 0.8456 0.8456 1.19 0.8908 0.8974 732.1 0.8896 0.8958 102.3
3690 11500 0.8784 0.8784 1.19 0.9207 * 0.9197 0.9225 3945
3690 13300 0.8984 0.8984 1.19 0.9406 * 0.9401 0.9412 1793.5
3690 15100 0.9200 0.9200 1.19 0.9535 0.9538 2730.6 0.9531 0.9533 2285.1
3690 16900 0.9382 0.9382 1.19 0.9608 0.9608 107475 0.9606 *
3690 18700 0.9603 0.9603 1.19 0.9640 0.9640 26.05 0.9640 0.9640 32.52
6200 4000.00 0.5030 0.5030 1.19 0.5126 0.5126 1445.6 0.5126 *
6200 7055.56 0.6275 0.6275 1.19 0.7338 0.7338 799.2 0.7328 0.7328 989.8
6200 10111.11 0.7719 0.7719 1.19 0.7922 * 0.7922 *
6200 13166.67 0.8138 0.8138 1.19 0.8510 * 0.8502 *
6200 16222.22 0.8448 0.8448 1.19 0.8895 * 0.8882 0.8944 8634.0
6200 19277.78 0.8781 0.8781 1.19 0.9197 0.9225 7918.8 0.9189 *
6200 22333.33 0.8983 0.8983 1.19 0.9400 0.9411 3596.7 0.9397 0.9407 6889.5
6200 25388.89 0.9200 0.9200 1.17 0.9532 * 0.9529 0.9532 1272.5
6200 28444.44 0.9386 0.9386 1.17 0.9608 0.9608 14360 0.9606 0.9606 1321.0
6200 31500.00 0.9609 0.9609 1.19 0.9640 0.9640 57.97 0.9640 0.9640 108.3
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Table 6: Average 2GH CPU times (seconds)
M N Type I Type II Type III
3 1230 0.0314 0.0328 0.0343
3 3690 0.0954 0.0892 0.0923
3 6200 0.140 0.140 0.148
5 1230 0.0640 0.0672 0.0625
5 3690 0.186 0.183 0.181
5 6200 0.303 0.305 0.308
8 1230 0.144 0.147 0.148
8 3690 0.438 0.434 0.436
8 6200 0.719 0.727 0.727

finished, 60 finished in less than one CPU hour and 39 finished in less than one CPU

minute. In general, the IPs with relatively small budget values took longer to solve,

while the IPs that had larger budget values took the least amount of computing time,

particularly when the budgets were large enough to assign nearly all passengers to the

class with the highest security level.

In all 90 Type I scenarios and in 34 of 78 (finished) Type II and 33 of 81 (finished)

Type III scenarios, the 2GH solution is identical to the optimal solution. The scenarios

where the 2GH value and the IP value matched are in boldface in Tables 3, 4, and 5.

Typically, scenarios with either small or large budget values had the same 2GH and

IP values, where the optimal solutions used two classes. When the 2GH and IP values

were different, the IP solutions never used more than three classes.

Table 6 contains the average CPU time to execute 2GH for each of the sets of

scenarios. All of the average 2GH CPU times for a given number of classes, number of

passengers, and assessed threat distribution are less than 0.73 CPU seconds, with the

2GH never taking longer than 1.3 CPU seconds to identify a single approximate solution.

Moreover, for a given number of classes and passengers, the 2GH CPU time remained

approximately the same across the Type I, II, and III assessed threat distributions.

This can be contrasted to the corresponding IPs, which were solved quickly for Type I

scenarios, and generally took longer for the Type II and III scenarios.

The quality of the 2GH solutions can be measured by the relative effectiveness mea-

sure

Γ =
zh − z0

z − z0
.

where zh is the 2GH solution objective function value, z0 is the worst possible feasible
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solution objective function value, and z is the optimal solution objective function value.

If the relative effectiveness measure is one, then 2GH obtains an optimal solution, while if

is zero, then 2GH obtains the worst possible feasible solution. Figures 1, 2, and 3 depict

the relative effectiveness measure of the 2GH solutions for the the three-class, five-class,

and eight-class scenarios, respectively. Several relative effective measure values could

not be computed for the five-class and eight-class solutions since their corresponding

IPs did not finish in the allotted time, hence several points are missing from Figures

2 and 3. Note that the Type I scenarios are omitted since the relative effectiveness

measures for these scenarios are all one. The Type II and Type III scenarios often have

relative effectiveness measures of one when the budget was either small or large. The

relative effectiveness measure is never less than 0.943 for the three-class scenarios, 0.986

for the five-class scenarios, and 0.930 for the eight-class scenarios, which indicates that

the 2GH solutions are close to the optimal values when using just two classes.
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Figure 1: Relative effectiveness measure for three-class examples

21



2000 4000 6000
0.98

0.985

0.99

0.995

1

1.005

R
el

at
iv

e 
E

ffe
ct

iv
en

es
s 

M
ea

su
re

Budget ($)

N=1230

Type II
Type III

0.5 1 1.5 2

x 10
4

0.98

0.985

0.99

0.995

1

1.005

Budget ($)

N=3690

Type II
Type III

1 2 3

x 10
4

0.98

0.985

0.99

0.995

1

1.005

Budget ($)

N=6200

Type II
Type III

Figure 2: Relative effectiveness measure for five-class examples

4 Conclusions

Passenger and baggage screening is a critical component of any aviation security system

operation. This paper introduces the Multilevel Allocation Problem, a framework to

model passenger and baggage screening systems. MAP models each security class in

terms of its marginal and fixed costs, and security level, where passenger assignment

and budget constraints must be satisfied. MAP is formulated as an integer program-

ming model. MAP is shown to be NP-hard, and two dynamic programming algorithms

that solve MAP in O(N2MB) and O(NMB) time and O(NMB) space are presented.

Furthermore, the Two Class Greedy Heuristic (2GH) is introduced to obtain approxi-

mate solutions to MAP in O(M2N) time with an additional O(N log N) time for the

initial sorting of passengers.

Data extracted from the Official Airline Guide (OAG) and hypothetical data based

on information provided by the TSA was used to construct a total of 270 scenarios for

MAP. The optimal (IP) and 2GH objective function values were computed for each

of these scenarios, where twenty-one of the IPs did not terminate with an optimal
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Figure 3: Relative effectiveness measure for eight-class examples

solution in the allotted computing time (three of which are five-class scenarios and

eighteen of which are eight-class scenarios). In many cases, 2GH obtained the optimal

solution value, including all of the Type I scenarios, 34 of the 78 (completed) Type II

scenarios, and 33 of the 81 (completed) Type III scenarios. The relative effectiveness

measures for the 2GH are greater than 0.940 in the three-class scenarios, 0.986 for the

five-class scenarios, and greater than 0.930 for the eight-class scenarios. One limitation

of the 2GH is that it obtains solutions that use no more than two classes. However,

the optimal solutions for all of the Type I scenarios use two classes, and none of the

completed optimal solutions for the Type II and Type III scenarios use more than

three classes. This suggests that even when many classes are available, it may be more

effective (from a security standpoint) to use fewer classes. This implication is desirable

on a practical level since security personnel need to be trained to be fluent with fewer

security procedures. Therefore, any security system design that is simple to implement

and easy operate is of added value.

There are several possible directions to extend the research results presented. First,
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minimizing the overall false alarm rate is of interest because the majority of passengers

are not threats, and high false alarm rates are costly for the airlines. This objective

suggests the development of the Multicriteria MAP, which simultaneously maximizes the

overall true alarm rate and minimizes the overall false alarm rate. Second, the Dynamic

MAP, a variation of MAP in which passengers arrive dynamically can be formulated,

and algorithms for effectively assigning passengers to classes in real-time would need to

be obtained. Another model for passenger and baggage prescreening considers classes

after the budget has been used to purchase security devices and hire security personnel.

In this case, each class is defined in terms of its associated devices and their capacities,

though costs are not included in such a model and the objective is to assign passengers

to classes so that the total security is maximized while all devices are operating within

their capacities. Work is in progress to design algorithms and heuristics for all these

models.
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Appendix

Proof of Theorem 1:

MAP is shown to be NP-hard by constructing a polynomial Turing reduction from the

Integer Knapsack Problem (IKP) (Lueker 1975). The objective of IKP is to choose the

number of each item type to add to the knapsack such that the knapsack is within its

capacity and the total profit is maximized. IKP is first formally stated.

Integer Knapsack Problem (IKP)
Given a total of m item types, with weights w1, w2, . . . , wm, profits, p1, p2, . . . , pm, and
knapsack capacity, c, assign nonnegative integers u1, u2, . . . , um to the m objects such
that

∑m
i=1 uiwi ≤ c and

∑m
i=1 uipi is maximized.

Given an arbitrary instance of the IKP, construct a particular instance of MAP.

Without loss of generality, assume that w1 ≤ wi for i = 2, 3, . . . , m. For simplification,

let p̄ =
∑m

i=1 pi. Then any arbitrary instance of IKP can be formulated as a particular

instance of MAP as follows: M = m+1 classes, N = bc/w1c passengers, budget B = c,

the security level of each class Li = pi/p̄ for i = 1, 2, . . . ,m, Lm+1 = 0, marginal

costs MCi = wi for i = 1, 2, . . . , m, MCm+1 = 0, FCi = 0 for i = 1, 2, . . . , m + 1,

and ATj = 1/N for j = 1, 2, . . . , N (i.e., passengers are indistinguishable). Note that

0 ≤ Li ≤ 1 for i = 1, 2, . . . , m + 1. This reduction requires O(m + bc/w1c) time and

O(m) space.

To show that an optimal solution to MAP maps to an optimal solution of IKP, sup-

pose that A∗1, A∗2, . . . , A∗m+1 is an optimal solution to MAP. Note that A∗1, A∗2, . . . , A∗m+1

are mutually exclusive and exhaustive subsets of {1,2,. . . ,N }, the budget constraint is

satisfied (i.e.,
∑m+1

i=1 MCi|A∗i | ≤ B), and the total security is maximized (i.e.,
∑m+1

i=1 Li|A∗i |).
The claim is that u∗1 = |A∗1|, u∗2 = |A∗2|, . . . , u∗m = |A∗m| is an optimal solution to IKP.

Since wi = MCi and pi = (1/p̄) Li, i = 1, 2, . . . , m, MCm+1 = Lm+1 = 0, and c = B,

then u∗2, u∗1, . . . , u∗m is a feasible solution to IKP (i.e.,
∑m

i=1 wiu
∗
i ≤ c) with objective
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function value
∑m+1

i=1 Li|A∗i | = (1/p̄)
∑m

i=1 piu
∗
i .

Suppose that ū1, ū2, . . . , ūm is an optimal solution to IKP such that
∑m

i=1 piūi >
∑m

i=1 piu
∗
i . Then |Ā1| = ū1, |Ā2| = ū2, . . . , |Ām| = ūm and |Ām+1| = N − ∑m

i=1 ūi

is a feasible solution to MAP. To see this, note that
∑M

i=1 |Āi| = N , hence, mutually

exclusive and exhaustive passenger assignment subsets exist. Since ū1, ū2, . . . , ūm is a

feasible solution to IKP, then
m+1∑

i=1

MCi|Āi| =
m∑

i=1

MCi|Āi| =
m∑

i=1

wiūi ≤ c = B,

and Ā1, Ā2, . . . , Ām+1 is a feasible solution to MAP. Since p̄
∑m+1

i=1 Li|Āi| =
∑m

i=1 piūi,

then
m∑

i=1

piu
∗
i = p̄

m+1∑

i=1

Li|A∗i | ≥ P
m+1∑

i=1

Li|Āi| =
m∑

i=1

piūi.

and
∑m

i=1 piūi >
∑m

i=1 piu
∗
i , which is a contradiction. Therefore, u∗1 = |A∗1|, u∗2 =

|A∗2|, . . . , u∗m = |A∗m| is an optimal solution to IKP. 2

Proof of Lemma 1:

Let lk, k = 1, 2, . . . , N be the security level of the class passenger k is assigned to and

ni = |{k|lk = Li}| for i = 1, 2, . . . , M be the number of passengers assign to class i.

Since N is in general much larger than M, each security level value may be duplicated

many times. For example, if there are fifty passengers and two classes with L1 = 0.5

and L2 = 0.9, and the first forty passengers are assigned to class 1, then l1 = l2 =

... = l40 = 0.5 and l41 = l42 = ... = l50 = 0.9. The MAP objective with passenger

assignments A1, A2, . . . , AM is

1∑N
j=1 ATj

M∑

i=1

∑

j∈Ai

LiATj =
1∑N

j=1 ATj

N∑

j=1

ljATj .

The proof follows from Hardy’s Lemma (Hardy et al. 1934), which states that if

x1 ≤ x2 ≤ . . . ≤ xn and y1 ≤ y2 ≤ . . . ≤ yn are sequences of numbers, then

max(i1,i2,...,in)∈P

n∑

j=1

xijyj =
n∑

j=1

xjyj ,

where P is the set of all permutations of the integers (1, 2, . . . , n). 2
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Proof of Lemma 2:

An enumeration algorithm considers all possible passenger assignments and returns the

feasible solution with the best objective function value. Since each of the N passengers

can be assigned to each of the M classes, then this enumeration algorithm considers

MN total passenger assignments.

However, consider a modified enumeration algorithm for solving MAP which uses

Lemma 1 to limit the number of passenger assignments considered. Lemma 1 indicates

how to assign individual passengers to classes once the number of passengers assigned to

each class is known. Therefore, the total number of passenger assignments to consider

is a “combination of multisets” (Brualdi 1999),



N + M − 1

N


 =

(N + M − 1)(N + M − 2) · · · (N + 1)
(M − 1)!

= O(NM−1).

Since O(N) time is required to assign individual passengers to classes and to determine

the objective function value, then this modified enumeration algorithm requires O(NM )

time, hence, is polynomial in terms of the number of passengers N for a fixed number

of classes M. 2

Proof of Lemma 3:

For M = 2 classes, 2GH executes in O(N) time with an additional O(N log N) time for

the initial sort. Without loss of generality, it is assumed that L1 ≤ L2 and that at least

one class is in CN+
, hence a feasible solution exists. In order to determine whether 2GH

finds an optimal solution, two cases are considered: 1) class 2 is in CN+
and 2) class 1

is in CN+
and class 2 is in CN−

.

When class 2 is in CN+
, 2GH finds the optimal solution when it considers the best

solution using one class. In this case, the heuristic value is identical to the optimal

objective function value of L2.

When class 1 is in CN+
and class 2 is in CN−

, then the best solution using exactly

one class that 2GH obtains is L1. Then, 2GH considers solutions using both classes,

which leads to solving the following linear equations,

MC1n1 + MC2n2 = B − FC1 − FC2,

n1 + n2 = N.
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If n2 ≤ 0, then there is no feasible solution using both classes and L1 is the optimal

solution value. If 0 < n2 < N , an integer feasible solution is created by adding dn1e
and bn2c passengers to class 1 and class 2, respectively. Therefore, dn1e and bn2c are

the optimal number of passengers to assign to class 1 and class 2, respectively.

Secondly, Lemma 1 indicates that the optimal way to assign bn2c passengers to the

class with the higher security level is to choose the bn2c passengers with the highest

assessed threat values, which is how the 2GH assigns passengers to class 2. Since both

2GH and the optimal solutions assign the same set of passengers to class 2, then the

solutions are identical. 2

Proof of Theorem 2:

When all of the passengers have identical assessed threat values, then the particular

instance of MAP can be formulated as an instance of the k -item Integer Knapsack

Problem with Set-up Weights (kIKPSW) (McLay and Jacobson 2003).

The Integer Knapsack Problem with Set-up Weights (kIKPSW)
Given a total of m types of items, with each type of item having positive integer
weight w1, w2, . . . , wm, nonnegative integer set-up weight s1, s2, . . . , sm, nonnegative
value v1, v2, . . . , vm, knapsack capacity c, and cardinality k, find nonnegative integers
x1, x2, . . . , xm such that

∑m
i=1 xi = k,

∑m
i=1 wixi +

∑
i:xi>0 si ≤ c, and

∑m
i=1 vixi is

maximized.

The particular instance of MAP is equivalent to kIKPSW with m = M , k = N , c =

B, wi = MCi, i = 1, 2, . . . , m, si = FCi, i = 1, 2, . . . ,m, and vi = Li/
∑N

j=1 ATj , i =

1, 2, . . . , m.

The kIKPSW Greedy Heuristic, H
1/2
k , finds the best solution using no more than two

item types, where such solutions are always within at least 1/2 of the optimal solution

value (McLay and Jacobson 2003). 2GH is the same as H
1/2
k when the passengers have

identical assessed threat values. 2
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