
Shaun Warrington- PhD
- Senior Research Fellow at University of Nottingham
Shaun Warrington
- PhD
- Senior Research Fellow at University of Nottingham
About
33
Publications
5,215
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
649
Citations
Introduction
My research interests are in the development of methods to extract robust measures of brain structural connectivity and to use those measures to explore brain ontogeny and phylogeny, brain-behaviour relationships, and the brain in disease. Key areas include the development of XTRACT for mapping connectivity across species and development, limitations of multivariate statistical techniques in brain-behaviour studies, and the harmonisation of MRI.
Current institution
Additional affiliations
September 2014 - September 2017
Education
October 2017 - August 2021
September 2014 - September 2017
October 2010 - June 2013
Publications
Publications (33)
Alzheimer's disease (AD) is characterised by memory loss and severe deficits in cognitive function associated with neural degeneration in a network of brain regions. However, little is known about those regions' connectivity patterns and how that differs from mild cognitive impairment (MCI) or healthy aging. To address that, we used diffusion-weigh...
Quantitative comparison of the white matter organization of the human neocortex with that of the chimpanzee and macaque shows a wide distribution of areas with a uniquely human connectivity profile, including the frontal-parietal fiber systems and the temporal visual pathway. Functional decoding of these areas shows their involvement in language, a...
Each cortical area has a distinct pattern of anatomical connections within the thalamus, a central subcortical structure composed of functionally and structurally distinct nuclei. Previous studies have suggested that certain cortical areas may have more extensive anatomical connections that target multiple thalamic nuclei, which potentially allows...
Each cortical area has a distinct pattern of anatomical connections within the thalamus, a central subcortical structure composed of functionally and structurally distinct nuclei. Previous studies have suggested that certain cortical areas may have more extensive anatomical connections that target multiple thalamic nuclei, which potentially allows...
Non-human primates are extensively used in neuroscience research as models of the human brain, with the rhesus macaque being a prominent example. We have previously introduced a set of tractography protocols (XTRACT) for reconstructing 42 corresponding white matter (WM) bundles in the human and the macaque brain and have shown cross-species compari...
Associations between datasets can be discovered through multivariate methods like Canonical Correlation Analysis (CCA) or Partial Least Squares (PLS). A requisite property for interpretability and generalizability of CCA/PLS associations is stability of their feature patterns. However, stability of CCA/PLS in high-dimensional datasets is questionab...
Despite the huge potential of magnetic resonance imaging (MRI) in mapping and exploring the brain, MRI measures can often be limited in their consistency, reproducibility, and accuracy which subsequently restricts their quantifiability. Nuisance nonbiological factors, such as hardware, software, calibration differences between scanners, and post-pr...
The thalamus is composed of functionally and structurally distinct nuclei. Previous studies have indicated that certain cortical areas may project across multiple thalamic nuclei, potentially allowing them to modulate distributed information flow. However, there is a lack of quantitative investigations into anatomical connectivity patterns within t...
Despite the huge potential of magnetic resonance imaging (MRI) in mapping and exploring the brain, MRI measures can often be limited in their consistency, reproducibility and accuracy which subsequently restricts their quantifiability. Nuisance nonbiological factors, such as hardware, software, calibration differences between scanners, and post-pro...
Introduction:
Neuroimaging technology has experienced explosive growth and transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges in method integration, particularly across multiple modalities and species. Specifically, res...
Developmental and evolutionary effects on brain organization are complex, yet linked, as evidenced by the correspondence in cortical area expansion across these vastly different time scales. However, it is still not possible to study concurrently the ontogeny and phylogeny of cortical areal connections, which is arguably more relevant to brain func...
Neuroimaging technology has experienced explosive growth and has transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges around method integration (1-3). Specifically, researchers often have to rely on siloed approaches which...
How temporal modulations in functional interactions are shaped by the underlying anatomical connections remains an open question. Here, we analyse the role of structural eigenmodes, in the formation and dissolution of temporally evolving functional brain networks using resting‐state magnetoencephalography and diffusion magnetic resonance imaging da...
Developmental and evolutionary effects on brain organisation are complex, yet linked, as evidenced by the striking correspondence in cortical expansion changes. However, it is still not possible to study concurrently the ontogeny and phylogeny of cortical areal connections, which is arguably more relevant to brain function than allometric changes....
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
The human brain is a highly complex organ that integrates functionally specialised subunits. Underpinning this complexity and functional specialisation is a network of structural connections, which may be probed using diffusion tractography, a unique, powerful and non-invasive MRI technique. Estimates of brain connectivity derived through diffusion...
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same in...
Associations between high-dimensional datasets, each comprising many features, can be discovered through multivariate statistical methods, like Canonical Correlation Analysis (CCA) or Partial Least Squares (PLS). CCA and PLS are widely used methods which reveal which features carry the association. Despite the longevity and popularity of CCA/PLS ap...
We present a new software package with a library of standardised tractography protocols devised for the robust automated extraction of white matter tracts both in the human and the macaque brain. Using in vivo data from the Human Connectome Project (HCP) and the UK Biobank and ex vivo data for the macaque brain datasets, we obtain white matter atla...
We present a new toolbox and library of standardised tractography protocols devised for the robust automated extraction of white matter tracts both in the human and the macaque brain. Using in vivo data from the Human Connectome Project (HCP) and the UK Biobank and ex vivo data for the macaque brain datasets, we obtain white matter atlases, as well...
Overview of standardised and automated tractography processing pipeline and its implementation in the Human Connectome Project (HCP) and connectivity blueprints. Also includes indirect validations of the protocols and method.
Urethane-based test objects are routinely used for ultrasound quality assurance because of their durability and robustness. The acoustic properties of these phantoms including speed of sound and attenuation, however, have a strong dependence on temperature. Reliable measurement of low-contrast penetration, which is widely used for ultrasound system...