Shaorong Gao

Shaorong Gao
Tongji University · Shool of Life Sciences and Technology

Ph.D.

About

335
Publications
37,715
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,487
Citations
Additional affiliations
August 2013 - present
Tongji University
Position
  • Professor (Full)

Publications

Publications (335)
Article
Full-text available
Chromatin remodeling is essential for epigenome reprogramming after fertilization. However, the underlying mechanisms of chromatin remodeling remain to be explored. Here, we investigated the dynamic changes in nucleosome occupancy and positioning in pronucleus-stage zygotes using ultra low-input MNase-seq. We observed distinct features of inheritan...
Article
Full-text available
Parental DNA methylation and histone modifications undergo distinct global reprogramming in mammalian pre-implantation embryos, but the landscape of epigenetic crosstalk and its effects on embryogenesis are largely unknown. Here we comprehensively analyse the association between DNA methylation and H3K9me3 reprogramming in mouse pre-implantation em...
Article
Full-text available
N ⁶ -methyladenosine (m ⁶ A) is the most abundant internal modification on mammalian messenger RNA (mRNA). It is installed by a writer complex and can be reversed by erasers such as the fat mass and obesity-associated protein (FTO). Despite extensive research, the primary physiological substrates of FTO in mammalian tissues and development remain e...
Article
Full-text available
N6-methyladenosine (m6A) and its regulatory components play critical roles in various developmental processes in mammals. However, the landscape and function of m6A in early embryos remain unclear owing to limited materials. Here we developed a method of ultralow-input m6A RNA immunoprecipitation followed by sequencing to reveal the transcriptome-w...
Article
Full-text available
H3K9me3, as a hallmark of heterochromatin, is important for cell-fate specification. However, it remains unknown how H3K9me3 is reprogrammed during human early embryo development. Here, we profiled genome-wide H3K9me3 in human oocytes and early embryos and discovered stage-specific H3K9me3 deposition on long terminal repeats (LTRs) at the 8-cell an...
Article
Full-text available
Background B1 cells are self-renewing innate-like B lymphocytes that provide the first line of defense against pathogens. B1 cells primarily reside in the peritoneal cavity and are known to originate from various fetal tissues, yet their developmental pathways and the mechanisms underlying maintenance of B1 cells throughout adulthood remain unclear...
Article
Self-organized blastoids from extended pluripotent stem (EPS) cells possess enormous potential for investigating postimplantation embryo development and related diseases. However, the limited ability of postimplantation development of EPS-blastoids hinders its further application. In this study, single-cell transcriptomic analysis indicated that th...
Article
During oocyte growth, various epigenetic modifications are gradually established, accompanied by accumulation of large amounts of mRNAs and proteins. However, little is known about the relationship between epigenetic modifications and meiotic progression. Here, by using Gdf9-Cre to achieve oocyte-specific ablation of Ehmt2 (Euchromatic-Histone-Lysi...
Article
How maternal Ezh1 and Ezh2 function in H3K27 methylation in vivo in preimplantation embryos and during embryonic development is not clear. Here, we deleted Ezh1 and Ezh2 alone or simultaneously from mouse oocytes. H3K27me3 was absent in oocytes without Ezh2 alone, while both H3K27me2 and H3K27me3 were absent in Ezh1/2 double knockout oocytes. The e...
Article
Full-text available
Human naive pluripotent stem cells offer a unique window into early embryogenesis studies. Recent studies have reported several strategies to obtain cells in the naive state. However, cell fate transitions and the underlying mechanisms remain poorly understood. Here, by a dual fluorescent reporter system, we depict the cell fate dynamics from prime...
Article
Full-text available
Somatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT em...
Article
Epigenetic regulations play a central role in governing the embryo development and somatic cell reprogramming. Taking advantage of recent advances in low-input sequencing techniques, researchers have uncovered a comprehensive view of the epigenetic landscape during rapid transcriptome transitions involved in the cell fate commitment. The well-organ...
Article
Full-text available
Assisted reproductive technology has been widely applied in the treatment of human infertility. However, accumulating evidence indicates that in vitro fertilization (IVF) is associated with a low pregnancy rate, placental defects, and metabolic diseases in offspring. Here, we find that IVF manipulation notably disrupts extraembryonic tissue-specifi...
Article
It is widely accepted that BER can participate in active DNA demethylation [12]. Our results show that MX can almost block cellular reprogramming (Figs. 1a, b and S7a, b). Further qRT–PCR results indicate that suppression of BER can block the mesenchymal-epithelial transition (MET) (Fig. S7c). We speculated that inhibition of BER affects epigenetic...
Preprint
Chromatin remodeling is essential for epigenome reprogramming after fertilization. However, the underlying mechanisms of chromatin remodeling remain to be explored. Here, we investigated the dynamic changes in nucleosome occupancy and positioning in pronucleus-stage zygotes using ultra low-input MNase-seq. We observed distinct features of inheritan...
Article
Full-text available
Abnormal mossy fiber connections in the hippocampus have been implicated in schizophrenia. However, it remains unclear whether this abnormality in the patients is genetically determined and whether it contributes to the onset of schizophrenia. Here, we showed that iPSC-derived hippocampal NPCs from schizophrenia patients with the A/A allele at SNP...
Article
Full-text available
Chemically defined medium is widely used for culturing mouse embryonic stem cells (mESCs), in which N2B27 works as a substitution for serum, and GSK3β and MEK inhibitors (2i) help to promote ground-state pluripotency. However, recent studies suggested that MEKi might cause irreversible defects that compromise the developmental potential of mESCs. H...
Article
Full-text available
The expression of tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 (Tie1), a transmembrane protein expressed almost exclusively by endothelial cells, has been reported in granulosa cells. However, its significance in ovarian hyperstimulation syndrome (OHSS), which can occur after the injection of gonadotropins in...
Preprint
N ⁶ -methyladenosine (m ⁶ A) and its regulatory components play critical roles in various developmental processes in mammals( 1-5 ). However, the landscape and function of m ⁶ A in the maternal-to-zygotic transition (MZT) remain unclear due to limited materials. Here, by developing an ultralow-input MeRIP-seq method, we revealed the dynamics of the...
Article
Full-text available
The nucleolus is the organelle for ribosome biogenesis and sensing various types of stress. However, its role in regulating stem cell fate remains unclear. Here, we present evidence that nucleolar stress induced by interfering rRNA biogenesis can drive the 2-cell stage embryo-like (2C-like) program and induce an expanded 2C-like cell population in...
Article
Increasing evidence suggests that in vitro fertilization (IVF) may be associated with an increased risk of developing obesity and metabolic diseases later in life in the offspring. Notably, the addition of melatonin to culture medium may improve embryo development and prevent cardiovascular dysfunction in IVF adult mice. This study aimed to determi...
Article
Full-text available
CENP-A (centromeric protein A), a histone H3 variant, specifies centromere identity and is essential to centromere maintenance. Little is known about how protein levels of CENP-A are controlled in mammalian cells. Here, we report that the phosphorylation of CENP-A Ser68 primes the ubiquitin-proteasome-mediated proteolysis of CENP-A during mitotic p...
Preprint
Mammalian embryonic development is a complex process regulated by various epigenetic modifications. Recently, maternal histone H3 methylations were found to be inherited and reprogrammed in early embryos to regulate embryonic development. The enhancer of zest homolog 1 and 2 (Ezh1 and Ezh2) belong to the core components of Polycomb repressive compl...
Article
It has been nearly 60 years since Dr John Gurdon achieved the first cloning of Xenopus by somatic cell nuclear transfer (SCNT). Later, in 2006, Takahashi and Yamanaka published their landmark study demonstrating the application of four transcription factors to induce pluripotency. These two amazing discoveries both clearly established that cell ide...
Article
Full-text available
Objectives: Maternal factors that are enriched in oocytes have attracted great interest as possible key factors in somatic cell reprogramming. We found that surfeit locus protein 4 (Surf4), a maternal factor, can facilitate the generation of induced pluripotent stem cells (iPSCs) previously, but the mechanism remains elusive. Materials and method...
Article
Full-text available
Parental age at first pregnancy is increasing worldwide. The offspring of aged father has been associated with higher risk of several neuropsychiatric disorders, such as schizophrenia and autism, but the underlying mechanism remains elusive. Here we report that advanced paternal age in mice alters the profile of transfer RNA-derived small RNAs (tsR...
Preprint
Full-text available
Nucleolus is the organelle for ribosome biogenesis and for sensing various types of stress. Its role in regulating stem cell fate is unclear. Here, we present multiple lines of evidence that nucleolar stress induced by interfering rRNA biogenesis can drive 2-cell stage embryo-like (2C-like) transcriptional program and induce an expanded 2C-like cel...
Article
Full-text available
Polycystic ovary syndrome (PCOS) is an endocrinopathy with complex pathophysiology that is a common cause of anovulatory infertility in women. Although the disruption of circadian rhythms is indicated in PCOS, the role of the clock in the etiology of these pathologies has yet to be appreciated. The nuclear receptors REV-ERBα and REV-ERBβ are core m...
Article
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular i...
Article
Full-text available
N6-methyladenosine (m6A) on chromosome-associated regulatory RNAs (carRNAs), including repeat RNAs, plays important roles in tuning the chromatin state and transcription, but the intrinsic mechanism remains unclear. Here, we report that YTHDC1 plays indispensable roles in the self-renewal and differentiation potency of mouse embryonic stem cells (E...
Article
Full-text available
Trophoblast stem cells (TSCs) are critical to mammalian embryogenesis by providing the cell source of the placenta. TSCs can be derived from trophoblast cells. However, the efficiency of TSC derivation from somatic cell nuclear transfer (NT) blastocysts is low. The regulatory mechanisms underlying transcription dynamics and epigenetic landscape rem...
Article
Full-text available
Somatic cell nuclear transfer (SCNT) enables terminally differentiated somatic cells to gain totipotency. Many species are successfully cloned up to date, including nonhuman primate. With this technology, not only the protection of endangered animals but also human therapeutics is going to be a reality. However, the low efficiency of the SCNT-media...
Article
Full-text available
A small subgroup of embryonic stem cells (ESCs) exhibit molecular features similar to those of two-cell embryos (2C). However, it remains elusive whether 2C-like cells and 2C embryos share similar epigenetic features. Here, we map the genome-wide profiles of histone H3K4me3 and H3K27me3 in 2C-like cells. We found that the majority of genes in 2C-li...
Preprint
N ⁶ -methyladenosine (m ⁶ A) on chromosome-associated regulatory RNAs (carRNAs), including repeat RNAs, play important roles in tuning the chromatin state and transcription ¹ . Among diverse RNA-chromatin interacting modes, the nuclear RNA scaffold is considered important for trans-interactions 2,3 but has not yet been connected with m ⁶ A yet. Her...
Article
Full-text available
The formation of zygote is the beginning of mammalian life, and dynamic epigenetic modifications are essential for mammalian normal development. H3K27 di-methylation (H3K27me2) and H3K27 tri-methylation (H3K27me3) are marks of facultative heterochromatin which maintains transcriptional repression established during early development in many eukaryo...
Article
Telomeres play vital roles in ensuring chromosome stability and are thus closely linked with the onset of aging and human disease. Telomeres undergo extensive lengthening during early embryogenesis. However, the detailed molecular mechanism of telomere resetting in early embryos remains unknown. Here, we show that Dcaf11 (Ddb1- and Cul4-associated...
Article
Full-text available
Background During mammalian early embryogenesis, expression and epigenetic heterogeneity emerge before the first cell fate determination, but the programs causing such determinate heterogeneity are largely unexplored. Results Here, we present MethylTransition, a novel DNA methylation state transition model, for characterizing methylation changes d...
Article
Full-text available
Purpose: Tubulin beta eight class VIII (TUBB8) is essential for oogenesis, fertilization, and pre-implantation embryo development in human. Although TUBB8 mutations were recently discovered in meiosis-arrested oocytes of infertile females, there is no effective therapy for this gene mutation caused infertility. Our study aims to further reveal the...
Article
Understanding differences in DNA double-strand break (DSB) repair between tumor and normal tissues would provide a rationale for developing DNA repair-targeted cancer therapy. Here, using knock-in mouse models for measuring the efficiency of two DSB repair pathways, homologous recombination (HR) and nonhomologous end-joining (NHEJ), we demonstrated...
Preprint
Full-text available
This protocol presents ULI-NChIP-seq (ultra-low-input micrococcal nuclease-based native ChIP-seq) assay to generate high quality and complexity genome-wide histone mark profiles from rare oocytes andembryos populations. The procedure of ULI-NChIP-seq assay typically consists of five parts including Binding antibodies to magnatic beads, Chromatin sh...
Article
Full-text available
Gene-targeted animal models that are generated by injecting Cas9 and sgRNAs into zygotes are often accompanied by undesired double-strand break (DSB)-induced byproducts and random biallelic targeting due to uncontrollable Cas9 targeting activity. Here, we establish a parental allele-specific gene-targeting (Past-CRISPR) method, based on the detaile...
Article
Full-text available
OCT4 (also known as POU5F1) plays an essential role in reprogramming. It is the only member of the POU (Pit-Oct-Unc) family of transcription factors that can induce pluripotency despite sharing high structural similarities to all other members. Here, we discover that OCT6 (also known as POU3F1) can elicit reprogramming specifically in human cells....
Article
Full-text available
Mammalian fertilization begins with the fusion of two specialized gametes, followed by major epigenetic remodeling leading to the formation of a totipotent embryo. During the development of the pre-implantation embryo, precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality, but the underlying mole...
Article
Full-text available
Directly modulating the choice between homologous recombination (HR) and non-homologous end joining (NHEJ) - two independent pathways for repairing DNA double-strand breaks (DSBs) - has the potential to improve the efficiency of gene targeting by CRISPR/Cas9. Here, we have developed a rapid and easy-to-score screening approach for identifying small...
Article
Full-text available
Directly modulating the choice between homologous recombination (HR) and non-homologous end joining (NHEJ) - two independent pathways for repairing DNA double-strand breaks (DSBs) - has the potential to improve the efficiency of gene targeting by CRISPR/Cas9. Here, we have developed a rapid and easy-to-score screening approach for identifying small...
Article
Full-text available
Directly modulating the choice between homologous recombination (HR) and non-homologous end joining (NHEJ) - two independent pathways for repairing DNA double-strand breaks (DSBs) - has the potential to improve the efficiency of gene targeting by CRISPR/Cas9. Here, we have developed a rapid and easy-to-score screening approach for identifying small...
Article
Full-text available
Following fertilization in mammals, the gametes are reprogrammed to create a totipotent zygote, a process that involves de novo establishment of chromatin domains. A major feature occurring during preimplantation development is the dramatic remodelling of constitutive heterochromatin, although the functional relevance of this is unknown. Here, we s...
Article
Full-text available
Cellular reprogramming is an emerging strategy for delaying the aging processes. However, a number of challenges, including the impaired genome integrity and decreased pluripotency of induced pluripotent stem cells (iPSCs) derived from old donors, may hinder their potential clinical applications. The longevity gene, Sirtuin 6 (SIRT6), functions in...
Article
Poor oocyte quality is associated with early embryo developmental arrest and infertility. Maternal gene plays crucial roles in the regulation of oocyte maturation and its mutation is a common cause of female infertility. However, how to improve oocyte quality and develop effective therapy for maternal gene mutation remains elusive. Here, we use Zar...
Article
Full-text available
The oocyte cytoplasm can reprogram the somatic cell nucleus into a totipotent state, but with low efficiency. The spatiotemporal chromatin organization of somatic cell nuclear transfer (SCNT) embryos remains elusive. Here, we examine higher order chromatin structures of mouse SCNT embryos using a low-input Hi-C method. We find that donor cell chrom...
Article
Embryonic stem cells possess fascinating capacity of self-renewal and developmental potential, leading to significant progress in understanding the molecular basis of pluripotency, disease modeling and reprogramming technology. Recently, 2-cell (2C)-like embryonic stem cells (ESCs) and expanded potential stem cells or extended pluripotent stem cell...
Article
Full-text available
Human naive pluripotent stem cells established from the epiblasts of preimplantation blastocysts provide a useful model for mechanistic studies of pluripotency regulation and lineage differentiation. Important advances have been made to optimize culture conditions and define molecular criteria for naive pluripotency. However, the identity of naive-...
Article
Mouse embryonic stem cells (ESCs) sporadically express preimplantation two-cell-stage (2C) transcripts, including MERVL endogenous retrovirus and Zscan4 cluster genes. Such 2C-like cells (2CLCs) can contribute to both embryonic and extraembryonic tissues when reintroduced into early embryos, although the molecular mechanism underlying such an expan...
Chapter
This chapter gives a brief introduction of common epigenetic modifications during somatic reprogramming process (we only focus iPSCs reprogramming here) including histone methylation/acetylation, histone variants substitution, and DNA/RNA modification. In addition, we will discuss how these epigenetic modifications affect the production and quality...
Article
Full-text available
Applying somatic cell reprogramming strategies in cancer cell biology is a powerful approach to analyze mechanisms of malignancy and develop new therapeutics. Here, we test whether leukemia cells can be reprogrammed in vivo using the canonical reprogramming transcription factors-Oct4, Sox2, Klf4, and c-Myc (termed as OSKM). Unexpectedly, we discove...
Article
Full-text available
Telomere maintenance is critical for chromosome stability. Here we report that periodic tryptophan protein 1 (PWP1) is involved in regulating telomere length homeostasis. Pwp1 appears to be essential for mouse development and embryonic stem cell (ESC) survival, as homozygous Pwp1-knockout mice and ESCs have never been obtained. Heterozygous Pwp1-kn...
Article
Full-text available
The nuclear exosome targeting (NEXT) complex is responsible for specific nuclear RNA degradation in mammalian cells. However, its function in development remains unknown. Here, we find that the depletion of a central factor of the NEXT complex, Zcchc8, in mouse results in developmental defects, a shortened lifespan, and infertility. We find that Zc...
Article
Full-text available
DNA methylation and histone modifications critically regulate the expression of many genes and repeat regions during spermatogenesis. However, the molecular details of these processes in male germ cells remain to be addressed. Here, using isolated murine sperm cells, ultra-low-input native ChIP -Seq (ULI-NChIP-Seq), and Whole Genome Bisulfite Seque...
Article
Full-text available
Multicopy retrogene Dux is transiently and restrictively expressed in an extremely short time window at early 2-cell (2C) stage during embryonic development in vivo. Previous studies identified Dux as a master inducer to drive the expression of 2C stage-specific genes and retrotransposons in myoblasts and mouse embryonic stem cells (mESCs) in vitro...