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Abstract The Internet of Vehicles (IoV) is employed to gather real-time traf-
fic information for drivers, and base stations in 5G systems are used to assist
in traffic data transmission. For rapid implementation, the applications in ve-
hicles are available to be offloaded to edge nodes (ENs) which are enhanced
from micro base stations. Despite the benefits of IoV and ENs, the explosive
growth of offloaded vehicle applications exceeds the capacity of ENs, caus-
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ing the overload of fractional ENs. Therefore, it is necessary to offload the
computing applications in overloaded ENs to other idle ENs while it is a chal-
lenge to select appropriate offloading destination ENs. In this paper, we first
consider edge computing framework for computation offloading in IoV under
the architecture of 5G networks. We then formulate a multi-objective opti-
mization problem to select suitable destination ENs, which aims to minimize
the vehicle application offloading delay and offloading cost as well as realizing
the load balance of ENs. Moreover, a computation offloading method for IoV,
named COV, is designed to solve the multi-objective optimization problem. Fi-
nally, various simulation analyses demonstrate the effectiveness and efficiency
of COV.

Keywords IoV · 5G networks · edge computing · computation offloading ·
delay · offloading cost · load balance

1 Introduction

1.1 Background

In recent years, a growing number of vehicles occur on the road [1]. Consid-
ering that there are numerous vehicles on the road, the probability of traffic
accident rises sharply, endangering people’s personal safety. Additionally, pro-
vided that people encounter traffic jams on the road, plentiful time is wasted
on useless waiting, giving drivers and passengers who are queueing a poor
experience[2]. Therefore, it is an urgent demand to manage traffic conditions
to reduce accidents and congestions as well as saving valuable time for people.
Internet of Vehicles (IoV) has emerged as an appropriate paradigm, which
aims to make drivers obtain real-time traffic information [3]. Generally, the
real-time traffic information includes the overall traffic management and the
intricate movement of vehicles since the IoV environment combines road con-
ditions and wireless networks [3][4][5]. In the IoV environment, vehicles are
equipped with intelligent devices such as sensors and actuators that gather
information from surrounding conditions. Those intelligent devices are con-
nected with roadside units (RSUs) which is in charge of data receiving and
sending [6]. Consequently, once the drivers need non-local traffic information,
real-time road condition data are transmitted from RSUs to the destination
vehicle fleetly, achieving the information interaction amongst vehicles, humans
and RSUs [3][7].

In addition, by means of vehicle-to-infrastructure (V2I) communication,
autonomous vehicles acquire traffic data from RSUs to realize adaptive cruise
control and route guidance systems, functioning as fully automated driving
[8]. However, traffic data are too massive to be processed in time and the data
transmission may be discontinuous. As autonomous vehicles are intolerant of
service interruptions, if there is an interruption in traffic data transmission,
autonomous vehicles miss real-time road conditions so that incomplete traffic
data analysis is conducted, resulting in unpredicted accidents. For the sake of
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driving safety, the fifth-generation (5G) networks are potential to be a solu-
tion. In 5G networks, millimeter wave (mmWave), whose bands are above 10
GHz, is adopted for data transmission [9][10][11]. Taking advantage of vast
unused spectrum, mmWave offers a high data transmission rate, which is
orders of magnitude higher than the data transmission rate in 4G systems
[12][13]. Besides, base stations exist in 5G systems, which are in reality ra-
dio transceiver stations that communicate with various terminal devices. By
means of mmWave, the base stations are promising to connect everything
with a rapid data transmission rate [14]. In view of the efficient data process
in 5G networks, it is suitable to combine 5G networks and IoV, especially in
autonomous driving.

According to geographic distributions of base stations, each base station
has its own coverage and deals with computing applications offloaded from
the vehicles in the coverage [15]. Nevertheless, the processing power of base
stations is insufficient to meet the state of the art requirements of complex
computing applications, making a drop in the quality of experience (QoE) for
drivers and passengers. Thus, the applications are offloaded to the centralized
cloud data centers for processing while the long distance between vehicles
and cloud platform contributes to low transmission efficiency and unstable
connections [16]. Edge computing, which pushes the computing services to
the edge of the radio network, emerges to be a complement to 5G networks
[17][18]. As the base stations in 5G systems are divided into macro base stations
(MABSs) and micro base stations (MIBSs), MABSs have a wide coverge area
while MIBSs have a relatively narrow coverage. There are many infrastructures
that can be enhanced as edge computing devices, including RSUs, MABSs and
MIBSs [19]. Considering that the mobile applications are usually under the
coverage of MIBSs, edge devices are co-located with MIBSs and MIBSs are
enhanced to be edge nodes (ENs) to assist MABSs in data processing as the
result. The computing applications of vehicles are offloaded to ENs that are
in close range to vehicles. As there are physical servers deployed in each EN,
via offloading computing applications from vehicles to ENs, the application
offloading time is reduced and the QoE for drivers and passengers in executing
computing applications is greatly improved. Whereas in reality, when the data
processing capability of ENs cannot satisfy drivers’ requirements, it is wise to
offload the computing applications in ENs to corresponding MABS for better
implementation effect. Moreover, specific computing applications, which need
designated data from cloud data centers, are offloaded to the cloud platform
from MABS, represented by video stream acquisition in vehicles [20].

Nevertheless, in actual operation, ENs may be overload during peak hours.
On account of the massive offloaded applications, the computing resources
and storage in the EN are all occupied. Thereby, subsequent offloading re-
quests from vehicles are rejected and queued in the EN until previous applica-
tions are completed and the required resources and storage are available again.
Thereby, the application execution efficiency is terrible, decreasing the QoE for
drivers and passengers. It is of necessity to offload the queueing applications
to another EN which has rich idle computing resources [21][22]. Nonetheless,
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deciding which EN to be the offloading destination must be considered com-
prehensively. During the process of offloading applications from one EN to
another, a mass of extra data transmission delay is produced [23]. Obviously,
the data transmission delay depends on the location of origin EN and the
selection of destination EN. Furthermore, as virtualized technique is used for
data processing, the load balance of VMs in ENs is taken into account to
strengthen the data processing capabilities of ENs. From the perspective of
the service providers, the offloading cost is an emphasis, which is influenced
by the amount of offloaded applications from vehicles. In this situation, the
offloading strategies are formulated due to the comprehensive consideration of
offloading delay, offloading cost and load balance of ENs.

1.2 Related Work and Motivation

With the advances in Wireless Sensor Networks (WSN) and Internet tech-
nologies, IoV emerges as a key technical field to provide real-time traffic infor-
mation for drivers [24][25][26]. In IoV environment, there is abundant traffic
information to gather and process, decreasing the efficiency of application ex-
ecution in vehicles sharply [27][28][29]. In terms of using computing devices
which are in close proximity to vehicles to assist in data processing, edge com-
puting emerges as a suitable solution [30][31]. In the field of edge computing,
Zhao et al. focused on the reduction of energy consumption and designed an
algorithm to optimize the transmission power of application offloading between
vehicles and RSUs [32]. In [33], Baktir et al. proposed a model which integrate
software-defined networking (SDN) into edge computing, and deduced a group
of “Benefit Areas” based on the functions of SDN. In smart grids, Kumar et
al. adopted edge computing for data dissemination to smart devices and com-
prehensively analyzed response time, data transmission delay, and throughput
to the end terminals when using vehicles as mobile nodes [34]. In [35], Zhu et
al. considered using edge computing to optimize the web. After the proof of
the experiment, the approach was proved effective.

Although many studies have derived schemes for application offloading in
edge computing, in toward 5G networks, the traditional edge computing frame-
work is of low efficiency to process massive applications. That is to say, with the
explosive growth of computing applications and the demanding requirements
from drivers, it is inappropriate to adopt the traditional edge computing archi-
tecture in 5G networks. In [36], Zhang et al. studied the computation offloading
mechanisms for edge computing in the aspect of energy consumption. Based on
the multi-access characteristics in 5G heterogeneous network, they proposed
an offloading method to optimize radio resource allocation to minimize the
energy consumption under the latency constraints. From the perspective of
Device-to-Device (D2D) communication, Chen et al. focused on the energy-
efficient D2D Crowd system in which numerous devices are interconnected at
the edge of 5G networks for data communication and cooperation. With the
help of 5G network-assisted D2D collaboration, they proposed an application
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allocation method based on graph matching technology to achieve the goal
of saving energy. Besides, they extended the D2D Crowd framework to adapt
various applications in reality [37]. On the other hand, Guo et al. formulated
the distributed computation offloading problem as a potential game, which is
proved to satisfy the Nash equilibrium. According to the potential game, they
designed an offloading algorithm to jointly optimize the latency and energy
consumption of smart devices in IoV [38]. Taking the unique property of 5G
networks into consideration, Yang et al. designed an artificial fish swarm al-
gorithm to minimize the energy consumption of all entities [39]. Futhermore,
Bastug et al. verified that increasing the storage capability of edge devices has
the ability to effectively ease the network congestion [40]. Considering that
data transmission is carried over fronthaul and backhaul links, the goals of
the algorithm include service delay requirement and computation capabilities.
In this paper, several physical servers are placed around each MIBS, which
is known as EN, enhancing the performance of implementing the computing
applications in vehicles. Nevertheless, the computation offloading process is
restricted considering that the ENs may be overloaded. Under this circum-
stance, the new requests from vehicles are rejected and queued in the EN until
the required resources are available. Therefore, deciding which EN the waiting
computing applications are offloaded to depends on the comprehensive con-
sideration of application offloading delay, application offloading cost and the
load balance of ENs.

1.3 Paper Contributions

We summarize the main contributions of this paper as follows:

– We analyze the process of computation offloading across ENs and formu-
late the computation offloading problem as a multi-objective optimization
problem to minimize the application offloading delay and offloading cost
while realizing the load balance of ENs.

– We employ strength pareto evolutionary algorithm 2 (SPEA2) to draw up
several executable computation offloading schemes.

– We adopt the technique for order preference by Similarity to an Ideal So-
lution (TOPSIS) and multi-criteria decision-making (MCDM) to select ap-
propriate computation offloading schemes.

– We formally demonstrate the effectiveness and efficiency of our proposed
algorithm by simulation experiments.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the IoV computation offloading in edge computing paradigm under the
architecture of 5G networks. In Section 3, we model the complete computa-
tion offloading problem in terms of minimizing offloading delay and offloading
cost as well as achieving the load balance of ENs. In Section 4, we present a
computation offloading method for IoV in edge computing. In Section 5, we
provide simulation experiments to evaluate the performance of the proposed
method. In Section 6, we outline the conclusions and future work.
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2 IoV Offloading in 5G Networks with Edge Computing

The major contribution of the forthcoming 5G network is to realize the vi-
sion of connecting everything by the base station by taking advantage of the
mmWave. In the 5G wireless communication, there are multiple MABSs de-
ployed for providing services for the IoT applications, e.g., D2D communica-
tions and vehicle-to-vehicle (V2V) applications [41]. The MABS covers multi-
ple MIBSs to enhance the service quality and they can receive various service
requests from the end equipment with wireless signals, such as the wearable
devices, the vehicles, the mobile phones, etc. Therefore, the IoV applications
could be offloaded through the 5G networks.

In the traditional wireless communication, the IoV applications are of-
floaded for processing through RSUs to the base station. If the computing
resources in the base station are scarce for application execution, these appli-
cations are transferred from the base station to the remote cloud platform for
processing. However, in the 5G communication, the vehicle applications are
transferred to the MIBSs first from the RSUs, and then they are transferred
to the MABSs. To enhance the service performance for implementing the ve-
hicle applications, we employ ENs to assist in processing applications under
the unique architecture of 5G networks.

…

…

MABS

MIBS

EN

…

RSU

… …

Fig. 1: Edge-enabled communication framework for IoV in 5G networks.

In our consideration, there are three infrastructures that can serve as ENs,
which are RSUs, MIBSs, and MABSs. Nevertheless, on one hand, RSUs merely
receive and process the applications offloaded from vehicles, which are too
unitary to work in the whole 5G networks. On the other hand, the coverage of
the MABS is extremely wide, contributing to the low data transmission speed
and unstable data transmission connection. Therefore, we configure MIBSs as
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ENs by placing the physical servers around each MIBS, as shown in Fig. 1.
These ENs are distributed densely in the urban cities around the road, thus the
ENs could be leveraged efficiently for accommodating the vehicle applications.
ENs provide real-time edge services to the vehicle applications rather than
engaging the remote cloud platforms for application implementation with high
transmission delay.

The computing capacity of the EN is often limited by its physical size and
deployment context of the MIBS, thus the EN may receive many application
offloading requests and become overload during peak hours in IoV. In view
of the load condition of all ENs, it is essential to conduct efficient resource
provisioning for the ENs while responding to the offloading requests from the
vehicle application. For resource provisioning from the ENs, the virtualized
techniques, like Xen, VMWare, Hyper-V etc., can be employed, since they are
proved to be efficient for resource management for the cloud infrastructure. By
leveraging the virtualized technique, we can simplify the resource allocation
problem for offloading processes as the VM placement and VM scheduling.

In the process of application offloading, the vehicle first sends the offloading
request to the proximate RSU and transmits the application to the destination
RSU once receiving offloading permission. As the resources in the RSU are lim-
ited, for better application processing results, the application in the RSU are
transmitted to the EN from the RSU. Provided that the processing demanded
by the application is too complicated, the application is transmitted to MABS
which has massive computing resources. For those applications whose process-
ing need specific data in data centers, the applications are transmitted to the
cloud platform for execution. Besides, terribly in the process of application
offloading, the EN may be overload and the application is queued in the EN
until the required resources are available. To achieve efficient offloading, the
application is offloaded to another idle EN for processing.

3 System Model

In this section, the system model of computation offloading for IoV in Edge
Computing-Assisted 5G networks is proposed and the computation offloading
problem is formulated as a multi-objective optimization problem. Key nota-
tions are demonstrated in Table 1.

3.1 Resource Model

In the 5G network, note S = {s1, s2, . . . , sN} as the MIBS set, where N is the
amount of the MIBSs deployed around a MABS. The MIBSs are enhanced as
the edge nodes (ENs) for responding the resources requests of the computing
applications. The extended EN set is denoted as E = {e1, e2, . . . , eN}. As
the virtualized techniques are introduced for the management of the ENs,
virtual machines (VMs) are served as the computing units. Thus, the maximum
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Table 1: Notation

Notation Definition
N The amount of the MIBSs deployed around a MABS
S The MIBS set, S = {s1, s2, . . . , sN}
E The extended EN set, E = {e1, e2, . . . , eN}
en The n-th EN in E
αn The capacity of en
M The number of the vehicles along the road
V The vehicle set, V = {v1, v2, . . . , vM}
V A The vehicle application set, V A = {va1, va2, . . . , vaM}
vam The n-th vehicle application in V A
θm The amount of VMs for implementing vam
D The offloading delay for all applications along the road
C The total transmission cost for all ENs
L The load balance degree for all ENs

capacity of ENs is determined by the quantity of the containable VMs, and
the capacity of en(n = {1, 2, ..., N}) is record as αn.

The vehicles running along the road surrounded by massive RSUs and
dense MIBSs need the feedback for the implementation of the IoV applica-
tions. To win the instant gratification on QoE of the vehicle users, the IoV
applications are committed to being deployed with one or more VMs. Note the
vehicle set as V = {v1, v2, . . . , vM}, where M is the number of the vehicles
along the road. Without loss of generality, suppose that each vehicle submit
one IoV application to be offloaded. Correspondingly, the vehicle application
set is denoted as V A = {va1, va2, . . . , vaM}. The amount of quantificational
VMs for implementing the application vam (m = {1, 2, . . . ,M}) is denoted as
θm.

3.2 Offloading Delay Model

For the application vam, if it is offloaded to an EN for implementation, the
transmission delay is consisted of the transmission time between the vehicle
and the nearby RSU, the transmission delay between RSU and the accessible
EN, as well as the transmission delay between the accessible EN and the
goal EN, as shown in Fig. 2. Otherwise, when the computing application
is offloading to the cloud platform for execution, the communication delay
should take the transmission time between the EN to the cloud platform into
account. The implementation results should return back from the implantation
node, i.e., EN or the cloud platform, to the moving vehicle that publishes the
application.

The offloading time between vm and the nearby RSU, denoted as V Rm, is
determined by

V Rm =
sm
trV R

, (1)



Title Suppressed Due to Excessive Length 9

EN ENRSU

EN

Fig. 2: An example of computation offloading in edge computing.

where sm is the occupied memory size of vam and trV R is the transmission
rate between the vehicle and the RSU.

Note the transmission time for transferring vam from the RSU to the ac-
cessible EN with a MIBS as REm, which is calculated by

REm =
sm
trRE

, (2)

where trRE is the transmission rate between the RSU and the accessible EN.
When offloading vam from the accessible edge node to the goal edge node,

vam may need to transfer through one or more ENs. Note the amount of the
transferred ENs as γm. And the offloading time is determined by the amount
of the ENs that vam transfers through. Thus the transfer time denoted as
GEm is calculated by

GEm =

{
0, γm = {0, 1},
sm
trEN

.(γm − 1), γm > 1,
(3)

where trEN is the transmission rate between two ENs.
Then the offloading delay of vam is determined by

ODm = V Rm +REm +GEm. (4)

Correspondingly, the offloading delay for all the applications along the road
is calculated by

D =

M∑
m=1

ODm. (5)

3.3 Offloading Cost Model

The offloading cost for the service provider of 5G mainly refers to the transmis-
sion amount of the vehicle applications for ENs due to receiving and transfer-
ring the vehicle applications. The transmission data for computation offloading
among ENs and MIBS affect the 5G cost for the service providers.

Fig. 3 shows an example of data transmission with γm= 0, γm= 1 and γm=
2. When γm= 0, the application is offloaded to the destination EN directly,
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EN EN EN ENEN EN

m=0 m=1 m=2

Passing EN Destination EN 

Fig. 3: An example of data transmission with γm= 0, γm= 1 and γm= 2.

thus the total amount of the transferred data is sm. When γm= 1, there is one
passing EN that the avm should be transferred through, and the total amount
of the transferred data is by analogy, the total transmission cost for all the
ENs, denoted as C, is determined by

C =

M∑
m=1

(sm + 2γm · sm) =

M∑
m=1

(2γm + 1) · sm. (6)

3.4 Load Balance Model

The load balance of ENs refers to the fair degree for the load distribution of
the offloaded vehicle applications. As described in 3.1, the vehicle application
acquires θm VM instances in ENs for execution, and to reduce the data inter-
actions among the ENs for implementing vam, these VM instances should be
provisioned from the same EN [42].

Note Pnm as a flag to record the distribution location of vam determined
by

Pnm =

{
0, vam is offloaded to en,
1, otherwise.

(7)

The balanced degree of ENs relies on the load distribution for the vehicle
applications among the ENs. The utilized VMs for implementation on en,
denoted as zn, is calculated by

zn=
M∑
m=1

Pnm·θm. (8)

Then like the analysis of utilization for cloud servers, the utilization for
the EN en, denoted as un, is calculated by

un=zn/αn. (9)

Note Qn as the flag to decice whether en is leverage for accommodating
the vehicle applications, which is measured by

Qn=

{
1, zn 6= 0,
0, zn = 0.

(10)
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The amount of utilized ENs is calculated by

W =

N∑
n=1

Qn. (11)

Then the average utilization for the leveraged ENs is determined by

U =
1

W

N∑
n=1

un. (12)

The load deviation for the load distribution of en, denoted as ldn, is cal-
culated by

ldn = |un − U | . (13)

Then the load balance degree for all the ENs is defined by

L =
1

W

N∑
n=1

1

ldn
. (14)

3.5 Problem Definition

After the model construction of offloading delay, offloading cost and load bal-
ance for migrating the vehicle applications to ENs in 5G networks, our problem
is defined by

minD, minC, maxL. (15)

s. t.

M∑
m=1

Pnm ≤ αn, (16)

s. t.

N∑
n=1

Pnm = 1, (17)

s. t. 0 ≤
N∑
n=1

Qn ≤ N. (18)
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4 An Efficient Computation Offloading method for Internet of
Vehicles in Edge Computing-Assisted 5G Networks

The purpose of this paper is to solve a multi-objective optimization problem
which aims at reducing the offloading delay, promoting the offloading cost
and optimizing the load balance at the same time. Compared with traditional
algorithms such as weighted coefficient method and genetic algorithm (GA),
SPEA2 is widely used in multi-objective optimization problems because of
its good robustness, simple and universal, global optimization and parallel
processing mechanism. So SPEA2 is selected to solve our problem.

4.1 Determination of the destination EN

In this paper, the ENs are not empty at the beginning. There are already a
quantity of vehicle applications in the ENs, so when the vehicle applications
are offloaded to a start EN full of vehicle applications, the vehicle applications
will be offloaded to the next EN until the VMs of the next EN can implement
the vehicle applications. Fig. 4 shows an example of obtaining the destination
EN.

RSU e1 e2vehicle application

Fig. 4: An example of obtaining the destination EN.

In Fig. 4, the vehicle application is transmitted to the nearby RSU. Then
the application is offloaded to e1 at first, but the vacant VMs of e1 are less
than the VMs which are needed to implement the application. Therefore, the
vehicle application is transferred from e1 to e2, because e2 has enough VMs
to execute the vehicle application.

In the following Algorithm 1, we elaborate the procedure of looking for the
destination EN denoted by eD, and eS represents the start EN which is the
first EN RSU offloads to.

4.2 Encoding

In the encoding operation, all of the ENs should be encoded at first. In the
GA, each EN which is transferred by the vehicle applications at last should be
represented as a gene. All the genes make up the chromosome, which repre-
sents the efficient computation offloading strategy for the vehicle applications.
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Algorithm 1 Obtain eD
Require: E, vam
Ensure: eD
1: obtain eS
2: for i = S (S is the subscript of eS) to N do
3: if αN<θm then
4: i=i+1
5: else
6: break
7: end if
8: end for
9: D = i

10: return eD

Fig. 5 gives an example of efficient computation offloading strategy, and the
chromosome is encoded in integer in this paper.

1 2 N ... 3C

c1 c2 c3 ... cM

e1 e2 e3 eN

...

Fig. 5: An example of computation offloading strategy.

4.3 Fitness Functions and Constraints

In GA, the fitness functions are used to make an evaluation of each individual’s
pros and cons, then the opportunity of inheritance can be determined. In this
paper, the fitness functions include three categories: the offloading delay (5),
the offloading cost (6) and the load balance degree (14). As is shown in (15), the
purpose of this method is to reduce the offloading delay, promote the offloading
cost and optimize the load balance at the same time. The constraint is given
by (16), representing the need of VMs of the vehicle applications is less than
the vacant VMs of EN.

In the Algorithm 2, the offloading delay for the vehicle can be evaluated
at last. In this algorithm, we should input M . The offloading time between
vm and the nearby RSU, the transmission time for transferring vam from the
RSU to the accessible EN with a MIBS and the transfer time can be obtained
(Lines 2-5). Finally, the offloading delay for all the applications is equal to the
summation of V Rm, REm, GEm (Line 6).



14 Shaohua Wan et al.

Algorithm 2 Offloading delay evaluation for vehicle applications

Require: M
Ensure: D
1: for m = 1 to M do
2: Calculate V Rm by formula (1)
3: Calculate REm by formula (2)
4: Obtain γm by Algorithm 1
5: Obtain GEm by formula (3)
6: D+=V Rm+REm+GEm

7: end for
8: return D

In Algorithm 3, the transmission cost can be evaluated at last. In this
algorithm, we should input M , sm, γm. The total transmission cost for all the
ENs can be evaluated (Lines 1-5).

Algorithm 3 Transmission cost evaluation for all the ENs

Require: M, sm, γm
Ensure: C
1: for m = 1 to M do
2: Calculate Cm by formula (6)
3: C+=Cm

4: end for
5: return C

In the Algorithm 4, the load balance degree for all the ENs can be evaluated
at last. In this algorithm, we should input M , N , θm and αn. The utilization
for the EN en should be evaluated at first (Lines 2-5). Then the amount of
utilized ENs can be calculated (Lines 7-12) w and un are used to calculate the
average utilization for the leveraged ENs and the load deviation for the load
distribution of en (Lines 13-16). At last, the load balance degree for all the
ENs is calculated by W , N and ldn (Line 17).

4.4 Initialization

In the initialization operation, the paraments should be determined at first, in-
cluding the size of population S, the size of archive A, the number of iterations
T , the probability of crossover E and the probability of mutation Y .

Each chromosome represents the M efficient computation offloading strate-
gies of the M computing applications, the strategy can be denoted as Cλ(cλ,1,
cλ,2, cλ,3, ..., cλ,m) , where Cλ represents the λ-th chromosome and Cλ,j repre-
sents the j-th gene of the λ-th chromosome.
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Algorithm 4 Load balance degree evaluation for all the ENs

Require: M,N, θm, αn

Ensure: L
1: for m = 1 to M do
2: if Pn

m=1 then
3: Calculate Zn by formula (8)
4: Calculate un by formula (9)
5: end if
6: end for
7: for n = 1 to N do
8: if zn 6= 0 then
9: Qn=1

10: else
11: Qn=0
12: Wn=Qn

13: W+=Wn

14: Un=un/w
15: U+=Un

16: Calculate ldn by formula (13)
17: Ln=1/(w*ldn)
18: L+ = Ln

19: end if
20: end for
21: return L

4.5 Selection

In the selection operation, the individuals with high fitness are selected from
the current evolutionary group into the mating pool. The crossover operation
and the mutation operation can only select individuals from the mating pool
to generate a better population.

In the SPEA2 algorithm, the method of calculating individual’s fitness
G(k) is improved, taking the nondominated individuals and the dominated
individuals into account at the same time, as calculated by:

V (k) =
∑

l∈Qt+Pt,l�k,

H(l), (19)

H(k) = |{l|l ∈ Qt + Pt ∧ k � l}, (20)

B(k) =
1

σgk + 2
, (21)

g =
√
|S|+ |A|, (22)

G(k) = V (k) +B(k), (23)

whereQt represents the original population, Pt represents the archive population,l
and k are the individuals in Qt and Pt, µ

g
k grepresents the distance between

the k-th individual to the g-th individual.
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Then there are two selections: the environmental selection and the mating
selection. The environmental selection: when a new population is needed to
be constructed, the environmental selection should be made first. All the non-
dominated individuals which fitness is lower than one is selected from Qt and
Pt to the next archive population Pt+1, as calculated by:

Pt+1 = {k|k ∈ Qt + Pt ∧G(k) < 1}. (24)

If the size of the nondominated individuals is smaller than A, those excel-
lent individuals with small fitness are selected from Qt and Pt to Pt+1 again.
If the size of the nondominated individuals is larger than A, the archive trun-
cation procedure is used to remove individuals in Pt+1, as calculated by:

∀0 < g < |Pt+1| :
µgk = µgl ∨ ∃0 < g < |Pt+1| :

[(∀0 < q < g : µqk = µql ) ∧ µ
g
k = µgl ],

(25)

where µgk represents the distance between the k-th individual and the g-th
individual in the Pt+1.

The mating selection: the tournament selection is implemented in the Pt+1

to make the next crossover and mutation operation.

4.6 Crossover and Mutation

The traditional single-point crossover operation is taken to combine the two
parental chromosomes to generate two new chromosomes. In the crossover op-
eration, the only one crossover point should be selected first, and the chromo-
somes should be changed next. Fig. 6 shows an example of crossover operation.
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Fig. 6: An example of crossover operation.
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When the offspring chromosomes are no longer better than their parental
chromosomes while they do not reach the globally optimal solution, the pre-
mature convergence will happen. The mutation operation is taken to maintain
individual diversity in the population. The probability of each gene which will
mutate is equal. Fig. 7 shows an example of mutation operation.

4 4

7

...

3

...

1 1

Ck CK

c1

c2

...

cM

c1

c2

...

cM

Fig. 7: An example of mutation operation.

4.7 Optimal Strategy Obtaining based on the TOPSIS and MCDM

The relative merits of the existing objects are sorted according to the dis-
tance between the limited number of evaluated objects and the ideal objective
based on the method of TOPSIS [43]. MCDM is an efficient method which has
been used in most of the multi-objective problems [44,45,46,47,48]. Both of
the TOPSIS and the MCDM are used in this efficient computation offloading
problem in this paper.

When various generated strategies are needed to be selected, the TOPSIS
and the MCDM are applied to select the most efficient strategy. We propose
that there are A strategies to be chosen, and there are three objectives for
every strategy: the total offloading delay Da, the total transmission cost Ca
and the load balance degree La. All of the DA, CA and LA consist of the
three objectives. The steps which are made up by the method of TOPSIS and
MCDM are as follows.
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(1) The normalized value of offloading delay vdDa is calculated as:

vdDa =
Ta√
A∑
a=1

D2
a

, a = 1, ..., A. (26)

We can set the normalized value of the transmission cost vdCa and the
normalized value of the load balance degree vdLa like (24).

(2) The weight of the offloading delay, the transmission cost and the load
balance degree can be denoted as wdD, wdC and wdL, and wdD+wdC+wdL =
1.

The weight of the normalized value of the offloading delay degree ndDa can
be calculated as follows:

ndDa = wdD · vdDa , a = 1, 2, ..., A. (27)

We normalize the transmission cost ndCa and the load balance degree ndLa
like the offloading delay degree (25).

(3) In this problem to be solved, the load balance degree is the ideal solu-
tion, while the offloading delay and the transmission cost are the negative-ideal
solutions. The maximum weight of the normalized value of the offloading de-
lay, the transmission cost and the load balance degree are denoted as ndDmax,
ndCmax and ndLmax. The minimum weight of the normalized value of the of-
floading delay, the transmission cost and the load balance degree are denoted
as ndDmin, ndCmin and ndLmin.

(4) The distance between the alternative solution and the ideal solution
can be calculated as follows:

(AI∗a)2 = (ndDa − ndDmin)2 + (ndCa − ndCmin)2+

(ndLa − ndLmax)2, a = 1, 2, ..., A.
(28)

The distance between the alternative solution and the negative-ideal solu-
tions can be calculated as follows:

(AI−a )2 = (ndDa − ndDmax)2 + (ndCa − ndCmax)2+

(ndLa − ndLmin)2, a = 1, 2, ..., A.
(29)

(5) The relative closeness of every alternative solution to the ideal solution
can be calculated as follows:

SI∗a =
AI−a

AI−a +AI∗a
, a = 1, 2, ..., A. (30)

(6) All of the alternative solutions are ranked by the sequence of the relative
closeness. The process of making decision is as follows:

maxSI∗a , a = 1, 2, ..., A, (31)
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s. t. wdD, wdC , wdL ∈ [0, 1], (32)

wdD + wdC + wdL = 1. (33)

In our method, we calculate utility value of the strategies generated by
SPEA2, and the TOPSIS as well as MCDM are employed to pick out the
most optimal strategy.

4.8 Method Review

In this paper, we aim at minimizing the offloading delay and the offloading
cost and optimizing the load balance at the same time. The efficient compu-
tation offloading problem is regarded as a multi-objective problem, and the
SPEA2 algorithm is selected to solve this problem because of its high perfor-
mance in multi-objective optimization problem. First, the RSUs are encoded,
and the fitness functions and the constraints are given for the efficient com-
putation offloading problems. Then better chromosomes are selected from the
population after the fine-grained fitness assignment strategy, the environmen-
tal selection and the mating selection. What’s more, the crossover operation
and the mutation operation are taken to avoid the premature convergence and
generate new better offspring chromosomes. In GA, the number of individuals
with good fitness is still large, so the TOPSIS and MCDM are used to select
the optimal strategy. The following Fic.8 is the flowchart of SPEA2 algorithm.

Algorithm 5 Method overview of obtaining the optimal strategy

Require: Q0

Ensure: PB

1: for i = 1 to T do
2: Calculate the fitness of the individual in Qt and Pt by formulas (19) - (23)
3: Make the environmental selection in Qt and Pt by formulas (24) (25)
4: Make tournament selection in Pt+1

5: Make crossover and mutation operations
6: end for
7: Evaluate the individuals in PT using TOPSIS and MCDM
8: Obtain the optimal strategy
9: return PB

The overview of the proposed method is elaborated in Algorithm 2. We
input the initialized population Q1 and output the archive set of the maxi-
mum iteration PT . In each iteration, we calculate the fitness of the individual
in Qt and Pt by (17) (18) (20) (21). Then we make the environment selection
according to (22) (23) and produce Pt+1. What’s more, for Pt+1, we do the
tournament selection and finally we make crossover and mutation selection. In
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the Algorithm 5, we introduce the procedure of obtaining the optimal strat-
egy, and Q0 represents the initial population and the PB represents the best
strategy.

5 Experimental Evaluation

In this section, in order to evaluate the performance of the proposed COV
method, a series of simulations and experiments are carried out. Firstly, the
settings of the experimental environment are described in detail, including the
simulation settings and the description of the comparison methods. Then, the
most balanced strategies of COV at different vehicle scales are selected out by
TOPSIS and MCDM. Lastly, the effects of the various vehicle scales on the
performance of the offloading delay, the offloading cost and the loading bal-
ancing degree performed by the computation offloading methods are evaluated
and compared.

5.1 Simulation Setup

In our experiments, we engage three datasets of vehicle scales, and the number
of vehicles is set to 20, 40, 60, 80, 100 and 120. According to [49], the data
transmission rate between the RSU and the vehicle is set to 3Mbps. Similarly,
the data transmission rate between two ENs is set to 1.2 Gbps, and the data
transmission rate between the RSU and the accessible EN is set to 1 Gbps
according to [50] respectively. The total number of ENs is set to 20 and the
total number of VMs in each EN is set to 20 as well. In this simulation, there
are some VMs which are employed already by some other vehicle applications
and the experiments are undergoing with those existed vehicle applications
into consideration. The parameters and the corresponding values are specified
in Table 2.

In order to conduct the comparison analysis, three computation offloading
methods are adopted besides COV. The comparison method is summarized as
follows.

– Benchmark: In this method, the vehicle applications are offloaded to the
nearest RSU and transfer to the nearest EN for computing. However, when
the vehicle application to be offloaded requires more computing resources
than the nearest EN owns, this vehicle application is offloaded to the ENs
near the current one according to Dijkstra’s algorithm. Then this process
is repeated until all vehicle applications are offloaded to the ENs.

– First fit decreasing-based computation offloading on resource-utilization
optimization (FFD-RU): In this method, the vehicle applications are sorted
decreasingly according to their requirement of the computing resource.
Then the vehicle applications are offloaded to the ENs with enough com-
puting resource according to the sorting. This process is repeated until all
vehicle applications have been offloaded.
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Table 2: Parameter Settings

Parameter Value
The engaged datasets of the vehicle
scales M

{20, 40, 60, 80, 100, 120}

The total number of ENs N 20
The number of VMs in each EN θ 20
The data transmission rate between
the RSU and the vehicle trV R

3Mbps

The data transmission rate between
two ENs trEN

1.2 Gbps

The data transmission rate between
the RSU and the accessible EN trRE

1 Gbps

The number of the employed VMs
for each vam

[0,20]

The occupied memory size of each
vehicle applications sm

[5,9]

– Best fit decreasing-based computation offloading on resource-utilization op-
timization (BFD-RU): Under the condition of this method, the vehicle
applications are sorted decreasingly by the resource they required before
the computation offloading. Then the vehicle applications are offloaded to
the ENs which owns the least but enough computing resource for the cur-
rent application one by one. When all the vehicle applications have been
offloaded, this process stops repeating.

Benchmark, FFD-RU and BFD-RU are the traditional approaches to solve
the multi-objective optimization problem. The comparation amongst the pro-
posed approach COV, benchmark, FFD and BFD are capable of showing the
superiority of COV easily.

By employing the CloudSim simulation tool, the computational offloading
methods are implemented on a desktop PC with Inter Core i7-8700 3.20 GHz
processors and 16 GB RAM. The corresponding assessment results will be
described in detail in the following subsections.

5.2 Strategy selection of COV

According to Section 4, as the COV generates couples of strategies, the TOP-
SIS and MCDM are employed to select the most optimal strategy in our ex-
periments. Fig. 9 shows the utility value of the strategies generated by COV
by different vehicle scales. It shows that when the number of vehicles is 20, 40,
60, 80, 100 and 120, the number of the strategies generated by COV is 3, 2,
3, 4, 3 and 3 respectively. After statistics and analysis, the strategy with the
maximum utility value is employed as the most optimal strategy. From Fig. 9,
the most balance strategies are solution 3, 1, 3, 1, 1 and 3 respectively.
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5.3 Comparison analysis

In this subsection, the performances of Benchmark, FFD-RU, BFD-RU and
COV are evaluated and compared in detail. The offloading delay, the offloading
cost and the load balance degree are assumed as the main metrics to evaluate
the performance of the proposed computation offloading methods. Moreover,
the number of the employed ENs is presented to show the resource utilization
of all the ENs for offloading the vehicle applications. The evaluation results
are shown in the figures 2, 3, 4, 5 and 6 respectively.

1) Evaluation on the offloading delay: According to Section 3, the total
offloading delay is composed by three different parts which are the data trans-
mission between the vehicle and the RSU, the data transmission between the
accessible EN and the RSU as well as the data transmission between two ENs.
Fig. 10 illustrates the comparison of those three different parts of the offload-
ing delay by the computation offloading methods. From Fig. 10 (a) and (b),
the offloading delay between the vehicle and the RSU as well as the accessible
EN and RSU keep the same on the condition of the same vehicle scale by
FFD-RU, BFD-RU and COV. In addition, the two parts of offloading delay
are increasing along with the increase of the vehicle scales. From Fig. 10 (c),
the offloading delay of Benchmark is 0 because there is no offload taking place
between ENs in Benchmark. In addition, when the number of vehicles is below
80, the offloading delay between two ENs raised by COV is a little more than
FFD-RU and BFD-RU. However, with the increase of vehicle scales, FFD-RU
and BFD-RU cost more offloading delay than COV and the gap is enlarging
in this tendency. Fig. 11 shows the total offloading delay by four computation
offloading methods. The differences of the offloading delay in the same vehicle
scales performed by those computation offloading methods is resulted totally
by the difference of the offloading delay between two ENs.

2) Evaluation on the offloading cost: In this paper, the offloading cost
mainly refers to the transmission amount of the vehicle applications for the
ENs because of the receiving and transferring the vehicle applications. More
offloading times during ENs with more vehicle applications contributes to more
offloading cost. Fig. 12 shows the comparison of the offloading cost performed
by Benchmark, FFD-RU, BFD-RU and COV. It is intuitive that the Bench-
mark costs less than the other computation offloading methods, which is be-
cause there does not exist any transferring from ENs in Benchmark. Despite
the Benchmark, when the number of vehicles is below 80, the offloading cost
consumed by COV is little more than FFD-RU and BFD-RU. This is because
when there are little vehicle applications, COV needs more offloading times
between two ENs to improve the load balancing degree, which raises the of-
floading cost to some extent. On the other hand, when the number of vehicle
applications increases, the offloading cost of COV is less than FFD-RU and
BFD-RU. With the increase of the vehicle scales, the gap of the offloading
during COV and FFD-RU as well as BFD-RU is enlarging, which means our
proposed COV may more suitable when the vehicle applications are more than
100.
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Table 3: Improvement of Load Balance Degree with COV Compared to Bench-
mark, FFD-RU and BFD-RU

Computation
offloading methods

The number of vehicle applications
20 40 60 80 100 120

Benchmark 782.2% 492.8% 810.0% 3807.9% 3561.8% 2606.5%
FFD-RU 1057.1% 539.0% 520.0% 522.3% 2766.5% 1698.2%
BFD-RU 1057.16% 539.0% 520.0% 522.3% 2766.5% 1698.2%

3) Evaluation on the load balance degree: The load balance degree is cal-
culated by the average utilization of the leveraged ENs and the active VMs
in each EN, the smaller number of employed ENs and higher load balance de-
gree means the computation offloading method is better resource utilized and
load balanced. In Fig. 13, we compare the number of employed ENs to ana-
lyze the resource utilization of the computation offloading methods. It can be
indicated from Fig. 13 that COV employed less ENs than Benchmark, FFD-
RU and BFD-RU, which means COV is better resource utilized and wastes
fewer computation resources in each EN. Then, the load balance degree of
Benchmark, FFD-RU, BFD-RU and COV are compared in Fig. 14. In our ex-
periment, some computing applications besides our vehicle applications have
engaged some VMs in the ENs and those existed computing applications are
taken into consideration along with the vehicle application to realize the load
balance in our simulation. According to Section 3.3 a higher load balance de-
gree means the computation offloading methods is more load balanced. It can
be intuitive from Fig. 14 and Table 3 that our proposed COV has much bet-
ter performance in load balancing than Benchmark, FFD-RU and BFD-RU.
For instance, when the vehicle scale is 100, the improvements of COV to other
methods are all near 3000%. This means that COV does well in the fair degree
for the load distribution of the offloaded vehicle applications and reduce the
phenomena raised by the uneven load distribution to a large extent.

6 Conclusion

In recent years, IoV has emerged as a powerful technology to transmit real-
time traffic information to drivers. For fleet data processing rate, 5G networks
are employed in IoV environment, represented by using base stations to re-
ceive and process offloaded vehicle applications. However, with the increase of
vehicles, computing applications in vehicles become so complicated that it is
of low efficiency to use macro base stations to process offloaded applications.
In terms of pushing the computing services to the edge of the networks, edge
computing paradigm is suitable to execute IoV computing applications in 5G
networks. As the applications of the vehicles are offloaded to ENs in close prox-
imity to vehicles, partial ENs may be overload and it is necessary to offload
the applications in overload ENs to other idle ENs. Therefore, a computation
offloading method for IoV named COV is proposed to realize the jointly opti-
mization to reduce the application offloading delay and offloading cost across
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ENs while achieving the load balance of ENs globally. First, edge computing
framework in IoV is considered and described under the architecture of 5G
networks. Then, SPEA2 is adopted to realize the multi-objective optimization
to select appropriate destination ENs. Subsequent simulation experiments are
conducted to demonstrate the effectiveness of COV.

7 Future Work

In future work, we will attempt to use other infrastructure as ENs and extend
the proposed method to the real scenario in IoV environment. Furthermore,
we will develop an offloading strategy to reduce application offloading delay
and cost as well as achieving load balance of ENs within a set time.
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Fig. 9: The utility value performed by TOPSIS and MCDM of COV at different
vehicle scales.
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Fig. 10: Comparison of the different parts in the offloading delay by Bench-
mark, FFD-RU, BFD-RU and COV at different vehicle scales.
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Fig. 11: Comparison of the offloading delay by Benchmark, FFD-RU, BFD-RU
and COV at different vehicle scales.
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Fig. 13: Comparison of the number of employed ENs by Benchmark, FFD-RU,
BFD-RU and COV at different vehicle scales.
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