Shaofeng Lin

Shaofeng Lin
Verified
Shaofeng verified their affiliation via an institutional email.
Verified
Shaofeng verified their affiliation via an institutional email.
  • Doctor of Philosophy
  • Assistant Researcher at Fujian Medical University

About

25
Publications
17,313
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,170
Citations
Introduction
Current institution
Fujian Medical University
Current position
  • Assistant Researcher

Publications

Publications (25)
Article
Full-text available
Here, we described the updated database iUUCD 2.0 (http://iuucd.biocuckoo.org/) for ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin-protein ligases (E3s), deubiquitinating enzymes (DUBs), ubiquitin/ubiquitin-like binding domains (UBDs) and ubiquitin-like domains (ULDs), which act as key regulators in modulating ub...
Article
Full-text available
As an important post-translational modification (PTM), protein phosphorylation is involved in the regulation of almost all of biological processes in eukaryotes. Due to the rapid progress in mass spectrometry-based phosphoproteomics, a large number of phosphorylation sites (p-sites) have been characterized but remain to be curated. Here, we briefly...
Article
Protein kinases (PKs) regulate various cellular functions, and are targeted by small-molecule kinase inhibitors (KIs) in cancers and other diseases. However, drug resistance (DR) of KIs occurs through critical mutations in four types of representative hotspots, including gatekeeper, G-loop, αC-helix, and A-loop. KI DR has become a common clinical c...
Article
Protein degradation through the ubiquitin proteasome system at the spatial and temporal regulation is essential for many cellular processes. E3 ligases and degradation signals (degrons), the sequences they recognize in the target proteins, are key parts of the ubiquitin-mediated proteolysis, and their interactions determine the degradation specific...
Article
Full-text available
Protein kinase-mediated phosphorylation plays a critical role in many biological processes. However, the identification of key regulatory kinases is still a great challenge. Here, we develop a trans-omics-based method, central kinase inference, to predict potentially key kinases by integrating quantitative transcriptomic and phosphoproteomic data....
Article
Full-text available
N7-Methylguanosine (m7G) is important RNA modification at internal and the cap structure of five terminal end of message RNA. It is essential for RNA stability of RNA, the efficiency of translation, and various intracellular RNA processing pathways. Given the significance of the m7G modification, numerous studies have been conducted to predict m7G...
Article
Full-text available
Programmed cell death (PCD) is an essential biological process involved in many human pathologies. According to the continuous discovery of new PCD forms, a large number of proteins have been found to regulate PCD. Notably, post-translational modifications play critical roles in PCD process and the rapid advances in proteomics have facilitated the...
Article
Full-text available
As an important post-translational modification, lysine ubiquitination participates in numerous biological processes and is involved in human diseases, whereas the site specificity of ubiquitination is mainly decided by ubiquitin-protein ligases (E3s). Although numerous ubiquitination predictors have been developed, computational prediction of E3-s...
Article
Full-text available
The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), provides a family of database resources to support global research in both academia and industry. With the explosively accumulated multi-omics data at ever-faster rates, CNCB-NGDC is constantly scaling up and updating its core database resources t...
Article
Full-text available
Here, we reported the compendium of protein lysine modifications (CPLM 4.0, http://cplm.biocuckoo.cn/), a data resource for various post-translational modifications (PTMs) specifically occurred at the side-chain amino group of lysine residues in proteins. From the literature and public databases, we collected 450 378 protein lysine modification (PL...
Article
Full-text available
In Saccharomyces cerevisiae, Atg9 is an important autophagy-related (Atg) protein, and interacts with hundreds of other proteins. How many Atg9-interacting proteins are involved in macroautophagy/autophagy is unclear. Here, we conducted a multi-omic profiling of Atg9-dependent molecular landscapes during nitrogen starvation-induced autophagy, and i...
Article
O-linked β-N-acetyl glucosamine (O-GlcNAc) is attached to proteins under glucose-replete conditions; this posttranslational modification results in molecular and physiological changes that affect cell fate. Here we show that posttranslational modification of serine/arginine-rich protein kinase 2 (SRPK2) by O-GlcNAc regulates de novo lipogenesis by...
Article
Full-text available
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monit...
Article
Full-text available
High-throughput sequencing technologies have identified millions of genetic mutations in multiple human diseases. However, the interpretation of the pathogenesis of these mutations and the discovery of driver genes that dominate disease progression is still a major challenge. Combining functional features such as protein post-translational modifica...
Article
Full-text available
Most organisms on the earth exhibit circadian rhythms in behavior and physiology, which are driven by endogenous clocks. Phosphorylation plays a central role in timing the clock, but how this contributes to overt rhythms is unclear. Here we conduct phosphoproteomics in conjunction with transcriptomic and proteomic profiling using fly heads. By deve...
Article
Full-text available
In prokaryotes, protein phosphorylation plays a critical role in regulating a broad spectrum of biological processes and occurs mainly on various amino acids, including serine (S), threonine (T), tyrosine (Y), arginine (R), aspartic acid (D), histidine (H) and cysteine (C) residues of protein substrates. Through literature curation and public datab...
Article
Full-text available
Protein phosphorylation is essential for regulating cellular activities by modifying substrates at specific residues, which frequently interact with proteins containing phosphoprotein-binding domains (PPBDs) to propagate the phosphorylation signaling into downstream pathways. Although massive phosphorylation sites (p-sites) have been reported, most...
Article
Full-text available
In eukaryotes, protein phosphorylation is specifically catalyzed by numerous protein kinases (PKs), faithfully orchestrates various biological processes, and reversibly determines cellular dynamics and plasticity. Here we report an updated algorithm of Group-based Prediction System (GPS) 5.0 to improve the performance for predicting kinase-specific...
Article
Full-text available
Here, we presented an integrative database named DrLLPS (http://llps.biocuckoo.cn/) for proteins involved in liquid-liquid phase separation (LLPS), which is a ubiquitous and crucial mechanism for spatiotemporal organization of various biochemical reactions, by creating membraneless organelles (MLOs) in eukaryotic cells. From the literature, we manu...
Article
Full-text available
Here, we described the updated database iEKPD 2.0 (http://iekpd.biocuckoo.org) for eukaryotic protein kinases (PKs), protein phosphatases (PPs) and proteins containing phosphoprotein-binding domains (PPBDs), which are key molecules responsible for phosphorylation-dependent signalling networks and participate in the regulation of almost all biologic...
Article
Full-text available
Various posttranslational modifications (PTMs) participate in nearly all aspects of biological processes by regulating protein functions, and aberrant states of PTMs are frequently implicated in human diseases. Therefore, an integral resource of PTM-disease associations (PDAs) would be a great help for both academic research and clinical use. In th...
Article
Full-text available
Post-translational modifications (PTMs) occurring at protein lysine residues, or protein lysine modifications (PLMs), play critical roles in regulating biological processes. Due to the explosive expansion of the amount of PLM substrates and the discovery of novel PLM types, here we greatly updated our previous studies, and presented a much more int...
Article
Full-text available
In this work, we developed a database WERAM (http://weram.biocuckoo.org/) for histone acetyltransferases, histone deacetylases, histone methyltransferases, histone demethylases and acetyl- or methyl-binding proteins, which catalyze, remove and recognize histone acetylation and methylation sites as 'writers', 'erasers' and 'readers', and synergistic...
Article
Full-text available
Protein phosphorylation is one of the most important post-translational modifications (PTMs) and regulates a broad spectrum of biological processes. Recent progresses in phosphoproteomic identifications have generated a flood of phosphorylation sites, while the integration of these sites is an urgent need. In this work, we developed a curated datab...

Network

Cited By