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Abstract We report here the near complete assignments

of native bovine PI3-SH3 domain, which has been a model

system for protein folding, misfolding and amyloid fibril

formation. The use of 13C-detected protonless NMR

spectroscopy is instrumental in assigning the spin system of

the proline residue at the C-terminus in addition to the

missing resonances in proton-based NMR spectra due to

rapid solvent exchange. It also helps assign the resonances

of all three proline amine nitrogen nuclei, which are

underrepresented in the database. Comparison of the

backbone 13C resonances of PI3-SH3 in its native and

amyloid fibril states shows that the aggregation of PI3-SH3

is accompanied by major conformational rearrangements.
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Biological context

The bovine SH3 domain of the p85a subunit of phospha-

tidylinositol-3-OH kinase (PI3-SH3) is one of the most

studied model systems for protein folding, misfolding and

amyloid fibril formation (Bayro et al. 2010; Guijarro et al.

1998a, b; Jimenez et al. 1999; Orte et al. 2008). PI3-SH3

exhibits increased aggregation propensity under acidic

conditions and readily aggregates into typical amyloid

fibril structures (Jimenez et al. 1999; Zurdo et al. 2001). It

contains a 22-residue n-src loop that is much longer than

that of most SH3 domains. By grafting part of the elon-

gated n-src loop of PI3-SH3 into a non-amyloidogenic SH3

domain, the chimeric SH3 domain also aggregates into

amyloid fibrils, indicating that the n-src loop of PI3-SH3 is

highly amyloidogenic (Ventura et al. 2002). The solution

structures of PI3-SH3 have been reported previously using
15N-labelled samples (PDB entries 1PNJ, 2PNI, 2PKS and

2PKT) (Booker et al. 1993; Koyama et al. 1993a, b). Its

structure has also been determined by X-ray crystallogra-

phy (PDB entry 1PHT) (Liang et al. 1996). 1H NMR

spectroscopy has been employed to investigate the folding

and misfolding of PI3-SH3 (Guijarro et al. 1998b; Zurdo

et al. 2001). Recently, a solid state NMR study showed that

the amyloid form of PI3-SH3 contains four extended b-

strands in the well-ordered fibril core and that the b-strand

registering differs significantly from that of the native

structure in solution, indicating conformational rearrange-

ments during the aggregation process (Bayro et al. 2010).

Despite all these detailed biophysical analyses on PI3-SH3,

the NMR assignments of the 13C nuclei, which provide

exquisite structural information with regard to the protein

secondary structure elements, have not been reported. Here

we report the near complete NMR assignments of the

86-residue PI3-SH3 construct in its native state. These
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NMR assignments are used to compare with the solid state

NMR data of PI3-SH3 in its aggregated state. These data

can also be used in the future to investigate conformational

changes of PI3-SH3 under different conditions, such as the

aggregation-prone, acid-denatured state.

Methods and experiments

Protein expression and purification

The expression and purification of the recombinant

PI3-SH3 were carried out following the previously described

procedures (Booker et al. 1993). Briefly, the recombinant

PI3-SH3 was transformed into an E. coli expression strain

and expressed as a glutathione S-transferase (GST) fusion

protein with the tag fused at the N-terminus in minimum

medium containing 15N-labelled ammonium chloride

(1 g/L) and 13C-labelled D-glucose (3 g/L) as the sole

nitrogen and carbon sources. The overexpressed recombi-

nant protein was purified using a glutathione-Sepharose

column followed by thrombin cleavage to separate the GST

tag, a second glutathione-Sepharose column to remove the

digested GST tag, and finally size-exclusion chromatogra-

phy to purify the recombinant PI3-SH3 to homogeneity. Due

to the design of the GST fusion construct, the N-terminus of

the recombinant PI3-SH3 has an extension of a Gly-Ser

dipeptide. The numbering of the NMR assignments in this

study shall start with the two additional residues hereafter,

i.e., the residue numbers of PI3-SH3 will plus two with

respect to the original gene sequence. The recombinant

protein was concentrated, flash-frozen by liquid nitrogen and

stored at -20 �C until further use.

NMR spectroscopy

The NMR sample contains ca. 0.5 mM of U-[13C,15N]

PI3-SH3 and buffered in 50 mM potassium phosphate (pH

6.0) with 10 % (v/v) D2O for NMR lock signal. All NMR

spectra of PI3-SH3 were acquired at 298 K on Bruker

AVANCE spectrometers, which operate at a proton Larmor

frequency of 500 MHz or 600 MHz, and are equipped with a

cryogenic triple resonance probe. [15N–1H] HSQC, constant-

time [13C–1H] HSQC and standard triple resonance experi-

ments, including HNCO, HN(CA)CO, CBCA(CO)NH,

HNCACB and HBHANH were recorded for backbone

assignments including 13Ca, 13Cb 1HN, 13C’ and 15N spin

systems. For side-chain assignments, 15N-edited NOESY-

HSQC, 15N-edited TOCSY-HSQC, aromatic [13C–1H]

HSQC, (HB)CB(CECE)HE and (HE)CB(CGCDCE)HE,

H(CCCO)NH, (H)C(CO)NH, H(C)CH-TOCSY and

(H)CCH-TOCSY were recorded (Cavanagh et al. 2007;

Sattler et al. 1999). Additionally, relaxation-optimised ver-

sion of protonless CON, CACO and CBCACO spectra were
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Fig. 1 Assigned protonless

CON spectrum of PI3-SH3,

recorded at 298 K, 14 Tesla.

Each cross-peak in the CON

spectrum correspond to the

sequential connection of amide

nitrogen of individual residues

and the carbonyl carbon of the

preceding residues (Ni–COi-1).

For clarity, each cross-peak is

labelled with the residue type

and sequence of the amide

nitrogen to which it

corresponds. The three cross-

peaks that correspond to P52,

P72 and P86, which are not

accessible to proton-based
15N–1H HSQC experiments are

indicated in boxes. Note that the

cross-peak of P86 is aliased

along the nitrogen dimension.

The amine nitrogen of P86 has a

chemical shift value of

142.1 ppm
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recorded (Bermel et al. 2009). All NMR data were processed

and analysed by TopSpin (Bruker BioSpin), NMRPipe

(Delaglio et al. 1995) and Sparky (Goddard and Kneller)

software packages. The assignments procedure of the back-

bone resonances has been described previously (Hsu et al.

2009a, c).

Extent of assignments and data deposition

We have obtained complete backbone assignments (HN,

Ha, N, Ca, Cb and C’) of PI3-SH3 with the exception of

the Gly residue at the N-terminus. The use of protonless

NMR spectroscopy (Bermel et al. 2006a, b; Hsu et al.

2009b) was crucial in identifying of the amine nitrogen

nuclei of proline residues that are otherwise inaccessible to

conventional proton-based [15N–1H] HSQC spectroscopy.

This also leads to the underrepresentation of the reported

chemical shifts of the proline amine nitrogen nuclei. In the

case of PI3-SH3, in particular, the C-terminus is a proline

residue, which prohibits conventional sequential assign-

ments. Using a combination of CON, CACO and CBC-

ACO spectra, together with the prior knowledge that the

chemical shifts of the C-terminal carbonyl carbons are

generally much more down-field shifted, we managed to

make a tentative assignment for the entire spin system of

P86. Additionally the 15N–1H correlation corresponding to

the second residue, Ser, at the N-terminus was missing in

the [15N–1H] HSQC spectrum, most likely due to rapid

solvent exchange. We therefore had to resort to the use of a

combination of CON, CACO, CBCACO and [13C–1H]

HSQC spectra to complete the assignment of the backbone

assignments, expect the assignment for its HN. Despite the

lower sensitivity of the carbon-detection spectroscopy, the

sensitivity of the commercial 13C-optimised probe heads

are sufficiently high to allow acquisition of high-quality 2D

protonless spectra within a few hours which enable

recovery of spectral information due to rapid solvent

exchange (Hsu et al. 2009b) and the loss of sequential

connectivities due to proline residues (Fig. 1). The PRO-

SIAS webserver (http://www.nmr.chem.uu.nl/users/rob/

prosias_setup_cgi.html), which uses protein sequence,

backbone resonances, and the peaklists of [13C–1H] HSQC,

H(CCCO)NH, (H)C(CO)NH, H(C)CH-TOCSY and

(H)CCH-TOCSY, was used to aid the aliphatic side-chain

assignments of PI3-SH3. For the assignments of the aro-

matic side-chains, the assignments were achieved manually

using a combination of aromatic [13C–1H] HSQC, (HB)CB

(CECE)HE and (HE)CB(CGCDCE)HE. The overall

Fig. 2 Secondary structure population of PI3-SH3 calculated by its

backbone chemical shifts. The fractional secondary structure popu-

lations of a-helix, b-sheet, random coil and polyproline II helix (PPII)

are coloured red, yellow, grey and green, respectively, and the sum of

these four equates to unity. For reference, the reported secondary

structure elements, which have been determined by X-ray crystal-

lography (PDB entry 1PHT) are shown on the top. The secondary

structure populations are calculated by the d2D webserver

http://www-vendruscolo.ch.cam.ac.uk/d2D/ (Camilloni et al. 2012)

Fig. 3 Comparison of secondary chemical shifts of PI3-SH3 in its

native (red lines) and fibrilar state (black bars). The top, middle and

bottom panels show the secondary chemical shifts of CA, CB and CO,

respectively. The random coil shifts are calculated using the CamCoil

webserver http://www-vendruscolo.ch.cam.ac.uk/camcoil.php (De

Simone et al. 2009). The residues that are b-stranded in the native and

fibrilar states are indicated by magenta and green bars, respectively,

on top of the panels. Additionally, the residues that are a-helical are

indicated in a cyan bar. The secondary structure predictions are made

by the d2D webserver (Camilloni et al. 2012)
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completeness of the side-chain resonances, excluding the

labile groups, is more than 90 %. The NMR assignments

are deposited to the BioMagResBank (http://www.bmrb.

wise.edu/) under the accession code 19110.

Base on the assignment backbone resonances of PI3-SH3

under native condition, we calculated the secondary struc-

ture populations of individual amino acids as a function of

protein sequence (Fig. 2). The exceptionally long n-src loop

exhibits high helical content, which is consistent with earlier

reports (Booker et al. 1993; Koyama et al. 1993a, b; Liang

et al. 1996). We next compare our backbone 13C chemical

shifts of PI3-SH3 (Ca, Cb and C0) in native state with those in

amyloid state, which were assigned by the use of solid state

NMR spectroscopy (Bayro et al. 2010). Except for residues

30–35 and 55–60, the backbone chemical shifts of native

PI3-SH3 and its amyloid fibrilar counterpart are very dif-

ferent (Fig. 3), indicating that the amyloid formation is

accompanied with significant conformational changes.

Having said that, the predicted backbone torsion angles, U
and W (Shen et al. 2009), are rather similar, with the

exception of those in the n-src and distal loops, which also

adopt extended conformations in the amyloid fibrilar state

(Fig. 4). Collectively, the results illustrate the importance of

having the assignments of the backbone 13C nuclei, which

report not only the local secondary structures but tertiary

structures thereby providing useful structural information for

chemical shift-based structure calculations (Cavalli et al.

2007; Shen et al. 2008).
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