Shan Luo

Shan Luo
  • PhD
  • Reader (Associate Professor) at King's College London

About

134
Publications
31,989
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,804
Citations
Current institution
King's College London
Current position
  • Reader (Associate Professor)

Publications

Publications (134)
Preprint
Robotic tactile sensors, including vision-based and taxel-based sensors, enable agile manipulation and safe human-robot interaction through force sensation. However, variations in structural configurations, measured signals, and material properties create domain gaps that limit the transferability of learned force sensation across different tactile...
Article
Modern video games are increasingly aiming for more natural interactions and healthier gaming experiences. Haptic devices, in particular, can enhance these experiences by providing multimodal feedback and simulating a variety of body postures. However, limited attention has been paid to utilizing upper limb wearable haptic devices in video games. I...
Chapter
Full-text available
The activation function plays a crucial role in model optimisation, yet the optimal choice remains unclear. For example, the Sigmoid activation is the de-facto activation in balanced classification tasks, however, in imbalanced classification, it proves inappropriate due to bias towards frequent classes. In this work, we delve deeper in this phenom...
Preprint
Real-world datasets follow an imbalanced distribution, which poses significant challenges in rare-category object detection. Recent studies tackle this problem by developing re-weighting and re-sampling methods, that utilise the class frequencies of the dataset. However, these techniques focus solely on the frequency statistics and ignore the distr...
Preprint
The field of face recognition (FR) has undergone significant advancements with the rise of deep learning. Recently, the success of unsupervised learning and graph neural networks has demonstrated the effectiveness of data structure information. Considering that the FR task can leverage large-scale training data, which intrinsically contains signifi...
Article
Full-text available
First-person view (FPV) technology in virtual reality (VR) can offer in-situ environments in which teleoperators can manipulate unmanned ground vehicles (UGVs). However, non-experts and expert robot teleoperators still have trouble controlling robots remotely in various situations. For example, obstacles are not easy to avoid when teleoperating UGV...
Article
Optical tactile sensors play a pivotal role in robot perception and manipulation tasks. The membrane of these sensors can be painted with markers or remain markerless, enabling them to function in either marker or markerless mode. However, this uni-modal selection means the sensor is only suitable for either manipulation or perception tasks. While...
Preprint
In recent years, advancements in optical tactile sensor technology have primarily centred on enhancing sensing precision and expanding the range of sensing modalities. To meet the requirements for more skilful manipulation, there should be a movement towards making tactile sensors more dynamic. In this paper, we introduce RoTip, a novel vision-base...
Preprint
Vision-based tactile sensors (VBTSs) provide high-resolution tactile images crucial for robot in-hand manipulation. However, force sensing in VBTSs is underutilized due to the costly and time-intensive process of acquiring paired tactile images and force labels. In this study, we introduce a transferable force prediction model, TransForce, designed...
Article
Ensuring traffic safety is crucial, which necessitates the detection and prevention of road surface defects. As a result, there has been a growing interest in the literature on the subject, leading to the development of various road surface defect detection methods. The methods for detecting road defects can be categorised in various ways depending...
Preprint
Optical tactile sensors play a pivotal role in robot perception and manipulation tasks. The membrane of these sensors can be painted with markers or remain markerless, enabling them to function in either marker or markerless mode. However, this uni-modal selection means the sensor is only suitable for either manipulation or perception tasks. While...
Preprint
Full-text available
Cross-Modal Retrieval (CMR), which retrieves relevant items from one modality (e.g., audio) given a query in another modality (e.g., visual), has undergone significant advancements in recent years. This capability is crucial for robots to integrate and interpret information across diverse sensory inputs. However, the retrieval space in existing rob...
Preprint
Optical tactile sensors provide robots with rich force information for robot grasping in unstructured environments. The fast and accurate calibration of three-dimensional contact forces holds significance for new sensors and existing tactile sensors which may have incurred damage or aging. However, the conventional neural-network-based force calibr...
Preprint
The activation function plays a crucial role in model optimisation, yet the optimal choice remains unclear. For example, the Sigmoid activation is the de-facto activation in balanced classification tasks, however, in imbalanced classification, it proves inappropriate due to bias towards frequent classes. In this work, we delve deeper in this phenom...
Preprint
This paper introduces RoTipBot, a novel robotic system for handling thin, flexible objects. Different from previous works that are limited to singulating them using suction cups or soft grippers, RoTipBot can grasp and count multiple layers simultaneously, emulating human handling in various environments. Specifically, we develop a novel vision-bas...
Article
Simulation is a widely used tool in robotics to reduce hardware consumption and gather large-scale data. Despite previous efforts to simulate optical tactile sensors, there remain challenges in efficiently synthesizing images and replicating marker motion under different contact loads. In this work, we propose a fast optical tactile simulator, name...
Conference Paper
Full-text available
In recent years, advancements in optical tactile sensor technology have primarily centred on enhancing sensing precision and expanding the range of sensing modalities. To meet the requirements for more skilful manipulation, there should be a movement towards making tactile sensors more dynamic. In this paper, we introduce RoTip, a novel vision-base...
Article
Full-text available
The long-tailed distribution is a common phenomenon in the real world. Extracted large scale image datasets inevitably demonstrate the long-tailed property and models trained with imbalanced data can obtain high performance for the over-represented categories, but struggle for the under-represented categories, leading to biased predictions and perf...
Article
Visual-tactile sensors that use a camera to capture the deformation of a soft gel layer have become popular in recent years. However, these sensors have a limited receptive field, which can hinder their ability to perceive tactile information effectively. In this paper, we propose a novel visual-tactile sensor named GelFinger that closely resembles...
Preprint
The missing signal caused by the objects being occluded or an unstable sensor is a common challenge during data collection. Such missing signals will adversely affect the results obtained from the data, and this issue is observed more frequently in robotic tactile perception. In tactile perception, due to the limited working space and the dynamic e...
Preprint
Tactile sensing plays an irreplaceable role in robotic material recognition. It enables robots to distinguish material properties such as their local geometry and textures, especially for materials like textiles. However, most tactile recognition methods can only classify known materials that have been touched and trained with tactile data, yet can...
Conference Paper
Full-text available
Transferring optical tactile skills learned from simulated environments to the real world benefits many robotic tactile applications, which can reduce the cost of data collection. However, the models purely trained on simulated data are often difficult to generalize well to the unseen real world due to the domain gap between the faultless training...
Preprint
Full-text available
Recently, several morphologies, each with its advantages, have been proposed for the \textit{GelSight} high-resolution tactile sensors. However, existing simulation methods are limited to flat-surface sensors, which prevents their usage with the newer sensors of non-flat morphologies in Sim2Real experiments. In this paper, we extend a previously pr...
Preprint
Full-text available
Transparent object perception is a rapidly developing research problem in artificial intelligence. The ability to perceive transparent objects enables robots to achieve higher levels of autonomy, unlocking new applications in various industries such as healthcare, services and manufacturing. Despite numerous datasets and perception methods being pr...
Article
Full-text available
This study aims to address three problems in current studies in decoding the ankle movement intention for robot-assisted bilateral rehabilitation using surface electromyogram (sEMG) signals: (1) only up to four ankle movements could be identified while six ankle movements should be classified to provide better training; (2) feeding the raw sEMG sig...
Article
Full-text available
Simulation is widely applied in robotics research to save time and resources. There have been several works to simulate optical tactile sensors that leverage either a smoothing method or Finite Element Method (FEM). However, elastomer deformation physics is not considered in the former method, whereas the latter requires a massive amount of computa...
Article
Full-text available
Tactile sensing is important for robots to perceive the world as it captures the physical surface properties of the object with which it is in contact and is robust to illumination and colour variances. However, due to the limited sensing area and the resistance of their fixed surface when they are applied with relative motions to the object, curre...
Preprint
Simulation is widely applied in robotics research to save time and resources. There have been several works to simulate optical tactile sensors that leverage either a smoothing method or Finite Element Method (FEM). However, elastomer deformation physics is not considered in the former method, whereas the latter requires a massive amount of computa...
Preprint
To assist robots in teleoperation tasks, haptic rendering which allows human operators access a virtual touch feeling has been developed in recent years. Most previous haptic rendering methods strongly rely on data collected by tactile sensors. However, tactile data is not widely available for robots due to their limited reachable space and the res...
Article
Transferring optical tactile skills learned from simulated environments to the real world benefits many robotic tactile applications, which can reduce the cost of data collection. However, the models purely trained on simulated data are often difficult to generalize well to the unseen real world due to the domain gap between the faultless training...
Article
Transparent object perception is a rapidly developing research problem in artificial intelligence. The ability to perceive transparent objects enables robots to achieve higher levels of autonomy, unlocking new applications in various industries such as healthcare, services and manufacturing. Despite numerous datasets and perception methods being pr...
Conference Paper
Full-text available
This paper addresses the relations between the artifacts, tools, and technologies that we make to fulfill user-centered teleoperations in the cyber-physical environment. We explored the use of a virtual reality (VR) interface based on customized concepts of Worlds-in-Miniature (WiM) to teleoperate unmanned ground vehicles (UGVs). Our designed syste...
Article
Tubular objects such as test tubes are common in chemistry and life sciences research laboratories, and robots that can handle them have the potential to accelerate experiments. Moreover, it is expected to train a robot to manipulate tubular objects in a simulator and then deploy it in a real-world environment. However, it is still challenging for...
Chapter
Full-text available
Major advancements have been made in the field of object detection and segmentation recently. However, when it comes to rare categories, the state-of-the-art methods fail to detect them, resulting in a significant performance gap between rare and frequent categories. In this paper, we identify that Sigmoid or Softmax functions used in deep detector...
Preprint
Dijkstra's algorithm is one of the most popular classic path planning algorithms, achieving optimal solutions across a wide range of challenging tasks. However, it only calculates the shortest distance from one vertex to another, which is hard to directly apply to the Dynamic Multi-Sources to Single-Destination (DMS-SD) problem. This paper proposes...
Article
Full-text available
Transparent objects are widely used in our daily lives and therefore robots need to be able to handle them. However, transparent objects suffer from light reflection and refraction, which makes it challenging to obtain the accurate depth maps required to perform handling tasks. In this letter, we propose a novel affordance-based framework for depth...
Preprint
The long-tailed distribution is a common phenomenon in the real world. Extracted large scale image datasets inevitably demonstrate the long-tailed property and models trained with imbalanced data can obtain high performance for the over-represented categories, but struggle for the under-represented categories, leading to biased predictions and perf...
Preprint
Picking up transparent objects is still a challenging task for robots. The visual properties of transparent objects such as reflection and refraction make the current grasping methods that rely on camera sensing fail to detect and localise them. However, humans can handle the transparent object well by first observing its coarse profile and then po...
Article
Weakly supervised semantic segmentation is a challenging task that only takes image-level labels as supervision but produces pixel-level predictions for testing. To address such a challenging task, most current approaches generate pseudo pixel masks first that are then fed into a separate semantic segmentation network. However, these two-step appro...
Preprint
Major advancements have been made in the field of object detection and segmentation recently. However, when it comes to rare categories, the state-of-the-art methods fail to detect them, resulting in a significant performance gap between rare and frequent categories. In this paper, we identify that Sigmoid or Softmax functions used in deep detector...
Preprint
Full-text available
Transparent objects are widely used in our daily lives and therefore robots need to be able to handle them. However, transparent objects suffer from light reflection and refraction, which makes it challenging to obtain the accurate depth maps required to perform handling tasks. In this paper, we propose a novel affordance-based framework for depth...
Conference Paper
Full-text available
The shipping industry is an important component of the global trade and economy. In order to ensure law compliance and safety, it needs to be monitored. In this paper, we present a novel ship type classification model that combines vessel transmitted data from the Automatic Identification System, with vessel imagery. The main components of our appr...
Article
Full-text available
Most stroke patients suffer from a combination of motor and sensory dysfunction and central facial paralysis. Specific rehabilitation training is required to restore those functions. Current research focuses on developing stimulating and straightforward rehabilitation training processes so that patients adhere to the training at home after hospital...
Preprint
Full-text available
Manipulation of deformable objects is a challenging task for a robot. It will be problematic to use a single sensory input to track the behaviour of such objects: vision can be subjected to occlusions, whereas tactile inputs cannot capture the global information that is useful for the task. In this paper, we study the problem of using vision and ta...
Article
Full-text available
Proactive assistance in human–robot collaboration remains a challenging objective, as the spatial–temporal coordination of the human–robot motion must be considered in conjunction with the object and environmental context. In this paper, we propose an environment-adaptive probabilistic interaction primitive method using learning-from-demonstration....
Preprint
Full-text available
In recent years, Virtual Reality (VR) Head-Mounted Displays (HMD) have been used to provide an immersive, first-person view in real-time for the remote-control of Unmanned Ground Vehicles (UGV). One critical issue is that it is challenging to perceive the distance of obstacles surrounding the vehicle from 2D views in the HMD, which deteriorates the...
Chapter
Event definitions in Complex Event Processing systems are constrained by the expressiveness of each system’s language. Some systems allow the definition of instantaneous complex events, while others allow the definition of durative complex events. While there are exceptions that offer both options, they often lack of intervals relations such as tho...
Chapter
Tactile sensing is an essential capability for robots that carry out dexterous manipulation tasks. While cameras, Lidars, and other remote sensors can assess a scene globally and instantly, tactile sensors can reduce their measurement uncertainties and gain information about the local physical interactions between the in-contact objects and the rob...
Chapter
The sense of touch plays a key role in enabling humans to understand and interact with surrounding environments. For robots, tactile sensing is also irreplaceable. While interacting with objects, tactile sensing provides useful information for the robot to understand the object, such as the pressure distribution, temperature, vibrations, and textur...
Chapter
Humans perceive the world in a multimodal way in which vision, touch, and sound are utilized to understand surroundings from various dimensions. These senses are combined to achieve a synergistic effect where the learning is more effective than the sum of using each sense separately. For robots, vision and touch are also two key sensing modalities...
Article
Picking up transparent objects is still a challenging task for robots. The visual properties of transparent objects such as reflection and refraction make the current grasping methods that rely on camera sensing fail to detect and localize them. However, humans can handle the transparent object well by first observing its coarse profile and then po...
Article
In recent years, Virtual Reality (VR) Head-Mounted Displays (HMD) have been used to provide an immersive, first-person view in real-time for the remote-control of Unmanned Ground Vehicles (UGV). One critical issue is that it is challenging to perceive the distance of obstacles surrounding the vehicle from 2D views in the HMD, which deteriorates the...
Preprint
Full-text available
Humans usually perceive the world in a multimodal way that vision, touch, sound are utilised to understand surroundings from various dimensions. These senses are combined together to achieve a synergistic effect where the learning is more effectively than using each sense separately. For robotics, vision and touch are two key senses for the dextero...
Preprint
Full-text available
The sense of touch plays a key role in enabling humans to understand and interact with surrounding environments. For robots, tactile sensing is also irreplaceable. While interacting with objects, tactile sensing provides useful information for the robot to understand the object, such as distributed pressure, temperature, vibrations and texture. Dur...
Preprint
Full-text available
Tactile sensing is an essential capability for robots that carry out dexterous manipulation tasks. While cameras, Lidars and other remote sensors can assess a scene globally and instantly, tactile sensors can reduce their measurement uncertainties and gain information about the local physical interactions between the in-contact objects and the robo...
Preprint
Full-text available
Recently simulation methods have been developed for optical tactile sensors to enable the Sim2Real learning, i.e., firstly training models in simulation before deploying them on the real robot. However, some artefacts in the real objects are unpredictable, such as imperfections caused by fabrication processes, or scratches by the natural wear and t...
Preprint
Full-text available
The shipping industry is an important component of the global trade and economy, however in order to ensure law compliance and safety it needs to be monitored. In this paper, we present a novel Ship Type classification model that combines vessel transmitted data from the Automatic Identification System, with vessel imagery. The main components of o...
Preprint
Full-text available
Event definitions in Complex Event Processing systems are constrained by the expressiveness of each system's language. Some systems allow the definition of instantaneous complex events, while others allow the definition of durative complex events. While there are exceptions that offer both options, they often lack of intervals relations such as tho...
Article
The use of Augmented Reality (AR) technologies has increased recently, due to the equipment update and the mature technology. For architectural design, especially in digital fabrication projects, more designers begin to integrate AR methods to achieve the visualization in the process. To help unskilled labors for holographic on-site previewing and...
Preprint
Full-text available
Virtual reality (VR) head-mounted displays (HMD) have recently been used to provide an immersive, first-person vision/view in real-time for manipulating remotely-controlled unmanned ground vehicles (UGV). The teleoperation of UGV can be challenging for operators when it is done in real time. One big challenge is for operators to perceive quickly an...
Preprint
Full-text available
Crack detection is of great significance for monitoring the integrity and well-being of the infrastructure such as bridges and underground pipelines, which are harsh environments for people to access. In recent years, computer vision techniques have been applied in detecting cracks in concrete structures. However, they suffer from variances in ligh...
Article
Full-text available
The advent of sophisticated robotics and AI technology makes sending humans into hazardous and distant environments to carry out inspections increasingly avoidable. Being able to send a robot, rather than a human, into a nuclear facility or deep space is very appealing. However, building these robotic systems is just the start and we still need to...
Article
Most current works in Sim2Real learning for robotic manipulation tasks leverage camera vision that may be significantly occluded by robot hands during the manipulation. Tactile sensing offers complementary information to vision and can compensate for the information loss caused by the occlusion. However, the use of tactile sensing is restricted in...
Conference Paper
This research project, entitled AR Digi-Component, tries to digitalize the traditional architectural components and combines Augmented Reality (AR) technologies to explore new possibilities for architectural design and assembly. AR technology and Digitalize components will help to achieve a real-time immersive design and an AR-assisted robotic fabr...
Preprint
Full-text available
Tactile sensing is important for robots to perceive the world as it captures the texture and hardness of the object in contact and is robust to illumination and colour variances. However, due to the limited sensing area and the resistance of the fixed surface, current tactile sensors have to tap the tactile sensor on target object many times when a...
Preprint
Full-text available
Most current works in Sim2Real learning for robotic manipulation tasks leverage camera vision that may be significantly occluded by robot hands during the manipulation. Tactile sensing offers complementary information to vision and can compensate for the information loss caused by the occlusion. However, the use of tactile sensing is restricted in...
Chapter
The shipping industry is an important component of the global trade and economy, however in order to ensure law compliance and safety it needs to be monitored. In this paper, we present a novel Ship Type classification model that combines vessel transmitted data from the Automatic Identification System, with vessel imagery. The main components of o...
Article
Full-text available
Tactile sensing is an essential capability for a robot to perform manipulation tasks in cluttered environments. While larger areas can be assessed instantly with cameras, Lidars, and other remote sensors, tactile sensors can reduce their measurement uncertainties and gain information of the physical interactions between the objects and the robot en...
Conference Paper
Sensing contacts throughout the fingers is an essential capability for a robot to perform manipulation tasks in cluttered environments. However, existing tactile sensors either only have a flat sensing surface or a compliant tip with a limited sensing area. In this paper, we propose a novel optical tactile sensor, the GelTip, that is shaped as a fi...
Preprint
Full-text available
Sensing contacts throughout the fingers is an essential capability for a robot to perform manipulation tasks in cluttered environments. However, existing tactile sensors either only have a flat sensing surface or a compliant tip with a limited sensing area. In this paper, we propose a novel optical tactile sensor, the GelTip, that is shaped as a fi...
Preprint
Full-text available
Recently, tactile sensing has attracted great interest in robotics, especially for facilitating exploration of unstructured environments and effective manipulation. A detailed understanding of the surface textures via tactile sensing is essential for many of these tasks. Previous works on texture recognition using camera based tactile sensors have...
Conference Paper
Full-text available
Sensing contacts throughout the entire finger, is an highly valuable capability for a robot to perform manipulation tasks, as vision-based sensing often suffers from occlusions or inaccurate estimations. Current tactile sensors represent one of two compromises: low resolution readings, or a limited contact measurement area. In this paper, we propos...
Chapter
Full-text available
Developing autonomous assistants to help with domestic tasks is a vital topic in robotics research. Among these tasks, garment folding is one of them that is still far from being achieved mainly due to the large number of possible configurations that a crumpled piece of clothing may exhibit. Research has been done on either estimating the pose of t...
Preprint
Full-text available
Particle Swarm Optimisation (PSO) is a powerful optimisation algorithm that can be used to locate global maxima in a search space. Recent interest in swarms of Micro Aerial Vehicles (MAVs) begs the question as to whether PSO can be used as a method to enable real robotic swarms to locate a target goal point. However, the original PSO algorithm does...
Preprint
Full-text available
Developing autonomous assistants to help with domestic tasks is a vital topic in robotics research. Among these tasks, garment folding is one of them that is still far from being achieved mainly due to the large number of possible configurations that a crumpled piece of clothing may exhibit. Research has been done on either estimating the pose of t...
Preprint
Full-text available
Deep reinforcement learning (DRL) has achieved significant breakthroughs in various tasks. However, most DRL algorithms suffer a problem of generalizing the learned policy which makes the learning performance largely affected even by minor modifications of the training environment. Except that, the use of deep neural networks makes the learned poli...
Article
Full-text available
For humans, both the proprioception and touch sensing are highly utilized when performing haptic perception. However, most approaches in robotics use only either proprioceptive data or touch data in haptic object recognition. In this paper, we present a novel method named Iterative Closest Labeled Point (iCLAP) to link the kinesthetic cues and tact...
Preprint
Full-text available
The ability to identify and localize new objects robustly and effectively is vital for robotic grasping and manipulation in warehouses or smart factories. Deep convolutional neural networks (DCNNs) have achieved the state-of-the-art performance on established image datasets for object detection and segmentation. However, applying DCNNs in dynamic i...
Preprint
Full-text available
The integration of visual-tactile stimulus is common while humans performing daily tasks. In contrast, using unimodal visual or tactile perception limits the perceivable dimensionality of a subject. However, it remains a challenge to integrate the visual and tactile perception to facilitate robotic tasks. In this paper, we propose a novel framework...

Network

Cited By