About
35
Publications
10,086
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,649
Citations
Introduction
My research examines factors that govern the broad-scale dynamics of biodiversity, especially the processes that generate and maintain the dramatic spatial and temporal variations in biological diversity seen at regional and global scales.
I take an ecoinformatics approach, synthesizing large-scale data sets of ecological, biogeographic, phylogenetic, and paleobiological information to answer macro ecological and macroevolutionary questions.
Current institution
Additional affiliations
Education
August 2007 - December 2012
Publications
Publications (35)
One of the most general expectations of species range dynamics is that widespread species tend to have broader niches. However, it remains unclear how this rela- tionship is expressed at different levels of biological organisation, which involve potentially distinctive processes operating at different spatial and temporal scales. Here, we show that...
Because body size interacts with many fundamental biological properties of a species, body size evolution can be an essential component of the generation and maintenance of biodiversity. Here we investigate how body size evolution can be linked to the clade-specific diversification dynamics in different geographical regions. We analyse an extensive...
Illuminating the ecological and evolutionary dynamics of parasites is one of the most pressing issues facing modern science, and is critical for basic science, the global economy and human health. Extremely important to this effort are data on the disease-causing organisms of wild animal hosts (including viruses, bacteria, protozoa, helminths, arth...
Significance
The fossil record can reveal the complex history behind present-day diversity patterns. For marine bivalves, similarities and differences in species diversity within lineages among regions are better explained by past extinction, origination, and immigration than by contrasts in today’s climates alone. A signature of more severe extinc...
Measures of biodiversity encompass variation along several dimensions such as species richness (SR), phylogenetic diversity (PD) and functional/trait diversity (TD). At the global scale, it is widely recognized that SR and PD are strongly correlated, but the extent to which either tends to capture variation in TD is unclear. Here, we assess relatio...
Marine bivalves are important components of ecosystems and exploited by humans for food across the world, but the intrinsic vulnerability of exploited bivalve species to global changes is poorly known. Here, we expand the list of shallow-marine bivalves known to be exploited worldwide, with 720 exploited bivalve species added beyond the 81 in the U...
Body size is an overarching trait of taxa, related to virtually all aspects of their life history and their relationships with the environment. In this chapter, we use the NOW data to summarize body size evolution of terrestrial mammals during the Neogene. We first present a new method for estimating body size of Proboscidea and show consistent tre...
Aim
Body size evolution has long been hypothesized to have been driven by factors linked to climate change, but the specific mechanisms are difficult to disentangle due to the wide range of functional traits that covary with body size. In this study, we investigated the impact of regional habitat changes as a potential indirect effect of climate ch...
Species are shifting their distributions in response to climate change. This geographic reshuffling may result in novel co-occurrences among species, which could lead to unseen biotic interactions, including the exchange of parasites between previously isolated hosts. Identifying potential new host–parasite interactions would improve forecasting of...
A growing body of research is focused on the extinction of parasite species in response to host endangerment and declines. Beyond the loss of parasite species richness, host extinction can impact apparent parasite host specificity, as measured by host richness or the phylogenetic distances among hosts. Such impacts on the distribution of parasites...
A growing body of research is focused on the extinction of parasite species in response to host endangerment and declines. Beyond the loss of parasite species richness, host extinction can impact apparent parasite host specificity, as measured by host richness or the phylogenetic distances among hosts. Such impacts on the distribution of parasites...
Understanding the drivers of biodiversity is important for forecasting changes in the distribution of life on earth. However, most studies of biodiversity are limited by uneven sampling effort, with some regions or taxa better sampled than others. Numerous methods have been developed to account for differences in sampling effort, but most methods w...
Aim
Parasites are a major component of global ecosystems, yet spatial variation in parasite diversity is poorly known, largely because their occurrence data are limited and thus difficult to interpret. Using a recently compiled database of parasite occurrences, we compare different models which we use to infer parasite geographic ranges and parasit...
Aim
We advocate an interdisciplinary approach to biogeography, integrating geology and paleobiology to examine how biodiversity dynamics evolved as mountain ranges formed through (geological) time.
Location
Global; case study: Anatolia (Turkey).
Methods
We discuss the links between surface uplift and biodiversity dynamics and review recent develo...
Understanding factors that facilitate interspecific pathogen transmission is a central issue for conservation, agriculture, and human health. Past work showed that host phylogenetic relatedness and geographical proximity can increase cross‐species transmission, but further work is needed to examine the importance of host traits, and species interac...
Aim
We examined body size scaling relationships for two developmental life stages of parasitic helminths (egg and adult) separately in relationship to latitude (i.e. Bergmann's rule), temperature and temperature seasonality. Given that helminth eggs experience environmental conditions more directly, whereas adults live inside infected host individu...
The latitudinal diversity gradient (LDG) is one of the most widely studied patterns in ecology, yet no consensus has been reached about its underlying causes. We argue that the reasons for this are the verbal nature of existing hypotheses, the failure to mechanistically link interacting ecological and evolutionary processes to the LDG, and the fact...
Aim
To explore spatial patterns of helminth parasite diversity, and to investigate three main macroecological patterns – (a) latitude–diversity relationships, (b) positive scaling between parasite and host diversity, and (c) species–area relationships – using a largely underutilized global database of helminth parasite occurrence records.
Location...
Many aspects of climate affect the deployment of biodiversity in time and space, and so changes in climate might be expected to drive regional and global extinction of both taxa and their ecological functions. Here we examine the association of past climate changes with extinction in marine bivalves, which are increasingly used as a model system fo...
Long-distance animal movements can increase exposure to diverse parasites, but can also reduce infection risk through escape from contaminated habitats or culling of infected individuals. These mechanisms have been demonstrated within and between populations in single-host/single-parasite interactions, but how long-distance movement behaviours shap...
The distribution of parasites across mammalian hosts is complex and represents a differential ability or opportunity to infect different host species. Here, we take a macroecological approach to investigate factors influencing why some parasites show a tendency to infect species widely distributed in the host phylogeny (phylogenetic generalism) whi...
Estimating the number of host species that a parasite can infect (i.e. host range) provides key insights into the evolution of host specialism and is a central concept in disease ecology. Host range is rarely estimated in real systems, however, because variation in species relative abundance and the detection of rare species makes it challenging to...
An impediment to understanding the origin and dynamics of the latitudinal diversity gradient (LDG)—the most pervasive large-scale biotic pattern on Earth—has been the tendency to focus narrowly on a single causal factor when a more synthetic, integrative approach is needed. Using marine bivalves as a model system and drawing on other systems where...
Identifying drivers of infectious disease patterns and impacts at the broadest scales of organisation is one of the most crucial challenges for modern science, yet answers to many fundamental questions remain elusive. These include what factors commonly facilitate transmission of pathogens to novel host species, what drives variation in immune inve...
Many marine and terrestrial clades show similar latitudinal gradients in species richness, but opposite gradients in range size—on land, ranges are the smallest in the tropics, whereas in the sea, ranges are the largest in the tropics. Therefore, richness gradients in marine and terrestrial systems do not arise from a shared latitudinal arrangement...
Evolutionarily distinctive host lineages might harbor fewer parasite species because they have fewer opportunities for parasite sharing than hosts having extant close relatives, or because diverse parasite assemblages promote host diversification. We evaluate these hypotheses using data from 930 species of parasites reported to infect free-living c...
It has long been known that species should not be distributed randomly in morphospace (a multi-dimensional trait space), even under simple models of evolution. However, recent studies suggest that position in morphospace can affect aspects of evolution such as the durations of clades and the species richness of their constituent taxa. Here we inves...
AimTo identify the role of climate variations over geological time in shaping present-day diversity patterns, particularly the latitudinal diversity gradient (LDG; the decrease of taxonomic diversity from low towards high latitudes), using marine bivalves as a model system. LocationWorld-wide. Methods
We use the fossil record of extant and extinct...
Understanding drivers of genetic diversity at the major histocompatibility complex (MHC) is vitally important for predicting how vertebrate immune defence might respond to future selection pressures and for preserving immunogenetic diversity in declining populations. Parasite-mediated selection is believed to be the major selective force generating...
Most parasites infect multiple hosts, but what factors determine the range of hosts a given parasite can infect? Understanding the broad scale determinants of parasite distributions across host lineages is important for predicting pathogen emergence in new hosts and for estimating pathogen diversity in understudied host species.
In this study, we u...
Latitudinal diversity gradients are underlain by complex combinations of origination, extinction, and shifts in geographic distribution and therefore are best analyzed by integrating paleontological and neontological data. The fossil record of marine bivalves shows, in three successive late Cenozoic time slices, that most clades (operationally here...
Phylogenetic diversity (PD) represents the evolutionary history of a species assemblage and is a valuable measure of biodiversity because it captures not only species richness but potentially also genetic and functional diversity. Preserving PD could be critical for maintaining the functional integrity of the world's ecosystems, and species extinct...