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I. INTRODUCTION

The formalism of linear temporal logic (LTL) [2] is
increasingly being used to express task specifications in
robotics, automation, and manufacturing. Its expressiveness,
coupled with its ease of use, makes it suitable for numerous
scenarios. LTL alone, however, just expresses temporal re-
lationships and misses the ability to model the unavoidable
uncertainty emerging in interactions with the physical world.
To this end, Markov decision processes (MDPs) have been
extensively used to formulate solutions to a vast class of
problems involving sequential stochastic decision making
under the hypothesis of state observability. In many practical
situations, however, one is confronted with multiple objective
functions and MDPs alone are not suited in this scenario.
Constrained Markov Decision Processes (CMDPs)[1] offer
a principled solution to this problem, whereby one can
determine policies optimizing one objective function while
constraining the costs associated with the remaining ones.
Risk-aware motion planning has been tackled with CMDPs
in [4], [5].

In this paper we consider the case where both these
formalisms are combined together to determine control poli-
cies satisfying high level specifications expressed in LTL
while optimizing one or more functions as per the CMDP
framework.

II. BACKGROUND

A. Labeled CMDP

A finite, labeled CMDP (LCMPD from now onwards) is
an extension to CMDP (see [1]) by adding AP,L, F,S
variables to its original definition. Therefore, it is defined
as M = (S, β,A,Ci, P,AP,L, F,S ) where the extras to
CMDPs are defined as

• AP is a set of binary atomic propositions.
• L: S → 2AP is a labeling function assigning to each

state the set of atomic propositions true in the state.
• F ⊂ S is a (possibly empty) set of accepting states.
• S ∈ S is a sink state. An LCMDP may or may not

have a sink state. In the latter case we will omit it when
giving the definition.
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B. Co-safe LTL properties

We consider a subset of LTL leading to so called co-safe
LTL properties [3]. Starting from a set of atomic propositions
Π, a co-safe LTL formula is built using the standard operators
and (∧), or (∨), not (¬) and the temporal operators eventually
(♦), next (©), and until (U ). It is well known that given a
co-safe LTL formula φ, there exists a Deterministic Finite-
state Automaton (DFA) accepting all and only the strings
satisfying φ [2].

III. PROBLEM FORMULATION

Let M = (S, β,A,Ci, P,AP,L, F ) be an absorbing
LCMDP with n + 1 costs functions C0, C1, . . . , Cn and
without any sink state, and let φ be a syntactically co-safe
LTL (sc-LTL) formula over AP . Given a probability Pl and
n cost bounds B1, . . . , Bn, determine a policy for M that:

• minimizes in expectation the c0(π, β);
• for each cost Ci, (1 ≤ i ≤ n), ci(π, β) ≤ Bi;
• for every trajectory ω, φ is satisfied with at least

probability Pl.
An equivalent problem was studied in [3]. The solution
we present in the following differs because we introduce a
pruning step that effectively reduces the problem state space
thus leading to a much faster computation. Moreover, some
of our definitions differ from [3] and lead to a more general
solution.

IV. PROPOSED SOLUTION

Our proposed solution contains three major steps that are
as following (more theoretical details can be found in [6]):

• Step 1: A product between the given LCMDP and DFA
associated with formula φ is calculated. The product
gives a new LCMDP for which a policy is computed.
If the LCMDP contains nl states and the DFA has nd
states, the product LCMDP will consist of nl ·nd states.

• Step 2: In order to reduce the state space, a graph
pruning algorithm is applied to the product LCMDP that
removes some states and transitions from the LCMDP
while preserving the completeness of the solution. In
other words in removes some parts of the graph that
do not influence the final results. A state may be used
in the final policy if and only if there is a non-zero
probability of

– being reached from one of the initial states.
– and reaching the goal state.
– and reaching or being reached from an accepting

state.



Fig. 1. Experimental maps. Leftmost: A terrain map retrieved from web. Middle Left: The extracted risk map where cold colors represent regions with
lower risks, and warmer regions are riskier. Middle Right: regions with different labels. Rightmost: An example trajectory from start to goal.

Otherwise, the state and its associated transitions can
be removed from the LCMDP.

• Step 3: The policy is obtained by solving a linear
problem over the associated set of occupation measure
variables.

V. EXPERIMENTS AND RESULTS

To illustrate the method we propose, we consider an
application of risk-aware motion planning. However, the
current formulation introduces a high level task specification
expressed with an LTL formula φ. We use a terrain map
shown in the leftmost picture of Figure 1 and a corresponding
risk map was generated (see middle left picture).

For every state four actions (up, down, left, right) are
available, and each action succeeds with a certain probability
influenced by the elevation difference between neighboring
cells. Risk is here defined as the probability of not succeeding
when executing an action. When an action does not succeed
(i.e., when the desired motion does not occur), the next
position in the grid is chosen uniformly over the neighboring
cells. The map is divided into regions labeled as A,B,C, and
D (see middle right panel in figure 1). The robot starts from
a location in the top right and has to reach an area in the
bottom left corner of the map. The objectives are as follows:

• cumulative total risk of the path has to be minimized;
• total path length has to be bounded by a constant B =

140. To put this number into perspective, the Manhattan
distance between the start and goal locations is 99.

• every path has to satisfy the formula φ = (A + B +
C)∗D(D + C)∗ with probability at least 0.7.

The generated policy is used to extract multiple trajec-
tories. Then we can assess how they match the mission
objectives. The rightmost panel in figure 1 shows an example
of path generated by the optimal policy. The correctness of
the formulation is confirmed. In 1000 trajectories generated
with the policy returned by the linear program, the average
risk is 486.1, the average length is 122.5 and the formula φ
is satisfied 703 times.

Finally, to evaluate the importance of the pruning al-
gorithm we proposed, we rescaled the same environment
in order to generate equivalent problems with a different
number of variables in the linear program. Table I shows
how the pruning step significantly reduces the time spent to
solve the linear program. The first two columns show the
number of variables in the linear program with no pruning

(first column – NP) or with pruning (second column – WP).
The third and fourth column show the time spent to solve
the linear program with no pruning (third column) or with
pruning (fourth column).

#Var NP #Var WP Time (s) NP Time (s) WP
1527 887 54.16 10.9
2035 1322 87.43 21.18
2960 2015 178.74 41.73
4182 2935 372.57 83.21

TABLE I
IMPACT OF PRUNING STEP.

VI. FUTURE WORK

In the future we will extend the problem by considering
missions where multiple task specifications can be included,
each with different probability bounds. In this case an iterated
product between the LCMDP and multiple DFAs will be
necessary, thus exacerbating the formerly evidenced state-
explosion problem. In this situation, the value of the pruning
algorithm we proposed will be even higher.

In general, by combining the formalism of constrained
MDPs with linear temporal logic it is possible to express
multiobjective planning problems that can be used to de-
scribe a rich set of automation and manufacturing tasks.
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