Shammur Absar ChowdhuryQatar Computing Research Institute · ALT
Shammur Absar Chowdhury
PhD
About
100
Publications
52,786
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,405
Citations
Introduction
I am interested in analyzing and understanding human conversation. I authored more than 30 papers for different speech and NLP challenges, with the main focus on speech overlaps, turn-takings, speech discourse, code-switching, along with the explainability of the speech modules. My work also includes studying the potential of language models for its linguistic task understanding capabilities.
Additional affiliations
Education
November 2012 - April 2017
January 2007 - December 2010
January 2007 - December 2010
Publications
Publications (100)
User satisfaction is an important aspect of the user experience while interacting with objects, systems or people. Traditionally user satisfaction is evaluated a-posteriori via spoken or written questionnaires or interviews. In automatic behavioral analysis we aim at measuring the user emotional states and its descriptions as they unfold during the...
The paper explores the ability of LSTM networks trained on a language modeling task to detect linguistic structures which are ungrammatical due to extraction violations (extra arguments and subject-relative clause island violations), and considers its implications for the debate on language innatism. The results show that the current RNN model can...
Overlapping speech is a natural and frequently occurring phenomenon in human–human conversations with an underlying purpose. Speech overlap events may be categorized as competitive and non-competitive. While the former is an attempt to grab the floor, the latter is an attempt to assist the speaker to continue the turn. The presence and distribution...
An end-to-end dialect identification system generates the likelihood of each dialect, given a speech utterance. The performance relies on its capabilities to discriminate the acoustic properties between the different dialects, even though the input signal contains non-dialectal information such as speaker and channel. In this work, we study how non...
With the advent of globalization, there is an increasing demand for multilingual automatic speech recognition (ASR), handling language and dialectal variation of spoken content. Recent studies show its efficacy over monolingual systems. In this study, we design a large multilingual end-to-end ASR using self-attention based conformer architecture. W...
Arabic, with its rich diversity of dialects, remains significantly underrepresented in Large Language Models, particularly in dialectal variations. We address this gap by introducing seven synthetic datasets in dialects alongside Modern Standard Arabic (MSA), created using Machine Translation (MT) combined with human post-editing. We present AraDiC...
This paper presents a novel Dialectal Sound and Vowelization Recovery framework, designed to recognize borrowed and dialectal sounds within phonologically diverse and dialect-rich languages, that extends beyond its standard orthographic sound sets. The proposed framework utilized a quantized sequence of input with(out) continuous pretrained self-su...
Natural Question Answering (QA) datasets play a crucial role in developing and evaluating the capabilities of large language models (LLMs), ensuring their effective usage in real-world applications. Despite the numerous QA datasets that have been developed, there is a notable lack of region-specific datasets generated by native users in their own l...
Recent advancements in Large Language Models (LLMs) have significantly influenced the landscape of language and speech research. Despite this progress, these models lack specific benchmarking against state-of-the-art (SOTA) models tailored to particular languages and tasks. LAraBench addresses this gap for Ara-bic Natural Language Processing (NLP)...
Self-supervised models have revolutionized speech processing, achieving new levels of performance in a wide variety of tasks with limited resources. However, the inner workings of these models are still opaque. In this paper, we aim to analyze the encoded contextual representation of these foundation models based on their inter- and intra-model sim...
Children's speech recognition is considered a low-resource task mainly due to the lack of publicly available data. There are several reasons for such data scarcity, including expensive data collection and annotation processes, and data privacy, among others. Transforming speech signals into discrete tokens that do not carry sensitive information bu...
We introduce a generic, language-independent method to collect a large percentage of offensive and hate tweets regardless of their topics or genres. We harness the extralinguistic information embedded in the emojis to collect a large number of offensive tweets. We apply the proposed method on Arabic tweets and compare it with English tweets—analyzi...
The recent development and success of Large Language Models (LLMs) necessitate an evaluation of their performance across diverse NLP tasks in different languages. Although several frameworks have been developed and made publicly available, their customization capabilities for specific tasks and datasets are often complex for different users. In thi...
We introduce MyVoice, a crowdsourcing platform designed to collect Arabic speech to enhance dialectal speech technologies. This platform offers an opportunity to design large dialectal speech datasets; and makes them publicly available. MyVoice allows contributors to select city/country-level fine-grained dialect and record the displayed utterances...
The disparity in phonology between learner's native (L1) and target (L2) language poses a significant challenge for mispronunciation detection and diagnosis (MDD) systems. This challenge is further intensified by lack of annotated L2 data. This paper proposes a novel MDD architecture that exploits multiple `views' of the same input data assisted by...
With large Foundation Models (FMs), language technologies (AI in general) are entering a new paradigm: eliminating the need for developing large-scale task-specific datasets and supporting a variety of tasks through set-ups ranging from zero-shot to few-shot learning. However, understanding FMs capabilities requires a systematic benchmarking effort...
This paper introduces a novel Arabic pronunciation learning application QVoice, powered with end-to-end mispronunciation detection and feedback generator module. The application is designed to support non-native Arabic speakers in enhancing their pronunciation skills, while also helping native speakers mitigate any potential influence from regional...
The success of the multilingual automatic speech recognition systems empowered many voice-driven applications. However, measuring the performance of such systems remains a major challenge, due to its dependency on manually transcribed speech data in both mono- and multilingual scenarios. In this paper, we propose a novel multilingual framework -- e...
Code-switching poses a number of challenges and opportunities for multilingual automatic speech recognition. In this paper, we focus on the question of robust and fair evaluation metrics. To that end, we develop a reference benchmark data set of code-switching speech recognition hypotheses with human judgments. We define clear guidelines for minima...
One of the biggest challenges in designing mispronunciation detection models is the unavailability of labeled L2 speech data. To overcome such data scarcity, we introduce SpeechBlender -- a fine-grained data augmentation pipeline for generating mispronunciation errors. The SpeechBlender utilizes varieties of masks to target different regions of a p...
We are interested in the problem of conversational analysis and its application to the health domain. Cognitive Behavioral Therapy is a structured approach in psychotherapy, allowing the therapist to help the patient to identify and modify the malicious thoughts, behavior, or actions. This cooperative effort can be evaluated using the Working Allia...
Gender analysis of Twitter can reveal important socio-cultural differences between male and female users. There has been a significant effort to analyze and automatically infer gender in the past for most widely spoken languages' content, however, to our knowledge very limited work has been done for Arabic. In this paper, we perform an extensive an...
The emergence of the COVID-19 pandemic and the first global infodemic have changed our lives in many different ways. We relied on social media to get the latest information about the COVID-19 pandemic and at the same time to disseminate information. The content in social media consisted not only health related advises, plans, and informative news f...
We introduce a generic, language-independent method to collect a large percentage of offensive and hate tweets regardless of their topics or genres. We harness the extralinguistic information embedded in the emojis to collect a large number of offensive tweets. We apply the proposed method on Arabic tweets and compare it with English tweets -- anal...
The pervasiveness of intra-utterance Code-switching (CS) in spoken content has enforced ASR systems to handle mixed input. Yet, designing a CS-ASR has many challenges, mainly due to the data scarcity, grammatical structure complexity, and mismatch along with unbalanced language usage distribution. Recent ASR studies showed the predominance of E2E-A...
Code-switching in automatic speech recognition (ASR) is an important challenge due to globalization. Recent research in multilingual ASR shows potential improvement over mono-lingual systems. We study key issues related to multilingual modeling for ASR through a series of large-scale ASR experiments. Our innovative framework deploys a multi-graph a...
With the advent of globalization, there is an increasing demand for multilingual automatic speech recognition (ASR), handling language and dialectal variation of spoken content. Recent studies show its efficacy over monolingual systems. In this study, we design a large multilingual end-to-end ASR using self-attention based conformer architecture. W...
We introduce the largest transcribed Arabic speech corpus, QASR 1 , collected from the broadcast domain. This multi-dialect speech dataset contains 2, 000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QA...
Bangla -- ranked as the 6th most widely spoken language across the world (https://www.ethnologue.com/guides/ethnologue200), with 230 million native speakers -- is still considered as a low-resource language in the natural language processing (NLP) community. With three decades of research, Bangla NLP (BNLP) is still lagging behind mainly due to the...
End-to-end deep neural network architectures have pushed the state-of-the-art in speech technologies, as well as in other spheres of Artificial Intelligence, subsequently leading researchers to train more complex and deeper models. These improvements came at the cost of transparency. Deep neural networks are innately opaque and difficult to interpr...
Code-switching in automatic speech recognition (ASR) is an important challenge due to globalization. Recent research in multilingual ASR shows potential improvement over monolingual systems. We study key issues related to multilingual modeling for ASR through a series of large-scale ASR experiments. Our innovative framework deploys a multi-graph ap...
Personified big data and rapidly developing data science techniques enable previously unforeseen methodological developments for longitudinal analysis of online audiences. Applying data-driven persona generation on online customer statistics from a real organizational social media channel, we demonstrate how personas can be deployed to understand o...
We introduce the largest transcribed Arabic speech corpus, QASR, collected from the broadcast domain. This multi-dialect speech dataset contains 2,000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QASR c...
In this paper, we present the Kanari/QCRI (KARI) system and the modeling strategies used to participate in the Interspeech 2021 Code-switching (CS) challenge for low-resource Indian languages. The subtask involved developing a speech recognition system for two CS datasets: Hindi-English and Bengali-English, collected in a real-life scenario. To tac...
Automatic Speech Recognition refers to the process through which speech is converted into text. Over the decades, automatic speech recognition has achieved many milestones, thanks to advances in machine learning and low-cost computer hardware.
As a result, the best systems for English have achieved a single-digit word error rate (WER) and, in some...
False preconceptions about users can result in poor design, product development, and marketing decisions, so rectifying these preconceptions is essential for organizations. This research quantitatively evaluates the ability of data-driven personas to alter decision makers’ preconceptions about their online social media users. We conduct a within-pa...
Sentiment analysis has been widely used to understand our views on social and political agendas or user experiences over a product. It is one of the cores and well-researched areas in NLP. However, for low-resource languages, like Bangla, one of the prominent challenge is the lack of resources. Another important limitation, in the current literatur...
Automatic categorization of short texts, such as news headlines and social media posts, has many applications ranging from content analysis to recommendation systems. In this paper, we use such text categorization i.e., labeling the social media posts to categories like 'sports', 'politics', 'human-rights' among others, to showcase the efficacy of...
Sentiment analysis has been widely used to understand our views on social and political agendas or user experiences over a product. It is one of the cores and well-researched areas in NLP. However, for low-resource languages, like Bangla, one of the prominent challenge is the lack of resources. Another important limitation, in the current literatur...
The Intra-utterance code-switching (CS) is defined as the alternation between two or more languages within the same utterance. Despite the fact that spoken dialectal code-switching (DCS) is more challenging than CS, it remains largely unexplored. In this study, we describe a method to build the first spoken DCS corpus. The corpus is annotated at th...
Algorithmic fairness criteria for machine learning models are gathering widespread research interest. They are also relevant in the context of data-driven personas that rely on online user data and opaque algorithmic processes. Overall, while technology provides lucrative opportunities for the persona design practice, several ethical concerns need...
To predict personality traits of data-driven personas, we apply an automatic persona generation methodology to generate 15 personas from the social media data of an online news organization. After generating the personas, we aggregate each personas’ YouTube comments and predict the “Big Five” personality traits of each persona from the comments per...
Access to social media often enables users to engage in conversation with limited accountability. This allows a user to share their opinions and ideology, especially regarding public content, occasionally adopting offensive language. This may encourage hate crimes or cause mental harm to targeted individuals or groups. Hence, it is important to det...
In this paper, we describe our efforts at OSACT Shared Task on Offensive Language Detection. The shared task consists of two subtasks: offensive language detection (Subtask A) and hate speech detection (Subtask B). For offensive language detection, a system combination of Support Vector Machines (SVMs) and Deep Neural Networks (DNNs) achieved the b...
User perceptions of personas affect the adoption of personas for decision-making in real organizations. To investigate how experience affects the way an individual perceives a persona, we conduct an experimental study with individuals less and more experienced with personas. Quantitative results show that previous experience increases several impor...
Artificial generation of facial images is increasingly popular, with machine learning achieving photo-realistic results. Yet, there is a concern that the generated images might not fairly represent all demographic groups. We use a state-of-the-art method to generate 10,000 facial images and find that the generated images are skewed towards young pe...
Personas are a well-known technique in human computer interaction. However, there is a lack of rigorous empirical research evaluating personas relative to other methods. In this 34-participant experiment, we compare a persona system and an analytics system, both using identical user data, for efficiency and effectiveness for a user identification t...
The proliferation of social media enables people to express their opinions widely online. However, at the same time, this has resulted in the emergence of conflict and hate, making online environments uninviting for users. Although researchers have found that hate is a problem across multiple platforms, there is a lack of models for online hate det...
Due to the rapid advancement of different neural network architectures, the task of automated translation from one language to another is now in a new era of Machine Translation (MT) research. In the last few years, Neural Machine Translation (NMT) architectures have proven to be successful for resource-rich languages, trained on a large dataset of...