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ABSTRACT Sleep is a period of rest that is essential for functional learning ability, mental health, and
even the performance of normal activities. Insomnia, sleep apnea, and restless legs are all examples of sleep-
related issues that are growing more widespread. When appropriately analyzed, the recording of bio-electric
signals, such as the Electroencephalogram, can tell how well we sleep. Improved analyses are possible due
to recent improvements in machine learning and feature extraction, and they are commonly referred to as
automatic sleep analysis to distinguish them from sleep data analysis by a human sleep expert. This study
outlines a Systematic Literature Review and the results it provided to assess the present state-of-the-art
in automatic analysis of sleep data. A search string was organized according to the PICO (Population,
Intervention, Comparison, and Outcome) strategy in order to determine what machine learning and feature
extraction approaches are used to generate an Automatic Sleep Scoring System. The American Academy
of Sleep Medicine and Rechtschaffen & Kales are the two main scoring standards used in contemporary
research, according to the report. Other types of sensors, such as Electrooculography, are employed in
addition to Electroencephalography to automatically score sleep. Furthermore, the existing research on
parameter tuning for machine learning models that was examined proved to be incomplete. Based on our
findings, different sleep scoring standards, as well as numerous feature extraction and machine learning
algorithms with parameter tuning, have a high potential for developing a reliable and robust automatic sleep
scoring system for supporting physicians. In the context of the sleep scoring problem, there are evident gaps
that need to be investigated in terms of automatic feature engineering techniques and parameter tuning in
machine learning algorithms.

INDEX TERMS Artificial Neural Network, Deep Learning, Automatic Sleep Scoring System, Big Data,
Feature Extraction, Inter-rater Variability, Machine Learning, Sleep Stages

I. INTRODUCTION

SLeep is defined as the absence of alertness and is re-
garded essential for a person’s ability to learn, mental

health, and even the everyday activities. During sleep, the
body’s major organs closely coordinate with one another,
and this impacts the sleep at any given time. Sleep-related
issues, including insomnia, sleep apnea, and restless legs, are

becoming more widespread in the society, despite the fact
that humans spend one-third of their lives sleeping.

Bio-signals are used to track electrical activity in the hu-
man brains. Electromyography (EMG), Electroencephalog-
raphy (EEG), Electrooculography (EOG), and Electrocardio-
graphy (ECG) are the most widely used types of such signals.
Large volumes of data are generated by these recordings, and
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are stored in data archives, whether public or private. A signal
trace summarizes changes in the signal’s properties, analyzed
from representative features that collect and process data
on key characteristics of the signal. Statistical and machine
learning tools can learn to discern complicated patterns in
the data, and to assist in making informed choices.

This study began by reviewing sleep-related publications
published since 1968, in order to acquire insights for future
research on automatic sleep grading. Sleep stages, computa-
tional approaches, machine learning, and in particular selec-
tion or extraction of features were all discussed. The study’s
systematic search process, inclusion and exclusion criteria,
data extraction and synthesis, and data analysis and synthesis,
are all detailed in a framework that allows replication of this
part of the study.

The review’s findings provide new insights into the di-
mensions that are frequently used in the development of
automatic sleep grading systems. The American Academy
of Sleep Medicine and Rechtschaffen & Kales are two sleep
scoring standards that have been published in the literature.
The following domains were investigated using various fea-
ture extraction techniques: (I)Time, (ii) Frequency, (iii) Time
and Frequency, and (iv) Non-Linear and Entropy Domain. Fi-
nally, various machine learning methods are assembled based
on their purpose, features used, number of Sleep Stages,
dataset, and data accessibility, and their prediction accuracy
is evaluated.

A. MOTIVATION
1) Aims and Objectives
The advances in signal processing, computer science, and
statistical techniques incorporated in open source and simple
data analysis tools have the potential to revolutionize the
neuroscience field, particularly the understanding of sleep
signal data. Rapid advances are ongoing in data mining,
machine learning, artificial intelligence, and digital signal
processing. However, the fields of signal processing and
machine learning are diverse; therefore, many different algo-
rithms, theories, and methods are available. This appears to
be an obstacle in the adoption of these sophisticated tools by
many sleep data professionals, which could limit the use of
the large amounts of data accessible. According to the above
arguments, this paper aims to:

• Present feature extraction techniques for bio signals;
propose an overall structure for them; and discuss their
applications to diagnosing sleep related problems.

• Present different machine learning techniques and pro-
vide advantages and disadvantages in the context of
automated sleep scoring.

• Discuss from automatic sleep scoring perspective
– the clinical acceptance of automated methods
– understanding the inter-rater reliability of human

scoring
– Discuss challenges or critical issues in using au-

tomated methods in clinical practice, with further

extended use in a home environment
The next section discusses the current issues that automatic

sleep scoring encounters. This lays the foundation for a
later discussion of the importance of sleep disorders, sleep
scoring standards, automated feature extraction approaches,
and machine-learning as a tool for sleep data analysts to
confront such difficulties.

2) Challenges of Automatic Sleep Scoring
Sleep medicine is among the well-established fields; how-
ever, the importance of automatic sleep scoring is not rated
high enough. It has grown in importance and is now part of
the standard of care in the field of health sciences. It enabled
the establishment of a small clinical unit to monitor patients
with various cardiac, respiratory, and metabolic problems
while they slept [1]. The discovery of electroencephalo-
gram and sleep stages is directly linked with modern sleep
medicine. Several educational programs to revamp the sleep
medicine study were started, e.g., a survey to assess the
current (2013) state of sleep medicine educational resources
offered in the US [2].

Key challenges have been identified as follows.
• Sleep disorder analysis and scoring standards.
• Utilization of advanced knowledge in interdisciplinary

fields
• Collaboration between Academia and Industry to adopt

new technologies.
• Large and complex datasets, and difficult problems in

their analysis
• Application of signal-processing methods (i.e., feature

extraction techniques) in bio-signal analysis
• New methods or models combining (advanced) sta-

tistical, signal processing, and machine learning ap-
proaches.

These key challenges highlight the trend of increasing dy-
namic complexity. Adding to the challenges, there is relative
lack of scientific experimentation on sleep, although data sets
are available, but the high dimensionality and variety of data,
as well as the NP completeness in model training, present
challenges.

To overcome the major challenges in this complex domain,
candidate aspects with high potential include sleep scoring
standards, feature extraction alternatives, and machine learn-
ing tools. These techniques support finding highly complex
and non-linear patterns in data of various types. Further, the
raw data need to be converted to features for classification,
prediction, regression or forecasting.

B. CONTRIBUTION AND SIGNIFICANCE OF THE STUDY
The major goal of this report is to present a systematic
literature review that explores scientific machine learning,
feature extraction and selection, and big data published in
the context of Automatic Sleep Scoring Systems, given the
importance of sleep and related difficulties, obstacles faced
by automatic sleep scoring, and driven by data availability on
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bio-electric signals, as well as promising developments in the
computational artificial intelligence techniques.

II. RESEARCH METHODOLOGY
This article uses Systematic Literature Review (SLR) tech-
nique, in order to ensure impartial search and study selection.

FIGURE 1. Steps in Systematic Literature Review Process

It is characterized as a research method that aims to
gather all empirical evidence in a certain topic, evaluate the

material, and synthesize new results. This SLR adheres to the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analysis) quality reporting criteria [3]. The SLR
process is presented in Figure 1.

A. RESEARCH QUESTIONS
A set of research questions addressed in this study is listed in
Table 1.

B. SEARCH STRATEGY
1) Search Terms
The search string was generated following the PICO ap-
proach [3], by decomposing the scope of review to its popu-
lation of interest, intervention, comparison, and outcome, see
Table 2.

The following keywords were used in these searches: Hu-
man Sleep Stages, Sleep Scoring Standard, Sleep EEG, Au-
tomatic Sleep Stages, Feature Extraction Techniques, Sleep
EEG, Classification of Sleep Stages, Machine Learning Tech-
niques for Sleep Stages. Search Query Language expressions
were used to find the relevant articles, for example EEG
features extraction OR machine learning AND sleep stages’.

2) Search Process
We found 295 articles matching the search parameters, with
223 of them being non-duplicates that were chosen for full-
text inspection. Twenty-five articles were discarded follow-
ing title/abstract screening, another 22 were discarded in
screening based on full text due to insignificance, and 19
were eliminated during data extraction. We found 157 articles
that were chosen for full-text examination, with 130 articles
included based on qualitative evaluation and 27 on quantita-
tive synthesis, see Figure 2.

C. INCLUSION/EXCLUSION IN STUDY
The quality of this new group of studies was evaluated by
qualitative review of the article title, abstract, and keywords
as per established inclusion and exclusion criteria. As a
result, the papers that met the assessment criteria are included
in the study sets, see Table 3. Further, the quality evaluation
is further guided by a set of questions, see Table 4

D. FRAMEWORK FOR DATA RETRIEVAL AND
SYNTHESIS
Following the selection of studies, this is an important step
in which the study’s assessment criteria are developed. We
provide a separate quality assessment methodology for each
research topic in order to answer it, which could be useful for
a new researcher starting out in this subject.

Because the human brain goes through various stages of
sleep, it’s important to keep track of the criteria for each stage
as well as the related brain signals. As a result, information
regarding sleep staging criteria and EEG signal qualities is
extracted, see Figure 3.

A number of computerized analysis approaches are based
on the concept that the EEG signal is generated by a highly
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TABLE 1. Research Questions

RQ# Research Questions Motivation
RQ1 Which standards are used for sleep stage scoring? Identify standards commonly used for sleep scoring
RQ2 What are the types of sleep stages? Identify the reported sleep stages in the literature.
RQ3 What are the types of feature extraction techniques? Explore the types of feature extraction techniques to analyze the

signals.
RQ3.1 Which feature extraction techniques are used for ASS? Identify the feature extraction techniques used for sleep scoring.
RQ3.2 What are the domains of hand engineering features? Investigate the reported domains of hand engineering features.
RQ3.3 What is the ‘without hand engineering feature’ technique? Investigate the automatic feature learning techniques
RQ3.4 What are the pros, cons or challenges of time and frequency, non-

linear entropy based features?
Performance analysis of each feature extraction technique in context
of ASS.

RQ4 Which machine learning techniques are used for ASS? Explore the types of machine learning techniques used for ASS.
RQ4.1 What are the advantages or disadvantages or challenged of machine

learning techniques?
Investigate the advantages / disadvantage of each mostly used ma-
chine learning techniques

RQ4.2 What are the application areas of machine learning techniques in
ASS?

Determine the machine learning application areas in ASS

RQ5 What kind of the deep learning techniques used in ASS? Identify the deep learning techniques used in ASS.
RQ5.1 What are the strengths and weaknesses of deep learning techniques? Investigate the advantages and disadvantages of deep learning tech-

niques.
RQ5.2 What are the challenges deep learning techniques? Determine the challenges faced by deep learning techniques.
RQ6 What is the role of big data in sleep science? Investigate the role of big data in sleep science.
RQ7 What is the inter-rater variability of manual and automated sleep

scoring?
Investigate the inter-rater variability of manual and ASS.

TABLE 2. Decomposition of Search Keywords using PICO approach

PICO
Population of Interest The studies focused on sleep EEG analysis, Sleep Stages and automatic sleep scoring systems
Intervention Machine learning techniques, Feature Extraction Techniques
Comparison Accuracies of used classifiers. Parameter Tuning, Dataset size
Outcome Classification of sleep stages for an individual or subject
Population Search The studies focused on sleep EEG analysis, Sleep Stages and automatic sleep scoring systems
Population Search:Sleep Scoring
Subject Headings Human sleep scoring, Automatic sleep stages/scoring
Key words (Sleep standards* OR Sleep disorders OR Sleep Scoring* OR Sleep stages* OR Automatic sleep OR Sleep Brain OR

Human sleep) OR (Sleep EEG* OR Sleep signal OR Signal processing techniques OR Feature extraction techniques*
OR EEG signal processing* OR sleep EEG features) OR (Machine learning techniques *OR Machine learning
methods OR Sleep expert system* OR Sleep Neural network *)

Intervention Search:Sleep disorders identification
Subject Headings Sleep disorders
Key words Somnipathy* OR Insomnia* OR narcolepsy* OR sleep apnea* OR hypersomnia* OR sleep walking* OR night

terror * OR bed wetting*

sophisticated linear system, resulting in non-stationary or
unpredictable features. The signal, on the other hand, could
alternatively stem from a deterministic system with a low
level of complexity but a lot of nonlinear features. As a result,
in order to answer the second question, we must first identify
the different types of feature extraction methodologies. The
data synthesis and processing framework is shown in Fig-
ure 3.

Machine learning algorithms can learn to perform a task
from a series of examples and after such training the equiva-
lent actions can be applied to a new data set. The problem of
sleep EEG has been addressed using a variety of ways. A data
synthesis and processing framework is created to address the
third research question, see Figure 3.

E. THREATS TO VALIDITY

A systematic literature review starts with a complete litera-
ture search of all the relevant studies from the major bibli-
ographic databases, after identifying the research questions.
The searches in this study were formulated using the PICO
technique, which includes specifying search keywords and
examining the numbers of results returned.

The eligibility criteria for study selection must be defined.
To address this danger to validity, a set of inclusion and
exclusion criteria has been established.

What criteria were used to evaluate the quality of each
study? Data extraction and synthesis frameworks are defined
to address the research issues in order to answer this query.
The discrepancies between studies should be described.
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FIGURE 2. PRISMA Flow Diagram for the selection of studies on automated sleep scoring

III. STRUCTURING AND EXPLANATION OF SLEEP
SCORING STANDARDS AND SLEEP STAGES

The SLR identified the sleep scoring standards, Rechtschaf-
fen & Kales (R & K) [4] and American Academy of Sleep
Medicine (AASM) [5]. The former has six sleep stages
while the latter has five of them, defined by brain activity
characteristics. Neuroscientists have identified various brain

signals associated with these stages, named as Alpha, Beta,
Delta, and Theta waves that can distinguish the stages (see
Figure 4).

According to R&K rule [4] these stages are classified as:

• Wake (W) define feeling relaxed, fall asleep quickly or
in less than 10 minutes.

• STAGE 1: Non-rapid eye movement (N-REM) Refers
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FIGURE 3. Quality Assessment Framework and Data Synthesis

to very light sleep (feeling like in a cloud, when hearing
a noise in the house or room not feeling like responding
to it but can still understand overheard conversation).
The quick beta waves of awareness are replaced by
slower alpha waves, and the slower theta wave emerges
after a period of falling asleep.

• STAGE 2: N-REM state light sleep indicates that the

subject can still hear but cannot understand speech. The
EEG signals continue to decrease in frequency while
increasing in amplitude during this period of light sleep.
Burst activity known as sleep spindles disrupts theta
waves, which have a frequency of 8-14 Hz. During
sleep stage 2, the K-complex, or fast and high amplitude
waves, can be seen.
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TABLE 3. Criteria for Inclusion or Exclusion from Study

Criteria Description

Inclusion

Only English language articles were considered.
Book / Journals / Conference / Report related to auto-
matic sleep scoring were included.
Citation factor was involved in filter article.
How to collect the raw sleep EEG data?
How many subjects/participants that were involved in
the experiment?
Whether publicly available on-line data set is used or
data collected through in-house experiment?
Data interpretation methods were also considered.
Parameter tuning was also considered

Exclusion

Any article related to EEG but not specific for sleep
EEG data.
Any article title/abstract that did not match sleep EEG
data
Papers with incomplete information about sleep EEG
data acquiring.
Fake publisher’s studies according to Beall’s list.

TABLE 4. A set of questions for quality evaluation

Q# Quality evaluation question
Q1 Are the research aims and objectives expressed clearly?
Q2 Is the size of the data set appropriate?
Q3 Is the technique for gathering data well-defined?
Q4 Is the use of machine learning techniques justified?
Q5 Is the machine learning techniques well-defined?
Q6 Are the performance metrics for evaluating ASS models well-

defined?
Q7 Are the outcomes and conclusions conveyed clearly?
Q8 Have the study’s shortcomings been stated?
Q9 Is the research technique repeatable?
Q10 Is the research repeatable?
Q11 Has a comparison analysis been done?
Q12 Has a comparative analysis of ML techniques been done?
Q13 Does the study add to or contribute to the existing literature?

• STAGE 3: N-REM belongs to deep stage (subject no
longer hears anything, cuts off the world). During the
third stage of N-REM, delta waves occur on the EEG.
Sleep spindle and K-complex waves do appear, but they
are less frequent than in stage 2.

• STAGE 4: N-REM shows sleeping deeply. In stage 4,
delta waves are influential, and overall neural activity is
at its lowest. The range of frequencies is less than 2Hz.

• Rapid eye movement (REM): REM refers to dream
sleep, in which the brain recharges its battery and
records what it has learned during the day. It is distin-
guished by theta, beta, and gamma frequencies of 4-8,
16-32, and >32 Hertz, respectively.

However, AASM [5] defined sleep stages as W, S1, S2,
S3 and S4 instead of N-REM stage1, N-REM stage 2, N-
REM stage 3 and N-REM stage 4 respectively. Meanwhile
the representations of stages N-REM stage 3 and N-REM
stage 4 are identical; the AASM merged stage 3 and stage
4 into deep sleep or to the slow wave sleep (S3) stage. The
standards and characteristics of EEG signals associated with
each sleep stage are given in Table 5.

Besides the simplification of the sleep stage classification
problem, the following challenges are faced [6]: healthy to
unhealthy subjects ratio, test or validation test dataset size,
class imbalance problem, visual inspection time, human error
in the manual annotation, and inter-rater reliability, etc.

One noteworthy discovery is that the R&K sleep grading
standards have been used in research for decades. Another
significant conclusion is that, following the release of the
revised sleep scoring standard by AASM in 2007, the re-
search community is split between the two standards. As
a result, fewer sleep datasets are rated with AASM than
with R&K. The use of AASM in automatic sleep scoring
research is highlighted in the publications evaluated for the
literature analysis. This observation is explained by the fact
that studying human brain events is a difficult undertaking
that necessitates a large amount of work in order to get
relevant insights from brain signal data. The bulk of the
investigations used EEG signals instead of EMG or EOG
signals, which is a noteworthy finding.

 

FIGURE 4. Signals related to sleep stages

IV. TECHNIQUES FOR EXTRACTING FEATURES
A set of selected features must be retrieved from EEG in
order to obtain meaningful information. The waveform of
the EEG signal changes over time (i.e., it has different
frequencies). As a result, extracting information from two
domains namely time and frequency could be beneficial.
Frequency-domain features are generated from frequency
spectra, while time-domain features are derived from EEG
signals in time. The entire purpose of signal processing is lost
if either domain is ignored, so evaluation should utilize the
time-frequency domain. A list of feature extraction strategies
has been produced from the finalized set of previous tests.

A. STRUCTURING OF FEATURE EXTRACTION
TECHNIQUES WITH ADVANTAGES
Raw brain signals do not give enough information for ef-
fective analysis due to noise. An important step in signal
processing is the feature extraction that converts noisy signals
into meaningful values. A number of methods, each with
its specific advantages and disadvantages, exists. They have
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TABLE 5. Sleep stages in each standard with description

Stages Rechtschaffen and
Kales (R & K

American Academy of
Sleep Medicine (AASM)

Description

WAKE (W) W W

NREM (Non–Rapid Eye Movement)

N1 S1 Alpha
N2 S2 Theta
N3 S3 DeltaN4

REM (Rapid Eye Movement)

potential for use in diagnoses of sleep related problems. The
main purpose of this section is to provide insight into the
feature extraction techniques.

Before looking into the feature extraction techniques, the
terms used are briefly introduced. These techniques are
known for their ability to solve problems that often appear
in the automatic sleep scoring domain. Obstructive Sleep
Apnea (OSA) is a critical sleep disorder in which breathing
stops and starts periodically while sleeping. Neonatal EEG is
used to study sleep staging in newly born babies. Nocturnal
Oximetry is an oxygen test that is used to evaluate oxygen
need during sleep. Sleep spindles are rhythmic oscillations
with a frequency range of 10 to 14 Hz. A seizure is uncon-
trolled electrical disturbance in the brain.

As explained before, feature extraction techniques have
been developed for research on human sleep related prob-
lems. This SLR identified four types of feature extraction
techniques for the EEG signals (see Figure 5) that most
studies have utilized.

1) Time Domain Features
• Zero Crossing: An event is counted whenever a zero

crossing of the signal occurs i.e. a point at which the
wave form performs a crossing of the time axis.

Zero Crossing =
1

T − 1

T−1∑
t=1

1R<0(StSt − 1)

where S is a signal of length T.
This is useful as an indicator of noise, but the value also
varies by sleep stage. For automatic sleep scoring, the
delta wave (0.5-2Hz) in infants is detected. This feature
is used to measure the number of baseline zero crossing
in a fixed period interval [7].

• Hjorth Parameters: Derivatives of signals are used to
calculate the Hjorth parameters.

Activity =
var(y(t))

Mobility
=

√
var( dy

dt y(t))

var(y(t))

Complexity =
Mobility(dydt y(t))

Mobility(y(t))

where: y(t) represents the signal and var takes the vari-
ance of function. It has been used to detect OSA. It
is sensitive to noise and is one of the candidates to
construct automatic sleep staging [8].

• Arithmetic Mean: This summarizing feature is used to
extract information from a signal.

AM = ArithmeticMean =
1

N

N∑
n=1

xn.

Its use as a feature is obvious, e.g. in sleep staging in
neonatal, especially REM state detection [9].

• Median: It is used to extract information from a signal.

Median =
(N + 1)

2

th

This feature is used in sleep apnea diagnosis from
nocturnal oximetry [10].

• Variance: It is calculated from squared differences of
each number in a data set from the mean.

V ar =

∑N
i=1 (xi −AM)2

N − 1

It is used to classify neonatal sleep states [11].
• Standard Deviation: An alternative to amplitude for

characterising strength of signal.

S =

√√√√ 1

N − 1

N∑
i=1

(xi −AM)2

It is used as a feature for topographic study of neonatal
biosignals [11].

• Skewness: It is used to define an irregularity from a
probability distribution in a set of real data. It can be
positive or negative depending on how the data are
skewed.

S =

∑N
i=1 (xi −AM)3

(N − 1)SD3

In a study on automatic sleep stage classification, skew-
ness was used as a feature [12].

• Kurtosis: This numerical measure is used to describe
the shape of the data, indicating whether the data are
heavy or light tailed.

K =

∑N
i=1 (xi −AM)4

(N − 1)SD4

It is widely used as feature from a biosignal, also in
computer based sleep staging [12], and in an automated
sleep stage classification system using an ensemble
technique [13], among others.
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FIGURE 5. Classification of Feature Extraction Techniques for Automatic Sleep Scoring
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• Detrended Fluctuation Analysis: This method is help-
ful to detect a long-range correlation in a noisy signal.

F (n) =

√√√√ 1

N

N∑
K=1

[y(k)− yn(k)]2

It is used in different sleep EEG related studies, e.g., on
the relation of sleep stages and sleep apnea with heart
rate variability [14].

• Matched Filtering: This method is helpful to find a
template matching. Matched filtering is used for per-
ceiving a signal that contains strong noise. The filter
increases the signal to noise ratio. It has been used to
detect cyclic alternating patterns in sleep. Three types
of matched filter were used to detect k-complex in sleep
stages. It has been used for sleep spindle detection.
The disadvantage of this method is that the frequency
deviation within the spindle may be problematic be-
cause matched filter output is relying on the spindle
template [15].

• Teager Energy Operator: It measures the energy of the
input signal in a particular frequency band [16].

ψTs(n) = ψ2
s(n)− ψs(n− 1)ψs(n+ 1)

where Ψ s (n) and Ψ Ts is the nth sample value of signal
and Teager Energy Operator as output. Automatic sleep
spindle detection was done in biosignals during NREM
sleep stage [15]. It is used to detect K-complex signals
in sleep EEG automatically [16]. It’s been used success-
fully in a variety of signal processing applications.

• Mutual Information (MI): measures the mutual in-
formation among two random variables. Two steps are
needed to estimate the MI: calculating the joint distribu-
tion and computing the MI from the joint distribution.

I(S;R) = I[p(S;R)] =
∑
s,r

p(s, r)log(
p(s, r)

p(s)p(r)
)

It is applied in EEG to measure the effects of total sleep
deprivation [17].

• Tsallis Entropy: It is used for diagnosis based on the
entropic index of biosignals. This method provides bet-
ter accuracy than Shannon entropy, since it maximizes
the probabilities of the events by using entropic index
[10].

Sq(pi) =
k

q − 1
(1−

∑
i

pqi )

Improving sleep stage separation by using Markov
model was based on Tsallis entropy [18] and its use to
analyse sleep stages [19] has been reported.

2) Frequency Domain Features
Investigation of signals in a frequency domain gives new
insights for sleep data analysis. A set of commonly used
spectral features and associated signal processing techniques
is described in this section.

• Fast Fourier Transformation This algorithm helps to
decrease the number of computations in non-stationary
tests for power spectrum analysis. There are two classes:
Parametric and Non-parametric methods [20]. Fast
Fourier Transformation is advantageous for the detec-
tion of sleep spindles [21]. It was also applied in the
analysis of preterm infant signal spectrum [22].

• Parametric Spectral Analysis: It finds the parameters
of a signal. For parametric analysis based on the occur-
rence of poles, the following models are used: (i) Auto
Recursive , (ii) Yule-Walker and Burg’s, (iii) Moving
Average, and (iv) Prony’s Auto Regressive Moving Av-
erage. AR modelling is a popular technique for analysis,
because of its advantage in finding positions in signals
with low noise levels and determining the short data
record [23].
It is appropriate for signals that do not change with time,
for spectral estimation and stability assessed in human
biosignals analysis [24].

• Kalman Filtering: It is an optimal estimator for a large
class of problems. It follows two stages (i) predict the
state of system (ii) refinement to estimation using noisy
measurements.
The major advantage of this method is that it does
signal parameterization. It is applied for sleep dynamics
analysis and automatic arousal detection with an AR
model of the signals [25].

• Higher order spectral analysis: This uses higher-order
moment spectra for deterministic signals. Cumulant
spectra are defined for random processes. It is used
in signal processing to: (i) contain Gaussian Noise of
unknown data (ii) reform the phase and magnitude
response of signals and (iii) to identify and distinguish
non-linearity in the data. Sleep EEG of healthy neonates
is an important topic, and parametric bi-spectrum anal-
ysis [26] has been used for this.

• Spectral Entropy: It measures the irregularity or com-
plexity levels of signals.

E = −
f= fs

2∑
f=− fs

2

PSDn(f)log2[PSDn(f)]

It is used as spectral information during OSA diagnosis
and in Automatic REM sleep stage detection [27].

• Spectral Edge Frequency: It is defined as a frequency
below which X% of total signal power is located. It dif-
ferentiates between different sleep stages. In neonates,
it is used to distinguish between active and quiet sleep
[28].

• Spectral Mean Frequency: It is a mean value from
power spectrum of signal.

fmean =

n∑
i=0

Ii .fi /

n∑
i=0

Ii.

Quiet sleep is investigated in premature and full term
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infants and spectral moment has been suggested for
automatic sleep stage detection [29].

• Hilbert Transform Filter: It derives the analytic rep-
resentation (filter negative frequency component) of a
signal and is useful for envelope detection.

H(u)(t) = p.

∫ ∞

−∞
u(τ)h(t− τ)dτ =

1

π
p.

∫ ∞

−∞

u(τ)

t− τ
dτ

It is useful for detecting spike activity in newborns as
well as calculating variance between two quite sleep pat-
terns in preterm and full-term infants. The instantaneous
envelope and frequency waveform have been considered
for micro-structure of sleep spindles [30], [31].

• Itakura Distance: It measures the degree of similarity
between EEG and EOG with different sleep stages [32].

dt(A, Â) = ln[
1

2π

∫ π

−π

|A(ej)| 2 / |A(ej)| 2 d ]

−ln [dLR(A, Â) + 1].

• Directed Transform Function: determines the rela-
tionship between channels as a function of frequency
and time.

DTF 2
j→i(f) = |Hij(f)| 2/

k∑
m=1

|Him(f)|
2

It recognizes the main centres’ of EEG activity during
sleep and wakefulness, and the direction of information
flow is estimated through presleep wake and early sleep
stages [33].

• Spectral Centroid: It measures the power spectrum
“centre of mass” by employing Fourier transform fre-
quency and magnitude information [34].

SC =

∑N−1
m=0m|X(m)|∑N−1
m=0 |X(m)|

It is useful to detect and classify human stress
and for automatic classification of healthy and sick
neonates [35].

• Spectral Flatness or Wiener Entropy: A method to
quantify the noise of spectrum known as Wiener en-
tropy.

SF =

N−1∏
m=0

|X(m)| 1
N /

1

N

n−1∑
m=0

|X(m)|

It is a feature parameter and used for automatic detec-
tion of snoring in studies conducted on sleep [36].

• Spectral Coherence Analysis: It depicts the relation-
ship between two signals as a function of frequency. It
represents the degree of integration among frequency
components of two signals and may indicate a large
scale functional connectivity in the brain.

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)

It is widely used in various studies and for the purpose
of sleep related oscillation (slow-wave and spindle), and
temporal evolution in human sleep brain signals. It is
applied during the wake-sleep transition period [37],
[38].

• Non-parametric Spectral Analysis: Wolfowitz coined
the term non-parametric in 1942 for cases when the
parameters of variables are unknown and they do not
rely on the estimation of parameter’s mean and standard
deviation. This is also known as parameter-free or distri-
bution free. It has been used to investigate the relation-
ship between fitness, behaviour and sleep [20]. Spectral
analysis is proposed to identify the inter-dependencies
among heart rate and sleep recording [21].

3) Time and Frequency Domain Features
This representation is used to analyse non-stationary signals
(sleep EEG) in both time and frequency domains [20]. The
methods used in time-frequency analysis are given in this
section.

• Short Time Fourier Transforms: The signal is divided
into segments by using a window function (i.e., in terms
of time and frequency), defined as:

STFTw
x t, f =

∫ ∞

−∞
[x(t).w∗(t− t)].e−j2πftdt

Here x(t) is signal, w(t) is window function, and * is the
complex conjugation. It is used for analysis of respira-
tory cycle related EEG changes in sleep. Further, human
sleep onset estimation is achieved by this feature and it
is found useful for sleep spindle detection. Furthermore,
this feature was proposed to visualize both macro and
micro levels of human sleep [39].

• Wavelet Transform: This feature can provide the time-
frequency of signals, and can be expressed as:

F (a, b) =

∫ ∞

−∞
f(x)ψ∗

(a,b)(x)dx

where * indicates complex conjugation and ψ is the
generating function. It can detect automatic arousals
and classify sleep/wake stages. It is proposed to capture
sleep spindle activity. Because they are borderline in the
time-frequency domain, certain spindles are difficult to
recognize. Wavelet transform was applied to calculate
features for coefficients of decomposition scale during
EEG sleep in neonates [40].

• Match Pursuits: is used with dictionaries of Gabor
functions in time-frequency analysis of signals and
has following advantages (i) explicit parametrization of
transients, (ii) robust time frequency estimate [41].

x ≈
M−1∑
n=0

(R
n
x, gγn

)gγn

This can be suitable for finding and parametrizing delta
waves and sleep spindles. The MP algorithm is used for
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EEG structures like Slow Wave Activity (SWA) with
time-frequency parameters [42].

• Empirical mode decomposition (Hilbert - Haung
transform): based on the function known as Intrinsic
Mode Function (IMF), decomposes the signal into its
component IMFs along with trends and extracts instan-
taneous frequency data [43]. Since a signal is decom-
posed in the time-domain and is of the same original
signal length, it allows maintaining varying frequency.
It can be compared with other transformations such
as Fourier transform and wavelet decomposition. It is
calculated easily and yields high time and frequency
resolution.
It is employed to analyze sleep stages and automatically
detect sleep spindle. It is used for automatic sleep stag-
ing with the nearest neighbor algorithm [44].

• Wigner-Ville distribution: This is also a good choice
for extracting features from a signal that comprises only
a single component [45], defined as:

WV (t, w) =

∫ ∞

−∞
f(t+

t0
2
)f∗(t− t0

2
)e−jt0wdw0

Here WV(t,w) is energy distribution of signal, * the
complex conjugate of signal and w is the frequency. It is
utilized to locate the sleep spindle’s structural position
and to solve the difficulty of detecting K-Complexes and
Delta waves [46].

4) Non-Linear Entropy Based Features
Non-Linear Entropy Based Features provide complementary
information in sleep EEG analysis. Although reliability and
interpretability of results are important issues, a good under-
standing of these techniques helps in their application and
interpretation. A list of commonly used features is given
below:

• Correlation Dimension: The Grassberger-Procassia al-
gorithm is a fast and simple numerical method for cal-
culating a fractal measure’s Correlation Dimension. It
successfully identified sleep stages and considered slow
wave activity both in adults and infants [47]. Automatic
REM detection is based on the spectral measure [48].

• Lyapunov Exponent: measures the convergence or di-
vergence rate of trajectories and describes the perfor-
mance of a dynamical system. The exponent can be
positive, negative, or zero and this reveals the behavior
it implies [20]. Positive value indicates that the system
is chaotic; a negative value relates to converging tra-
jectories; and a zero indicates the system maintains its
relative position.

λ= limt→∞
1

t
ln|∆x(X0 ,t)|/|∆X0

where λ is the Lyanpunov exponent andX0 andX0 + ∆
X0 are two EEG data points in space. This is utilized in
studies done on EEG sleep analysis, for predictability of
different sleep stages [49], and it provides information

regarding the neural process of brain during sleep [50].
EEG signal characterization in different sleep stages has
been calculated by positive LE [51]. Automatic REM
stage detection is based on non-linear measures such as
LE and correlation dimension [48].

• Fractal Dimension: It is a scaling parameter that de-
scribes how patterns change with the scale, and this
is associated with signal complexity. It can be em-
ployed for short segments of EEG signals [20] and
to classify physiological function of a state [23]. Kats
and Higuchi’s algorithms are used to calculate the FD.
Behavior of fractal dimension has been studied during
the different sleep stages in infants [52] and adults [53].
Higuchi fractal dimension has been calculated on com-
paring sleep spindle and anesthesia [54]. Multifractal
analysis of sleep EEG characterization has been investi-
gated by using wavelet transforms [55].

• Entropy Measures: Those measure the disorder in a
signal.

• Approximate Entropy: It measures the anomalies in a
time series’ variation. A low value suggests strong regu-
larity and predictability, whereas a large value indicates
unpredictability and random data variances.

ApEn(Sn,m)= ln[
Cm(r)

Cm+1(r)
]

where Sn is approximate entropy for length m and
similarity criterion r.
A low ApEn indicates predictability and high regularity
of time series data and high ApEn shows unpredictabil-
ity and random deviation. ApEN performed well in the
classification of sleep EEG signals to sleep stages [56].
It is used to compare the sleep spindle and anesthesia in
EEG signals [54].

• Sample Entropy: This is an improved version of the ap-
proximate entropy. It is based on the negative logarithm
of the probability. It is more reliable, unbiased, and ideal
for brief data segments. It is also unaffected by sample
size.

SampEn(K, r,N) =
−ln(A(K))

B(K − 1)

It is used to record and indicate the characteristics of
sleep [57]. It was used to analyze different sleep stages
and deeper sleep was associated with a lesser SampEn
value [23].

• Recurrence Plot: This tool helps visualize the recur-
rence state in the phase space, when the distance be-
tween two points on a trajectory is smaller than the
threshold. It is represented by two-dimensional matrices
of black and white dots with time axes. It can help find
interrelations and visualize time dependencies in the
data [58].
Recurrence is typically a visual aid for the analysis of
dynamical systems. It has been used in the analysis of
EEG signals at different sleep stages [59]. Recurrence
analysis of sleep EEG data has been studied to obtain
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information regarding treatment effects in patients with
depression [60].

• Hurst Exponent: It is used to measure the self-
similarity in a time series. It evaluates the presence or
absence of long range dependencies and irregularity in a
time series [61]. Its value ranges between 0 and 1; higher
values show a smoother signal with less roughness.

H=
log(RS )

log(T )

where T is duration of a sample of the data and R/S is
the corresponding value of the re-scaled range. It has
been used for characterizing non-stationary behaviour
in sleep EEG data [62].

B. CHALLENGES OF FEATURE EXTRACTION
TECHNIQUES
A very common challenge is feature extraction from single or
multiple channels. For automatic sleep stage classification it
remains to be determined whether single or multiple channels
would perform better. Nevertheless, attempts to diagnose
sleep related problems and stage classification highlight the
need for a set of feature extraction techniques. Especially,
due to the increased attention of clinical practitioners, and
researchers, different types of feature extraction techniques
are available. Adding to the signal variation and complexity,
combinations of different feature extraction techniques are
becoming more common in diagnosing various sleep related
problems: sleep apnea, automatic spindle detection, etc.

Another challenge is usefulness of single or multiple fea-
ture(s) to diagnose sleep related problem(s). It has to be taken
into account that not only single features are used to diagnose
the problem but multiple ones are employed for diagnostic
purposes, e.g. in Matched Filtering and Teager Energy Op-
erator for sleep spindle detection, etc. Secondly, many al-
ternative or complementary feature extraction techniques are
used in the sleep context. One motivation for this is that the
EEG signal is difficult to understand as it involves changes
in frequency and in amplitude. Further, one must consider
effects of the human subject’s age and mental state, disease,
etc. Therefore the study of neuron activity can benefit both
linear and non-linear signal processing techniques and needs
to be considered along with physiological aspects. Hence,
several types of extracted features can help with gaining
insights into sleep EEG data.

V. FEATURE SELECTION TECHNIQUES
All features present in available data are not useful for a
specific classification task. Instead, some features can reduce
the classifier performance due to irrelevance and/or noise.
Feature selection refers to the process of selecting a discrim-
inating subset of features in order to avoid over-fitting. In
order to increase the classification accuracy, feature selection
methods or algorithms remove the unnecessary or redundant
features from the given dataset. Hence, the dimensionality of

the dataset is reduced, and learning accuracy increased with
improved results. Sequential forward and backward selection
are two common techniques for selecting features. Both are
greedy approaches to a combinatorial optimization problem,
and the subset of features obtained might be far from ideal.
A summary of pros and cons of the feature selection meth-
ods [63] is given as follows:

Euclidean distance is linear in computational cost having
O(n) time complexity. It is sensitive to noise and outliers. If
time series similarity measurement is required then it requires
extensive data preprocessing.

The T-test does not necessitate a huge dataset and elim-
inates subject to subject variation. Its drawback is that it is
unconcerned about feature dependencies and disregards the
classifier’s interaction.

Information gain is an entropy that aids in the elimination
of redundancy and ensures feature relevance with other fea-
tures.

When compared to other methods, the Correlation Based
Feature (CBF) feature selection method has a lower comput-
ing complexity and is less prone to over-fitting. However, it
is very reliant on the model, which may fail to fit the data.

The Markov blanket filter (NBF) approach can handle
large datasets. It is independent of the classification technique
and computationally simple. Its disadvantage is that it ignores
feature dependencies and does not take into account commu-
nication with the classifier, resulting in poorer classification
especially in comparison to other feature selection methods.

The feature goodness for classification is measured using
the fast correlation based feature (FCBF) selection method.
It removes the feature of a class with a near-zero linear corre-
lation. It eliminates repetition among certain characteristics.
It is slow and less scalable than univariate approaches, and it
ignores classifier interaction.

In x2 feature selection method, over-fitting is reduced, and
learning precision is improved. In terms of time and space
complexity, it is effective. However, it ignores the classifier’s
individual heuristics and biasing, which could lead to reduced
classification accuracy.

Linear Discriminant Analysis (LDA) and Principal Com-
ponent Analysis (PCA) reduce dimensionality, i.e. the count
of attributes or features for an item to be labelled by the
classifier. Instead of selecting from existing features, PCA
and LDA create new ones that usefully summarize the given
ones.

Feature selection is carried out using meta-heuristic meth-
ods such as the Genetic Algorithm (GA) or Particle Swarm
Optimization. FCBF, t-test, ReliefF, and Fisher score are all
examples of fast correlation based filters used for feature
selection [64], [65].

VI. TYPES OF MACHINE LEARNING TECHNIQUES
A feature may be classified based on a measure of its similar-
ity to each class. A set of classification algorithms has been
studied for sleep EEG signal analysis. This section discusses
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different categories of machine learning algorithms available
in the literature.

Artificial Neural Network: It is a frequently used in dif-
ferent applications in aerospace, military, electronics, signal
processing, and medical field, etc., due to giving non-linear
models with computational efficiency [66].

It was used in an investigation of sleep EEG for automated
k-complex detection [67], [68], for sleep stages and apnea
in children [69], diagnosis of OSA [70], [71] and in a study
of drug effects [72]. Back-propagation trained ANN has
been used for REM, sleep spindles, and waking state in
their automatic detection [71]. Identification of arousal [73]
and spike detection in neonates [50] from Polysomnography
recordings was based on ANN. Finally, a system based on
ANN for micro and macro-structure of sleep is presented
in [74].

Multilayer Perceptron: This type of neural network com-
prises three categories of layers: input, (multiple) hidden,
and output layers. Any continuous function can be arbitrarily
well approximated, provided the hidden layer is made large
enough [41]. It may be flexible for classification but too
sensitive to over-fitting [75].

They have been used to examine EEG recordings taken
during sleep [76], automatic sleep spindle detection [77]–
[79], automatic REM detection [80], OSA diagnosis [81], and
automatic sleep staging [82], [83].

Self-Organizing Maps: This allows visualization of mul-
tidimensional data [41] and clusters data into several classes.
It is suited for applications with a small amount of input data
and no output available [41]. In the cooperative learning the
neurons not only adjust themselves to the data but also to the
neighbouring neurons as well.

The SMO have been applied in automatic sleep stage
detection [84], [85], and in the classification of patterns of
k-complexes during sleep [86].

Linear Discriminant Analysis: Fisher linear discriminant
analysis is another name for this method. The basic idea is
to search for a linear combination of variables (predictors)
which distinguishes the data into various classes separated by
hyperplanes. This requires that the classes should be linearly
separable, and the method is numerically robust, but cannot
handle strongly nonlinear class boundaries [87].

It has been used for artefact detection in sleep EEG [88]
and for the classification of newborn baby’s brain state and
burst suppression pattern [55]. Further, it has been used for
automatic sleep state recognition between preterm and full-
term infants [89]. It was applied to low and high voltage
pattern discrimination of infants in sleep stages [90].

Support Vector Machine: This technique is useful both
for classification as well as for regression problems. It is
based on the design of an optimal hyperplane which classifies
all training vectors into two classes and this optimal hyper-
plane leaves the maximum margins to the two classes [41].
It can be used to classify data in both linear and non-liner
classifications. It is a useful tool for non-linear classification

since it uses a kernel function to map the feature space for
classification [41].

It’s commonly utilized in sleep EEG analysis including
automatic spindle recognition [78], arousal detection [73],
[91], [92], sleep staging [93], [94], and automatic REM de-
tection [95]. It has been applied in recognition of behavioural
sleep states in infants [62].

Hidden Markov Model: At each time step, a system’s
alternative states and transition probabilities between them
are given [66]. This works well because of simplicity and
the parameters can be estimated for various real world ap-
plications. It has been employed in automatic sleep staging
schemes [96], [97].

Based on probabilistic principles, it’s been used to create
sleep staging algorithms in place of the R & K rules [96],
[97]. However, this method has been proposed for sleep EEG
including automatic sleep stage classification in infants and
adults [98], k-complex detection [99], demonstrated for sleep
EEG dynamic activity [100], and for automatic sleep stages
and for sleep apnea diagnosis [101].

Naïve Bayes: The probabilities of each class are predicted
first using this probabilistic classifier and then call is made
of that class which has the highest probability, based on a
set of observations. It allows you to calculate the posterior
probability p (c|x) of a class using the prior probability,
predictor (p (c). p (x)) and likelihood (p (x|c)). NB performs
well in classification speed and accuracy for large training
datasets [102].

NB classifier has not commonly been used but has been
employed in sleep EEG analysis including sleep stage dis-
crimination [76] and for neonatal state discrimination [62].

K-nearest Neighbors: It’s a nonlinear lazy learning tech-
nique that can be used to solve regression and classification
problems. It makes predictions based on known labels of the
K closest neighbours [102] [103] according to some distance
function, often the Euclidean distance.

KNN has been recommended for the analysis of EEG sig-
nals [104]. It has been used to detect sleep apnea occurrences
using ECG signals during the night [105], [106]. It performed
well with low computation complexity in automatic sleep
stage classification [107].

Fuzzy Classification: It can work with other classification
systems, such as neuro-fuzzy classifiers and fuzzy decision
trees, to improve performance [41].

Fuzzy reasoning-based classifier (FRBC) is a reliable tool
for automatic sleep EEG staging [85]. Fuzzy ganglionic
lattices have been applied to classify the sleep/wake states
in newborns. Fuzzy based methods have been applied for
the detection of alpha activity [108] and automatic cyclic
alternating pattern detection [109] in sleep EEG analysis. The
classification of sleep stages in newborns has been done using
neuro-fuzzy classifiers (NFC) [110], [111] and used to detect
the k complex in EEG signals from sleep [112].

A list of feature extraction techniques in each category
was extracted from the finalized set of the studies, and the
extracted information was synthesized, see Table 6.
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FIGURE 6. Most used ML techniques for Automatic Sleep Scoring

A. ADVANTAGES OF MACHINE LEARNING
TECHNIQUES
ML approaches have a number of general advantages, includ-
ing the ability to tackle (although imperfectly) NP complete
problems like bio-signal analysis. The following discussion
organizes the advantages of machine learning, with a focus
on capacity to handle high-dimensional multi-variate data
and extract implicit associations. The classification and anal-
ysis of sleep bio-signal data is complicated by the nature and
necessitates multidisciplinary expertise.

ML approach reduces cycle time, and improves execution
time and resource utilization in sleep stage classification.
Moreover, it provides powerful tools for performance im-
provement in diagnosis of sleep related problems, such as
sleep apnea or spindle detection.

The ability to handle high-dimensional issues is one of the
benefits of machine learning. As sleep EEG data availabil-
ity is increasing, it is becoming more important to utilize
ML techniques, but it’s also true that the majority of the
advantages and disadvantages of individual algorithms aren’t
generalizable. Support Vector Machines and Artificial Neural
Networks are two approaches that excel in dealing with
large dimensionality [117], [127]. As stated before, most ML
techniques are applicable to sleep bio-signal analysis, and
the ability to handle high-dimensional data is considered an
advantage.

Another benefit of machine learning approaches is the ac-
cessibility and usefulness of open source algorithm packages

like WEKA.
In data mining, machine learning techniques are used

to identify unknown knowledge and relationships in data
sets. The requirements for training data vary depending on
the properties of ML algorithms. ML algorithms have been
successfully demonstrated in applications to sleep data anal-
ysis [107], [117], [119], [120], [124], [125].

While sleep bio-signals are complicated and dynamic,
machine learning algorithms can learn from them and adapt
to changing environments (depending on the ML method-
ology) very quickly, and in almost all situations faster than
traditional approaches [117], [119], [120].

Machine learning approaches assist in the discovery of
patterns in existing data sets, which can be used to develop
approximations. Clinical decision-making could be aided by
the knowledge acquired. As a result, some machine learning
algorithms aim to find patterns, regularities, or abnormalities.

Generally, ML performance varies in prediction speed,
memory usage, and interpretability. It is not suggested to base
the selection of the ML technique on previously reported
comparisons. Each algorithm’s performance is determined
by the type of problem and data provided, as well as pre-
processing and parameter choices.

B. MACHINE LEARNING TECHNIQUES’ CHALLENGES
In sleep data analysis, a typical challenge is the acquisi-
tion and availability of relevant data. There are also issues
with the quality and the composition of data that affect
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TABLE 6. Synthesis of Machine Learning Techniques with Data Extraction
Framework

Reference Purpose Features # of
Sleep
Stages

Dataset
Size

Data
set
Source
Available
at:

Accuracy
in (%) :
Features

K-Means Clustering

[34] Using
structural
graph
similarity
and the K-
means method
together

Statistical
Features and
Structural
Graph
properties

Six 48,555 [113],
[114]

95.93 : 12

[115] Feature
weighting
based on
k-means
clustering

Statistical Six 4196 Sleep
Lab of
Meram
Medicine
Fac-
ulty of
Selcuk
Uni-
versity
Turkey

82.15 : 4

[116] K-means
clustering
based wavelet
de-noising,
EEG data
feature
extraction
and spectrum
analysis, k=10

Frequency &
Time Domain

Five N/A [113] 81 : 4

[70] K-means
based on time
and spectral

Time & Spec-
tral

Five N/A Lab of
Neuro-
physi-
ology
Oscar
Moscoso
Arisa
Au-
tonoma
Uni-
versity
of
Man-
izales
UAM

74 : 5

Artificial Neural Network (ANN)

[117] Single
layer neural
network

Spectral Den-
sity

NREM,
REM,
and
WAKE

N/A 4
nights
home
based
experi-
ment

63

[118] The dual-tree
complex
wavelet
transform and
a complex-
valued neural
network based

Statistical Six 20,774 [113] 93.84
(R & K)
95.42
(AASM)

[119] Convolutional
neural
network
(CNN) based
on five layer
(One output
layer, two
conventional
and pooling
layers)

Time-
Frequency

4
Awake,
light,
deep
and
REM

N/A [113] 88.83

[120] Mixed Neural
Network

Time-domain Five N/A [113] 83.35

[121] Three feed-
forward
ANNs

Time-
Frequency

Five 13650 [113] 81.1

[122] Bidirectional
Long Short-
Term Memory
based
Convolutional
Neural
Network
(CNN)

Time
invariants
features

Five N/A [113],
[123]

86.2

the performance of an ML algorithm. An example of the
challenges is the high dimensionality of data, as it can contain
irrelevant and redundant variables. Several factors impact the
result, including the algorithm and its parameter settings.
Obtaining any data is a general challenge. Though machine
learning allows for the extraction of information and pro-
duces better outcomes than most traditional approaches with
fewer requirements for training data, certain characteristics

K-Nearest Neighbours (KNN)

[124] KNN based
on iterative
filtering

Time and
frequency
domain

Six N/A [113] 83 to 95

[107] KNN with
Separability
& Correlation
(SEPCOR)
analysis

Spectral
entropy

Two
wake
and
stage 1

N/A 92

[125] KNN Time Domain
and frequency
domain

wake
and
sleep

N/A 73.36 : 36

[126] KNN based
on EOG
signal

Time and Fre-
quency

Five N/A Belgian
sleep
hospi-
tal

80

Support Vector Machine (SVM))

[127] SVM Time and
Frequency
domain

Five N/A 94 : 102

[128] Based on time
frequency
images and
multiclass
least squares
support vector
machines

Time-
Frequency

Six N/A [113] 92.93

[129] SVM Graph domain
features

Six 14,963 [113] 87.5

[130] SVM Frequency
Domain

Five N/A [113] 93.8

[131] SVM Time and
Frequency
Domain and
nonlinear
features

Five N/A 87 : 39

Naïve Bayes (NB)

[132] Naïve Bayes
based on
dynamic
time wrapping
method(DTW)

Time domain
feature

Two
sleep
and
wake
states

N/A National
Heart
Lung
&
Blood
insti-
tute

84.19

[133] NBC Time domain Three
wake,
NREM
and
REM

N/A [113] 70

[134] NB based on
bed sheet sys-
tem

Time Domain Wake,
NREM
and
REM

N/A UCLA
School
of
Nurs-
ing

70.3

of data must still be considered. Overall, this emphasizes
the increased requirement to comprehend data in order to
use a machine learning algorithm. In contrast to traditional
approaches, which spend a lot of time extracting information,
ML spends a lot of effort preparing the data.

Following the collecting of data, the next step is to prepro-
cess it according to the algorithm’s specifications. The results
are heavily influenced by data preprocessing. Standardized
tools are frequently used to normalize and filter data. It is
also tested to see if the data is balanced, as this can provide a
problem when training some algorithms. Missing values is a
common problem in industrial or medical databases and the
use of different types of sensors may cause varying quality
of data, even within one dataset. These issues may bias the
classification results, and in a clinical application a patient’s
problem may be misdiagnosed.

A key decision to make is the choice of ML algorithm.
Generally, some strengths and weaknesses of ML algorithms
are well-known. Due to the increasing use by practitioners
and academics, a huge variety of diverse ML algorithms and
their modifications are available in medical areas. Literature
available can show effective applications of machine learning
techniques for specific issues. On the other hand, in most
situations, the test dataset is not publicly available, making
an unbiased evaluation of the results impossible. The steps

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3194145

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



in selecting a suitable ML algorithm for a certain problem
(type) are as follows:

1) Screening the available data, i.e., labelled, unlabelled,
etc. Make a choice between supervised, and unsuper-
vised approaches.

2) The structure, data categories, and overall volume of
available data must all be considered when evaluating
the general applicability of existing algorithms.

3) Previous applications of ML algorithms to solve simi-
lar problems should be explored.

The analysis of the findings poses another challenge. At-
tention has to be given to ensure that the output format and its
interpretation are relevant. Points to be considered: algorithm
specification, parameter settings, planned outcome, and also
data preprocessing. Over-fitting, bias, and variance are typ-
ical issues that need attention. In order to address the over-
fitting, following techniques can be used in the context of
sleep data. Regularization techniques include early stopping,
batch normalization, weight decay, dropout, particle swarm
optimization, max-norm regularization, data augmentation
and cross validation [135]–[137].

VII. THEORETICAL APPLICABILITY OF MACHINE
LEARNING TECHNIQUES TO AUTOMATE SLEEP
SCORING CHALLENGES
Before looking into the applicability of machine learning
(ML) for sleep stage classification, a quick review of the
terminologies is in order. ML is known for its potential to
handle problems of an NP-complete nature.

See Table 7 for a summary of sleep research over the
previous decade. As sleep disorders become more common
in today’s culture, developments in machine learning and
data analysis techniques provide academics new opportunity
to investigate the problem and build automatic sleep scoring
systems. As previously stated, the EEG is utilized to record
human brain activity, and even a single signal channel can
yield good findings. Electrical monitoring systems have been
used in a few investigations to target numerous channels.

Focus on a single channel simplifies the problem, at the
risk of potentially poor performance. K-Nearest Neighbours
(KNN), Support Vector Machine (SVM), Naive Bayes (NB),
and Artificial Neural Network (ANN), have all been used in
reported studies of sleep disorders, together with Time and/or
Frequency-domain characteristics.

ANNs are frequently used because they allow non-linear
activation functions combined with computational efficiency.
For both linear and non-linear classification tasks, SVMs can
be useful. Non-linear classification with an SVM is based on
a kernel function that maps the feature space non-linearly
for classification, but does it implicitly via manipulating
the inner product. The KNN method is a non-linear lazy
learning method that can be used to solve classification and
regression problems. When it comes to classification speed
and accuracy, NB does better with large training datasets.
Figure 6 shows a summary of the state-of-the-art machine
learning algorithms employed.

TABLE 7. Exploration of Machine Learning and Feature Extraction
Techniques over the years: single or multiple EEG channels along with choice
of classifier

Machine Learning Techniques or Classifiers:
Feed Forward Neural Network (FNN), Probabilistic Neural Network (PNN), Support Vector Machine (SVM), K-
Nearest Neighbour Search (KNN), Artificial Neural Network (ANN), Decision Tree (DT), Naïve Bayes (NB), Radial
Basis Probabilistic Neural Network (RBPNN), Fisher’s linear discriminant (FLD), Fuzzy, Adaptive Boosting (AB),
Decision-tree multi-class Support Vector (DTMCSV), Random Forest Classifier (RFC)
Feature (s): Energy, Power Spectrum (PS), Hjorth Complexity Parameters (HCP), Frequency Domain (FD),
Wavelet Packet Decomposition (WPD), Time Domain (TD), Non-Linear Analysis (NLA), Spectral Measure
(SM), Fast Fourier transform (FFT), Adaptive Auto-regressive (AAR), Spectral Features (SF), Teager Energy
Operator (TEO), Wavelet Packets (WP), Autocorrelation Function (ACF), Wavelet Transform (WT), Choi-Williams
distribution (CWD), Continuous wavelet transform (CWT), Hilbert–Huang Transform (HHT), Renyi’s Entropy
(RE), Discrete wavelet transform (DWT), Hjorth features (HF), Itakura Distance (ID)

SET1 : {EEG, ECG, EMG, EOG}

Channel Classifier Year Reference

Single Multiple
Signal

EEG SET1
X X ANN 2010 [138]

FNN & PNN 2013 [139]
X SVM & KNN 2005 [140]

X SVM 2009 [141]
X DT, Fuzzy, GMM, KNN, NB, RBPNN 2012 [142]
X SVM 2012 [131]
X ANN 2001 [48]
X ANN 1997 [143]
X Fuzzy 2002 [144]
X SVM 2004 [145]

X - 2006 [146]
X FLD 2010 [35]
X AB 2015 [36]
X SVM 2006 [147]
X - 2009 [15]

X ANN 2008 [148]
X ANN 2006 [40]
X RFC 2012 [149]

X DTMCSV 2015 [127]
X SVM 2013 [150]
X RFC, FFNN, DT, SVM 2014 [7]
X SVM 2016 [34]
X K-means & SVM 2016 [151]
X RFC 2016 [152]
X Deep learning 2017 [119]
X DBN 2017 [122]
X K-NN 2018 [103]

Machine Learning (ML) approaches have been used in
a number of studies on automatic sleep rating. The reason
for this is possibly the rise in number of people suffering
sleep disorders world-wide. Another conclusion is that due
to developments in ML approaches in other biomedical do-
mains, researchers and/or health practitioners are working on
automatic sleep scoring systems.

Deep neural networks were used in a small number of
studies that did not use feature engineering approaches. The
reported levels of accuracy range around 84 to 88 percent,
although feature engineering methods have yielded more
accurate results at the cost of more human labor in the
implementation of classification.

There is no discernible trend in the techniques’ perfor-
mance. The technique used, the size of the data collection,
the target (i.e., the number of sleep stages to detect), and the
feature extraction techniques used all influence the accuracy
of the results. The performance of machine learning systems
for automatic sleep scoring is unclear, which supports this
observation. The absence of evident advances in classifier
performance could be due to the fact that this discipline is
very young, and when more trials are published in scientific
journals, such trends may develop.

Given the challenge of high dimensional data, and possible
changes in measurements and thereby in sets of features,
ML has a distinct advantage because of its adaptability to
changes. The designer of automatic sleep scoring does not
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need to provide solutions for all possible situations, instead
the developed tools can adapt by re-training to new types of
data. Adaptability to and learning from a changing environ-
ment are major strengths of ML.

Data are analyzed using machine learning algorithms to
extract patterns and information. We seek to crystallize the
information in accumulated data by learning from it a clas-
sifier of sleep stages. A more thorough examination of the
existing machine learning approaches, as well as their advan-
tages and disadvantages, is required, and the ML perspective
on automatic sleep scoring has to be further elaborated and
pursued.

VIII. DEEP LEARNING TECHNIQUES
A. HAND ENGINEERED FEATURES
Hand engineering features for sleep stage classification affect
(1) signal preprocessing and dataset preparation, (2) extrac-
tion of features, (3) classification, and (4) performance evalu-
ation [153]. Filtering and normalizing of signals are included
in the preprocessing phase. Signal features can be extracted
using time, frequency, or time-frequency domain features.
The classifiers in the third phase represent typical machine
learning techniques. Finally, the last phase is performance
evaluation.

B. WITHOUT HAND ENGINEERED FEATURES
Deep learning processes data hierarchically in multiple lay-
ers, extracting highly non-linear and complex features. Com-
puter vision and natural language processing applications are
the key drivers in this domain. In sleep data analysis, it in-
volves preprocessing and labelling the dataset for 30-second
epochs. The network’s ability to extract a near-optimal col-
lection of features without human bias is advantageous. Deep
Belief Nets (DBNs) and Convolutional Neural Networks
(DeepSleepNet) are examples of deep learning [119], [122].
Although the methods can be used on raw data, their black-
box nature is disadvantageous [154].

C. STRUCTURING OF DEEP LEARNING TECHNIQUES
Autoencoder: These expand linear dimension reduction
(commonly done with principal component analysis) to non-
linear dimension reduction, using a neural network with a
bottleneck layer that encodes, while this encoding is ex-
panded to (approximately) the input as the target output.

Does not require labelled data for training and has many
variants, e.g., k-sparse, de-noising, contractive, and separable
deep auto-encoder. The vanishing gradient problem affects
the trained model as well.

Restricted Boltzmann Machine: It’s a bidirectionally
trained stochastic neural network. Contrasting divergence is
used to speed up the sampling procedure. Because it is trained
without supervision, there is no guarantee that the features
extracted from Restricted Boltzmann Machine hidden layer
will be helpful for supervised work in the future.

Deep Belief Net: It combines Restricted Boltzmann Ma-
chine and sigmoid belief networks to provide a deep hier-

archical representation of the training data. Pre-training and
discriminative fine-tuning are the two stages in the training
process. The advantages include: high-dimensional raw data
is transformed into a homogeneous representation. It is good
in learning features, processing unlabeled data, and avoiding
problems with over-fitting, but run-time complexity is high.

Recurrent Neural Network: These are used for time
sequence data, with the output depending on previous com-
putations, and the same weights are shared by sets of nodes.
It maintains data in the form of activations and is utilized in
natural language processing. It has problems with gradient
vanishing and exploding, and it can’t be layered for really
deep models.

Convolutional Neural Network: In at least one of its lay-
ers, it is a Neural Network that uses convolution operations
instead of basic matrix multiplication. It can handle sparsity
in data and share the parameters in different functions. A
limitation is that a large amount of training data is required.

Generative Adversarial Network: It’s made up of two
models: a generative G model and a distribution D model.
This can be used in any domain, including music, images, and
speech. It is not required to have Mote Carlo approximation
in training of generative adversarial network and it is faster
than completely transparent belief nets at generating samples.
It is unable to generate discrete data, such as text.

D. CHALLENGES OF DEEP LEARNING TECHNIQUES
Data Volume: The polysomnography signals are more com-
plex than many other data types, because each patient record-
ing spans overnight (8 hours). The training time also in-
creases with this huge amount of data, or big data.

Data Quality: Heterogeneity, noise, improper recording
devices, fluctuations in voltage, faults in instruments, blinks
of the eye, movements of the eyes, muscular movement, and
missing values due to other reasons, pose challenges to DL.
The DL model needs to tolerate sparsity, missing values, and
data redundancy.

Temporality: The static vector based models cannot deal
with dynamic changes happening as time passes.

Domain Complexity: Sickness of heterogeneous type, un-
availability of information about majority of ailments, and
limited number of patients add complexity to the domain.

Interpretability: In biomedicine, quantitative algorithms
as well as significance estimates are also important. Model
interpretability is vital for gaining expert confidence to ML
based calls.

IX. BIG DATA IN SLEEP SCIENCE AND MEDICINE
“Big data” as a modern term refers to a situation with a large
amount of data that is complex and heterogeneous so that
conventional techniques are unable to analyze it. It demands
large computational resources for processing and analysis,
therefore, the term ”Big Data Analytics” has been coined.
Typically one wants to extract significant patterns, trends,
interactions, and associations. Three V’s are used to charac-
terize many big data situations: Velocity (Data Acquisition
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speed), Volume (Amount of Data), and Variety (Number of
sources to create big data sets) [155], [156].

A wealth of physiological information is available in
polysomnography, which is helpful in clinical research and
decision making. The databases available to public include
those at NSRR (National Sleep Research Resource), NHLBI
(a new National Heart, Lung, and Blood Institute), PhysioNet
(accessible at www.physionet.com), and the MASS (Mon-
treal Archive of Sleep Studies). Clinical databases support
big data research goals and can support heterogeneity (a
heterogeneous dataset possibly suitable for clustering and
other exploratory methods) and diversity.

However: ”Academic centres may have different referral
biases, for example, being enriched for complicated cases.
Although most clinical laboratories have standardized physi-
ological recording protocols, the collection of self-reported
clinical information may not be standardized. Variation
across recording and scoring technologists may contribute
heterogeneity despite quality efforts required in accredited
laboratories. Centralized scoring common to large clinical
trials may not be practical for clinical databases” [155].

X. INTERRATER VARIABILITY OF MANUAL AND
AUTOMATED SLEEP SCORING
In sleep stage scoring, interrater variability is well-known
and requires clarification. The degree of (dis)agreement be-
tween experienced sleep scoring experts is called interrater
reliability [157]. This variability exists due to different rules
used to score events and their interpretation. The variability
exist because it is difficult to determine whether in transi-
tional epochs, the wake stage lasts longer than 15 seconds,
spindles of sleep are present, and delta waves last longer than
6 seconds in a 30-second epoch.

It is critical to assess the reliability of human-assisted
manual sleep scoring. Credibility necessitates a high level
of trustworthiness. The AASM Inter-scorer Reliability Pro-
gram, which began in April 2010, was created for this aim.
The evaluation of inter-scorer dependability can be done
based on a very large number of scorers due to the experience
gathered through this program. The sleep stage R has a high
level of reliability, with 90.5 percent agreement, while the
sleep stage N1 has the lowest level of agreement, just 63.0
percent [158].

Manual or visual scoring in sleep medicine involves rules,
such as those given by R&K (Rechtschaffen and Kales)
almost half a century ago [159]. Manual scoring by an expert
is expensive and time consuming by its nature [160], and has
many limitations: (I) Sleep depth is thought to progress in
stages from light to moderate to profound. (II) In stages 1 to 3
of non-REM sleep, there is a lot of inter-scorer variability on
this small scale. (III) Variability among EEG features: sleep
spindles and K complexes, arousal intensity, alpha intrusion
amount and frequency.

Digital analysis may reduce the variability in labelling
stages, and solve the above mentioned problems, but it is
challenging to develop that system. It is argued that such sys-

tems have implemented the R&K rules efficiently but do not
explore the micro structure of sleep that contains clinically
important information. In the past decades, for automated
sleep scoring, numerous systems have been developed, with
some of them clinically proven. However, their use in clinical
practice faces resistance. The main criticism leveled against
these systems is that they are unreliable and require human
assistance. Therefore, the apparent advantages in economy,
speed and consistency are lost partly due to the lack of human
trust [161].

The study [162] presents arguments favoring an automated
system. The evidence for benefits: the digital system can re-
produce the R&K staging, and more information is obtained
than from manual scoring; further, the automated system
demonstrated yields similar calls as those by experienced
technologists. It is concluded that laboratory efficiency may
increase if manual editing is supplemented.

It seems appealing to develop a home based sleep moni-
toring system or device, but lack of adequate monitoring of
EEG and quantification of sleep time objectively are major
obstacles. Manual scoring of a home sleep testing system
would add considerable costs. Further, the manual scoring
has both inter-scorer and intra-scorer variability. Therefore,
its reliability and reproducibility are questionable. Numerous
attempts have been made for automation but the available
systems have moderate accuracy and are perceived as expen-
sive.

To address the above considerations, some studies have
assessed interrater variability and reliability. Further, there is
no acceptable tolerance limit for accuracy of an automated
sleep scoring system. The various sleep research centres
would need to collaborate to measure the variability among
their systems. However, while the clinical acceptance of au-
tomated systems is low, they are superior to manual systems
because they require less labour, and several attempts have
been made to reduce the criticism. As far as the home based
clinical systems are concerned, the above arguments show
that a lot of research would be required to develop a handy
portable device for novice users.

It is obvious from the databases investigated that studies
on automatic sleep scoring have intensified in the preceding
decade. We believe this is due to the availability of published
sleep data in the modern IT systems. Another aspect is
the high expense of manual sleep stage analysis by sleep
technologists or experts, which has fueled the demand for
automated sleep scoring. Brainstorming, feature selection or
creation, appropriateness evaluation, feature improvement,
and repeating as needed are all common feature engineering
processes. A further factor contributing to this trend is the
overall drive toward automation, particularly in measure-
ment, in order to eliminate operator-dependent outcomes.

XI. CONCLUSION
The current study’s major purpose was to assess state-of-
the-art in sleep scoring standards, bio-electric signal feature
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extraction methodologies, and sleep data classification using
machine learning approaches. The study’s second goal was to
figure out how the components above are combined to create
an autonomous sleep rating system. The project aims to learn
more about the human sleep problem while also providing a
foundation for young researchers.

Two sleep scoring standards have been identified in this
study: (i) R&K, and (ii) AASM. The second finding is that
the features fall into four categories: (i) time domain, (ii)
frequency domain, (iii) time-frequency domain, and (iv) non-
linear domain. Finally, sleep data are frequently collected
using both single and multiple channel signals. Additionally,
sleep data are classified using a set of machine learning
approaches.

It is obvious from the databases examined that automatic
sleep scoring studies have been strongly pursued over the
past decade. A small number of feature extraction approaches
were used. Automated techniques often dominate manual
feature engineering. The study’s main finding is that ma-
chine learning techniques have been deployed without fully
utilizing their adjustable parameters. Furthermore, based on
prediction speed, memory utilization, and call interpretability
or traceability, or which categorization algorithms would be
the most effective for sleep data analysis, have yet to be
determined. Furthermore, it was discovered that classifier
performance is affected not only by the size of the data set,
but also by the feature extraction choices.

These findings suggest that the AASM standard should be
used and that the collection of datasets should be expanded.
Other sorts of signals outside EEG can also be investigated,
according to the review. Multiple aspects must be considered
since each one contributes to understanding sleep in the
diagnostic context.

Automatic feature engineering techniques and parameter
choices for machine learning algorithms, in the context of
sleep scoring, are two areas that need to be researched more
in the future. Parameter adjustment will not only allow for
a fair comparison of machine learning options, but it may
also enhance accuracy to a level comparable to sleep expert
calls. As a result, this study indicates that using an alternate
sleep scoring standard, as well as numerous feature extraction
with selection approaches, machine learning algorithms with
parameter tweaking, and big data analytics, physicians can
produce a practically useful automatic sleep scoring system.
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[33] M. Kamiński, K. Blinowska, and W. Szelenberger, “Topographic analysis
of coherence and propagation of eeg activity during sleep and wakeful-
ness,” Electroencephalography and clinical neurophysiology, vol. 102,
no. 3, pp. 216–227, 1997.

[34] M. Diykh, Y. Li, and P. Wen, “Eeg sleep stages classification based on
time domain features and structural graph similarity,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 24, no. 11, pp.
1159–1168, 2016.

[35] J. Löfhede, M. Thordstein, N. Löfgren, A. Flisberg, M. Rosa-Zurera,
I. Kjellmer, and K. Lindecrantz, “Automatic classification of background
eeg activity in healthy and sick neonates,” Journal of neural engineering,
vol. 7, no. 1, p. 016007, 2010.

[36] A. R. Hassan, S. K. Bashar, and M. I. H. Bhuiyan, “Automatic classifica-
tion of sleep stages from single-channel electroencephalogram,” in 2015
Annual IEEE India Conference (INDICON). IEEE, 2015, pp. 1–6.

[37] R. Armitage, R. Hoffmann, and A. Rush, “Biological rhythm disturbance
in depression: temporal coherence of ultradian sleep eeg rhythms,” Psy-
chological medicine, vol. 29, no. 06, pp. 1435–1448, 1999.

[38] P. G. Grieve, J. R. Isler, A. Izraelit, B. S. Peterson, W. P. Fifer, M. M. My-
ers, and R. I. Stark, “Eeg functional connectivity in term age extremely
low birth weight infants,” Clinical Neurophysiology, vol. 119, no. 12, pp.
2712–2720, 2008.

[39] V. Kokkinos, A. Koupparis, M. L. Stavrinou, and G. K. Kostopoulos,
“The hypnospectrogram: An eeg power spectrum based means to concur-
rently overview the macroscopic and microscopic architecture of human
sleep,” Journal of neuroscience methods, vol. 185, no. 1, pp. 29–38, 2009.

[40] R. Lin, R.-G. Lee, C.-L. Tseng, H.-K. Zhou, C.-F. CHAO, and J.-A. Jiang,
“A new approach for identifying sleep apnea syndrome using wavelet

transform and neural networks,” Biomedical Engineering: Applications,
Basis and Communications, vol. 18, no. 03, pp. 138–143, 2006.

[41] E. F. Estrada, H. Nazeran, and H. Ochoa, “Hrv and eeg signal features for
computer-aided detection of sleep apnea,” in 25th Southern Biomedical
Engineering Conference 2009, 15–17 May 2009, Miami, Florida, USA.
Springer, 2009, pp. 265–266.

[42] P. Durka and K. Blinowska, “Analysis of eeg transients by means of
matching pursuit,” Annals of biomedical engineering, vol. 23, no. 5, pp.
608–611, 1995.

[43] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C.
Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and
the hilbert spectrum for nonlinear and non-stationary time series analy-
sis,” in Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, vol. 454, no. 1971. The Royal
Society, 1998, pp. 903–995.

[44] Z. Yang, L. Yang, and D. Qi, “Detection of spindles in sleep eegs using
a novel algorithm based on the hilbert-huang transform,” in Wavelet
Analysis and Applications. Springer, 2006, pp. 543–559.

[45] N. Baydar and A. Ball, “A comparative study of acoustic and vibration
signals in detection of gear failures using wigner–ville distribution,”
Mechanical systems and signal processing, vol. 15, no. 6, pp. 1091–1107,
2001.

[46] M. Sun, S. Qian, X. Yan, S. B. Baumann, X.-G. Xia, R. E. Dahl, N. D.
Ryan, and R. J. Sclabassi, “Localizing functional activity in the brain
through time-frequency analysis and synthesis of the eeg,” Proceedings
of the IEEE, vol. 84, no. 9, pp. 1302–1311, 1996.

[47] T. Kobayashi, K. Misaki, H. Nakagawa, S. Madokoro, H. Ihara, K. Tsuda,
Y. Umezawa, J. Murayama, and K. Isaki, “Non-linear analysis of the
sleep eeg,” Psychiatry and clinical neurosciences, vol. 53, no. 2, pp. 159–
161, 1999.

[48] M. Grözinger, J. Fell, and J. Röschke, “Neural net classification of rem
sleep based on spectral measures as compared to nonlinear measures,”
Biological cybernetics, vol. 85, no. 5, pp. 335–341, 2001.

[49] D. Gallez and A. Babloyantz, “Predictability of human eeg: a dynamical
approach,” Biological cybernetics, vol. 64, no. 5, pp. 381–391, 1991.

[50] N. Pradhan and P. Sadasivan, “The nature of dominant lyapunov exponent
and attractor dimension curves of eeg in sleep,” Computers in biology and
medicine, vol. 26, no. 5, pp. 419–428, 1996.

[51] J. Fell, J. Röschke, and P. Beckmann, “Deterministic chaos and the first
positive lyapunov exponent: a nonlinear analysis of the human electroen-
cephalogram during sleep,” Biological cybernetics, vol. 69, no. 2, pp.
139–146, 1993.

[52] M. Carrozzi, A. Accardo, and F. Bouquet, “Analysis of sleep-stage
characteristics in full-term newborns by means of spectral and fractal
parameters.” Sleep, vol. 27, no. 7, pp. 1384–1393, 2004.

[53] B. Raghavendra and D. N. Dutt, “Multiresolution area-based fractal
dimension estimation of signals applied to eeg data,” in TENCON 2008-
2008 IEEE Region 10 Conference. IEEE, 2008, pp. 1–5.

[54] R. Ferenets, T. Lipping, P. Suominen, J. Turunen, P. Puumala, V. Jantti,
S.-L. Himanen, and A.-M. Huotari, “Comparison of the properties of eeg
spindles in sleep and propofol anesthesia,” in Engineering in Medicine
and Biology Society, 2006. EMBS’06. 28th Annual International Con-
ference of the IEEE. IEEE, 2006, pp. 6356–6359.

[55] I. Song, Y. Ji, B. Cho, J. Ku, Y. Chee, J. Lee, S. Lee, I. Kim, and S. I. Kim,
“Multifractal analysis of sleep eeg dynamics in humans,” in 2007 3rd
International IEEE/EMBS Conference on Neural Engineering. IEEE,
2007, pp. 546–549.

[56] W.-X. He, X.-G. Yan, X.-P. Chen, and H. Liu, “Nonlinear feature extrac-
tion of sleeping eeg signals,” in 2005 IEEE Engineering in Medicine and
Biology 27th Annual Conference. IEEE, 2006, pp. 4614–4617.

[57] G. Jiayi, Z. Peng, Z. Xin, and W. Mingshi, “Sample entropy analysis
of sleep eeg under different stages,” in 2007 IEEE/ICME International
Conference on Complex Medical Engineering, 2007.

[58] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, “Recurrence plots of
dynamical systems,” EPL (Europhysics Letters), vol. 4, no. 9, p. 973,
1987.

[59] R. Acharya, O. Faust, N. Kannathal, T. Chua, and S. Laxminarayan,
“Non-linear analysis of eeg signals at various sleep stages,” Computer
methods and programs in biomedicine, vol. 80, no. 1, pp. 37–45, 2005.

[60] V. C. F. Helland, S. Postnova, U. Schwarz, J. Kurths, B. Kundermann,
U. Hemmeter, and H. A. Braun, “Comparison of different methods for the
evaluation of treatment effects from the sleep eeg of patients with major
depression,” Journal of biological physics, vol. 34, no. 3-4, pp. 393–404,
2008.

VOLUME 4, 2016 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3194145

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



[61] A. Accardo, M. Affinito, M. Carrozzi, S. Cisint, and F. Bouquet, “Com-
parison between spectral and fractal eeg analyses of sleeping newborns,”
in Engineering in Medicine and Biology Society, 1998. Proceedings of
the 20th Annual International Conference of the IEEE, vol. 3. IEEE,
1998, pp. 1569–1571.

[62] S. Dangel, P. Meier, H. Moser, S. Plibersek, and Y. Shen, “Time series
analysis of sleep eeg,” Computer assisted Physics, pp. 93–95, 1999.

[63] P. Kavipriya and K. Karthikeyan, “A comparative study of feature selec-
tion algorithms in data mining,” Int. J. Adv. Res. Comput. Commun. Eng,
vol. 6, no. 11, 2017.
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