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1 INTRODUCTION 
1.1 Description of the Problem 
A direct assessment of two treatments, which are labeled A and C, is available if a comparative 
study of A and C has been conducted. Ideally, this comparative study is a randomized controlled 
trial (RCT) comparing A and C. However, many competing treatments have not been compared 
directly and/or such direct evidence is limited and insufficient. Indirect treatment comparisons 
(ITC) have been advocated when direct evidence is not available. These types of comparisons 
are becoming more commonplace.   
 
In the simplest situation, we may have direct comparisons of A versus C and B versus C; indirect 
methods attempt to use the common comparator link C to yield an indirect comparison of A 
versus B. Various reasons may lead to the lack of a direct comparison and, in these situations, 
performing an indirect treatment comparison may be of interest. Firstly, often when the 
treatments of interest are drugs, due to commercial interests and the regulatory approval process, 
head-to-head comparison of two active treatments is often not available. Placebo-controlled trials 
are usually sufficient for acquiring regulatory approval of a new treatment, and there is no 
motivation from the commercial sector to compare the new treatment with existing active 
treatments. This is of particular importance for reviews where only placebo-controlled studies 
are directly available and indirect evidence assessing a new treatment with a standard treatment 
would be of interest in making appropriate assessments. In a setting in which a head-to-head 
comparison is not available, C could be a placebo comparator and the indirect comparison would 
provide evidence of a head-to-head comparison of A versus B. 
 
Secondly, if there is strong evidence and belief that the current standard treatment is effective, 
then placebo-controlled trials may not be ethically conducted. New treatments are compared only 
with active treatments and there is an absence of comparison of a new treatment to placebo 
yielding the actual “true” effect of the drug.1 To get an assessment of the true level of effect of 
the new drug, an indirect approach can provide some information. In this setting in which a new 
treatment cannot be compared to placebo, C could be the currently accepted standard of 
treatment and B is a placebo (for which the standard was compared to in the past); then the 
indirect comparison would yield evidence of a comparison of A with placebo. 
 
Indirect treatment comparisons can also be useful when a meta-analysis groups together all 
treatments within the same class or for different doses of the same treatment. As such, when 
comparing to another treatment, class effects or the varying effects of different doses cannot be 
evaluated.2 The lack of such an evaluation can result in erroneous conclusions if one class is 
recommended over another (even though each treatment within that class is not effective), or 
when any dose is recommended as being superior to placebo (when, in fact, only a specific dose 
or specific doses may be better than placebo).  
 
More complex indirect evidence settings can arise. In the next simplest setting, we may have 
direct evidence from A versus C, B versus D, C versus D; with this evidence, we can attempt an 
indirect comparison of A versus B using, in particular, the direct evidence of C versus D. Even in 
the situation of A versus C, B versus C, D versus C, D versus F, the treatment F can be an 
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important contributor to the indirect comparison of A versus B. The network of direct and 
indirect evidence can be complex. Within this network of evidence, there is often a need to 
synthesize evidence from RCTs, and methods for deriving indirect treatment comparisons using 
meta-analysis are of prime interest. 
 
Although there are situations in which ITCs may be performed and can provide useful 
information, these analyses present with several limitations. An ITC requires inference or 
extrapolation from known results to situations in which a study has not been done and, therefore, 
the validity of estimates obtained from ITCs may be questionable. Significant differences may 
exist between trials that compare one treatment to a control and trials that compare another 
treatment to the same control. For instance, the two sets of trials may be characterized by 
differences in patient characteristics, and such heterogeneity between patients may result in a 
different effect linking the treatment of interest. Differences in the length of follow-up, 
measurement of outcomes, and diagnostic criteria may also yield invalid results. Also, ITCs that 
include old trials may be based on data that does not represent current clinical practice and 
results generated from such analyses would not be observed in the present-day clinical setting.     
  
To this end, the importance of direct evidence cannot be overemphasized. If a comparison 
between two treatments is of relevance and direct evidence does not exist, then investigators 
should plan a randomized controlled trial. In the event that an RCT cannot be conducted, 
investigators may resort to indirect comparisons and interpret, with caution, results based on 
such analyses. An understanding of the different methods and procedures available for making 
indirect treatment comparisons, of their limitations, and of the circumstances under which they 
may provide valid results is useful for health care decision makers who face the option of 
performing an ITC or who rely on information generated through indirect evidence.  
 
1.2 Objectives  
The first objective of this project was: 
• to identify and review the different methods available for making indirect treatment 

comparisons (Chapter 2). 
 
Additional objectives using the Bucher indirect treatment comparison approach were: 
• to derive general methods and procedures for effect measures of discrete and continuous 

outcomes within complex networks of evidence. (Chapter 3) 
• to assess the distributional properties of the indirect estimates using simulations (Chapter 3) 
• to develop a user-friendly program for conducting indirect treatment comparisons for the 

methods and procedures derived. (Chapter 4) 
• to illustrate the application of the empirically derived distributional properties of the indirect 

estimates and the program by applying it to examples selected from the literature. (Chapter 
5). 

 
The objective for the various methods identified was: 
• to illustrate the application of the various methods for indirect treatment comparisons 

(Chapter 6).  
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2 METHODS FOR MAKING INDIRECT 
COMPARISONS 

The first objective was to identify and review the different methods available for making indirect 
treatment comparisons. To this end, a literature search was carried out to identify common 
methodologies that have been proposed for conducting indirect treatment comparisons. In theory, 
systematically applying selection criteria to information retrieved from a comprehensive 
literature search strategy (i.e., a systematic literature review) would provide the most complete 
set of references for articles that have discussed an ITC methodology. Due to a scarcity of 
appropriate indexing terms, a formal systematic search strategy to identify articles of all methods 
would be difficult to conduct; however, a comprehensive search was conducted and the more 
commonly reported methodologies were then selected for review.   
   
 
2.1 Bucher Indirect Treatment Comparison 
An indirect method proposed by Bucher et al. in 1997 has been a central article for considering 
indirect treatment comparisons in meta-analyses of RCTs for discrete data.3 This model was 
developed with the odds ratio (OR) as the measure of treatment effect, and was specifically 
designed for the indirect comparison of A versus C when direct evidence of A versus B and B 
versus C was available. Using standard meta-analysis, the overall effect measure for A versus B 
is calculated as the usual weighted average of the individual effect measures of the included g 
studies, for example, and the association of B versus C is based on the usual weighted average of 
included h studies. The indirect estimate of A versus C is based on the paired comparisons of the 
direct estimates as follows: the sum of the logarithm of the summary effect measure for each 
direct estimate is taken as the summary effect measure for the indirect estimate; and the test of 
the association is based on the chi-squared value for the overall association of A versus B plus 
the chi-squared value for the overall association of B versus C, with g + h degrees of freedom 
(Figure 1). Specific formulae for the effect estimates and derivation of the test statistics are given 
by the authors. 
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Figure 1: Adjusted Indirect Treatment Comparison Method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similar to the case in which data is pooled during a direct comparison, Bucher et al. noted that in 
the absence of an interaction between covariates describing various subgroups of subjects 
included in the meta-analysis, the estimate would be unbiased in large samples; however, in the 
presence of an interaction, the data should not be combined. The authors tested their 
methodology for indirect treatment comparisons by performing an indirect analysis between two 
treatments and comparing the effect estimate to the estimate obtained through trials that directly 
compared the two treatments. The indirect result was more pronounced than the direct estimate, 
and the following reasons were provided for the observed discrepancy:   
• Difference between the weights given to studies included in the direct comparison versus 

those included in the indirect comparison:  The variance of the ln (OR) using the indirect 
method may be twice the magnitude of the variance for the direct method.  In the indirect 
method, the variance is made up of two parts: the variance for the studies comparing A 
versus B and the variance for the trials comparing B versus C.  If all the studies in the 
indirect comparison were given the same weight “w”, the variance would be (g + h)/w.  
However, in the event that a direct comparison between A and C included as many patients 
as were included in the studies used to obtain an indirect effect estimate, each arm of the trial 
would have two times the number of patients per group in comparison to the indirect 
analysis. As such, the variance would be (g + h)/2w and the direct comparison would be two 
times more efficient.  

• Methodological differences between studies that evaluated one treatment with the common 
comparator and studies that assessed the other treatment with the comparator: In one set of 
studies, the design of trials may have been methodologically inferior and, as a result, may 
have exaggerated the treatment effects.  

• Differences in the measurement of the outcome:  Trials that compared one of the treatments 
to the comparator may have detected the outcome more efficiently than trials which 
compared the other treatment to the comparator. 

Pooled effect estimatePooled effect estimate 

A 

B 

C 

A versus B 
A versus B 
A versus B 

B versus C 
B versus C 
B versus C 



Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis 5

• Efficacy of treatments may vary among subgroups of patients: If one subgroup of patients 
was over-represented in trials that included one of the treatments of interest in relation to 
trials for the other therapy, the difference in the magnitude of effectiveness between the two 
treatments could be more pronounced.  

 
2.1.1 Assumptions 

• The principal assumption of the model proposed by Bucher et al. is that the relative efficacy 
of a treatment is the same in all trials included in the indirect comparison. In the absence of a 
direct comparison between two treatments, A and C, an indirect estimate of the treatment 
effect can be obtained using results from trials that compared treatment A to treatment B and 
trials that compared treatment C to B, if the effect of treatment A observed in the trials 
comparing A to B would be the same had treatment A replaced treatment C in trials 
comparing B to C. As outlined by Song et al.,4 if treatments A, B, and C were antibiotics, but 
A and C were compared in trials that included bacteria sensitive to both A and C, while B 
and C were compared in trials that included bacteria sensitive to B but resistant to C, then the 
method proposed by Bucher et al. could not be used to indirectly compare treatment A to 
treatment C because the results of one set of trials (studies comparing A versus C) is not 
generalizable to the other set of trials (studies comparing B versus C). 

• This method assumes independence between pairwise comparisons, which is not found in 
three-arm trials. 

 
2.1.2 Strengths 

• As illustrated in Figure 1, the Bucher et al. method is an adjusted ITC in which the effect 
measure comparing two treatments within a RCT is used and not the individual results for 
each of the treatment groups. That is, the effect measure for each RCT comparing A versus B 
are combined and then compared to the corresponding combined effect measure based on the 
RCTs comparing B to C. This is in contrast to naïve ITC in which the randomization linking 
treatment groups is broken; treatment groups A are amalgamated, treatment groups B are 
amalgamated, and treatment groups C are amalgamated; and an effect measure is based on 
the amalgamated groups. An adjusted indirect comparison treatment method utilizes the 
magnitude of the effect measure reported in randomized controlled trials that separately 
compared each of two treatments to a common comparator. When an adjusted indirect 
comparison of two treatments is made, the strength of randomization is partially maintained 
and any differences between treatments that are observed through an indirect comparison are 
less likely due to patient differences unrelated to the treatment.   

 
2.1.3 Limitations 

• This model for indirect treatment comparisons can only be applied to data generated from 
two arm trials. The formulae provided by Bucher et al. are applicable only when there is no 
correlation between the pairwise comparisons. Since the estimates obtained from a three-arm 
trial are correlated, the Bucher method cannot be used. 

• Only the effect measure OR was considered.  
• Only the simple indirect treatment comparison involving three treatments (i.e., A versus B, B 

versus C) was considered.   
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2.1.4 Example  

Coomarasamy et al.5 used the Bucher et al. method in an indirect comparison of two tocolytics, 
nifedipine and atosiban, prescribed for the management of pre-term labour. The medications had 
been suggested by the Royal College of Obstetricians and Gynaecologists (UK) as alternatives to 
β-agonists because of their favourable adverse event profile, as well as their efficacy in the 
reduction of morbidity and mortality. Although evidence indicated that both nifedipine and 
atosiban had superior efficacy compared to β-agonists, Coomarasamy et al. performed an 
indirect comparison between nifedipine and atosiban because they had not been evaluated in a 
head-to-head trial. 
 
For the outcome “reduction in neonatal respiratory distress syndrome,” the authors determined 
that there was a significant difference between the two drugs (OR 0.55 [95% CI: 0.32, 0.97]) 
favouring nifedipine. Compared to atosiban, nifedipine was also associated with a greater rate of 
delay of delivery by 48 hours, but this difference was not significant. The authors did not have 
data for other outcomes of interest.  
 
2.2 Lumley Network Meta-analysis for Indirect Treatment    

Comparisons 
Lumley6 has developed an indirect treatment comparison technique, known as network meta-
analysis, to compare two treatments in the situation where an indirect comparison between two 
treatments of interest can be obtained through more than one common comparator or linking 
treatment. For instance, consider a setting where there is interest in performing an indirect 
comparison between treatment A and treatment B. If trials have separately compared treatment A 
to C, treatment B to C, treatment A to D, and treatment B to D, Lumley’s method allows 
investigators to incorporate results from trials in which the common comparator was C, as well 
as trials in which the common comparator was D (i.e., more than once common treatment can be 
used to conduct an indirect comparison between two treatments). Network meta-analysis allows 
one to determine the amount of agreement between the results obtained when different linking 
treatments are used. Lumley has indicated that if the indirect comparison between two treatments 
yields the same result, regardless of which common comparator is used, there is a greater 
likelihood that the indirect treatment comparison represents the true relationship between the 
interventions; on the other hand, if there is a discrepancy in the results, “incoherence” exists, and 
Lumley has provided mechanisms to measure this incoherence.  
 
Another situation in which the network meta-analytic approach may be of interest exists when an 
indirect comparison between two treatments can occur through “multiple paths”, which require 
indirect comparisons within indirect comparisons. As an illustration, an assessment of the 
relative efficacy of A and E can occur through at least three paths (Figure 2, a to c). The first 
path (Figure 2, a) involves the construction of a model which: 
• compares D to F through E; and  
• compares D to G through the indirect treatment comparison between D and F and a direct 

treatment comparison between F and G.   
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In the second path (Figure 2, b), a model can be constructed to:  
• compare D to B through C; 
• compare B to G through A; 
• compare D to G through the indirect comparison between D and B and the indirect 

comparison between B versus G.  
 
A third path (Figure 2, c) can be used to compare D versus G by considering treatment C. In this 
setting, an indirect comparison between D and G can be obtained through:  
• the comparison of C to G through the indirect comparison between G versus B, as above, and 

a direct treatment comparison between B versus C;  
• the comparison of D to G through the indirect comparison between G versus C and a direct 

comparison between C versus D. 
 
In the network meta-analysis method, when more than one path can be used to compare two 
interventions, each path forms a component of a larger network and weights are assigned to 
different paths. The degree of agreement between the effect estimates obtained through different 
paths can be determined. The degree of agreement between paths is termed the “incoherence” of 
the network, and is incorporated in the calculation of the 95% confidence interval (CI) for the 
indirect estimate.  
 
In the event that a limited amount of direct evidence is available for the comparison of two 
treatments, the network meta-analysis approach allows the direct evidence to be incorporated 
into the network model as well.  
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D

D

A

B

C

G

Figure 2: Closed Loop Network of Pathways for an Indirect Comparison in 
Network Meta-Analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The formal model6 is 

ijkY ~ ),( 2
ijkijjkikjiN σξηημμ +++−  

ijη ~ ),0( 2τN  

ijξ ~ ),0( 2ωN  
 
where: 

ijkY  is the treatment difference estimate from the kth RCT comparing treatment i and j ; 
2
ijkσ is the standard deviation error of ijkY ; 

iμ  is the average effect of treatment i; 

ikη  is a random effect with variance 2τ representing the difference between the average 
effects of treatment i and j; 

ijξ  is a random effect with variance 2ω  representing a change in the effect of treatment i 
when it is compared to treatment j. 
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It should be noted that: 
• ikη  random effects capture the heterogeneity of treatment effect; 
•  ijξ  random effects capture the inconsistency of pairs of treatments. To combine different 

treatment comparisons, the effect of treatment i should be the same no matter what it is 
compared against (i.e. ijξ is close to 0), and 2ω is called the incoherence of the network. 

 
2.2.1 Assumptions 

• The fundamental assumption underlying the network meta-analysis is that the comparison 
between two interventions, A and E (for example), will occur through a closed loop. The 
concept of a closed loop is best illustrated through the consideration of diagrams that depict 
the pathway of comparisons involved in the indirect comparison of two treatments (Figure 3). 
In a network diagram, a solid line is constructed between two treatments, A and F (for 
example), if they have been compared directly. The indirect comparison between the two 
treatments A and E follows a closed loop design if a solid line connecting all of the 
treatments between A and E can be drawn. A solid line can be replaced by a dotted line if the 
comparison between two interventions, A and B (for example), has been derived using 
indirect evidence and is then used in a pathway (network of comparisons) for the indirect 
comparison of two other treatments, such as A and E.  
 
A closed loop design is necessary for calculating the estimate of “incoherence,” which is then 
used to construct a 95% confidence interval for the indirect estimate. 
  
Pathways that follow a star design or a ladder design cannot be used in the network meta-
analysis (Figure 3). Such designs cannot quantify the amount of incoherence in a network of 
comparisons.  
 

• Similar to the method proposed by Bucher et al., in order for the results of a network meta-
analysis to be valid, the effect of any given treatment included in the model should be 
exchangeable across the other studies used to perform the network meta-analysis. 
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Figure 3: Open Loop Networks of Pathways for the Comparison 
of Competing Interventions 

 
  
   
 
   
                                 
 
 
 
 

 
 
 

 
2.2.2 Strengths 

• As for the method proposed by Bucher et al., the network meta-analysis is an adjusted 
indirect treatment comparisons model based on treatment effect measures observed in 
randomized controlled trials and, as such, partially preserves the randomization of study 
groups in the trials from which data are used.  

• In the event that more than one comparator can be used to perform an indirect comparison, 
through the use of pathways, network meta-analysis can incorporate each comparator in a 
single model to arrive at an indirect estimate of treatment effect. The amount of agreement in 
the results obtained from the different paths for the indirect comparison can then be 
quantified.  

• Although further investigation is needed, Lumley has indicated that the combination of both 
direct and indirect evidence may result in a narrower confidence interval than that which 
would be obtained if the relative efficacy of two treatments was based only on the limited 
direct evidence.6 
  

2.2.3 Limitations 

• Network meta-analysis does not involve a method to account for correlations that may exist 
between different effect estimates when they are obtained from a single multi-armed trial. 
Although a random effects model — in which the same random effect is applied to each 
treatment arm ― can be used, this is not considered to be an optimal solution. Bayesian 
modelling has been proposed for situations in which trials with multiple treatment groups are 
included in the network meta-analytic model.7 Nonetheless, the use of a Bayesian approach 
to appropriately model random effects in multi-armed trials has also been questioned due to 
its complexity and subsequent concern of the sensibility of conclusions drawn from such an 
approach.8 

• Different paths may involve overlap, as illustrated by the presence of a comparison between 
A and B in both paths used to compare A with E (Figure 2). When the amount of incoherence 
is estimated, the network meta-analysis method does not provide a technique to account for 
any overlap that may exist. Because overlap cannot be accounted for, in situations where the 
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same comparison is performed in different paths, the estimated inconsistency will be less 
than the true amount. This is because the inconsistency between the result of a comparison, 
and the result of the same comparison in a different path, should be zero since the same data 
set is used each time.  
 

2.2.4 Example 

The network meta-analysis method was performed in an indirect comparison of the relative 
efficacy of various antihypertensive medications on the development of incident diabetes 
amongst patients with hypertension.9,10 The authors cited several reasons for performing the 
indirect comparison. Specifically, although traditional meta-analyses have concluded that direct 
inhibitors of the renin-angiotensin system are effective in the prevention of incident diabetes, no 
comparison had been made between angiotensin-converting enzyme (ACE) inhibitors and 
angiotensin-receptor blockers (ARBs), both of which directly inhibit the renin-angiotensin 
system. Further to this, in traditional meta-analyses that assessed the effect of antihypertensive 
therapies in the prevention of incident diabetes, a comparison was made between a specific drug 
class and “any other treatment”.9,10 Because “any other treatment” amalgamates various different 
drug classes, such meta-analyses present with significant heterogeneity. 
 
In order to compare ARBs with ACE inhibitors and to perform a comparison between only two 
drug classes, Elliot and Meyer performed a network meta-analysis.9 In the analysis, various 
comparisons were made:  
1. ARBs were compared to ACE inhibitors 
2. each of the ACE inhibitors, ARBs, calcium channel blockers (CCBs), beta blockers, and a 

diuretic were compared to placebo 
3. each of ACE inhibitors, ARBs, CCBs, beta blockers, and placebo were compared to diuretic.  
 
The results were based on data from trials which consisted of a long-term follow-up, and which 
documented the number of cases of incident diabetes post-therapy. For the comparison of ACE 
inhibitors and ARBs, the network meta-analysis relied solely on indirect evidence. Because 
clinical trials had directly compared all of the ACE inhibitors, ARBs, CCBs, beta blockers, and a 
diuretic to placebo, for comparison (ii), the network meta-analysis included both direct and 
indirect evidence. Similarly, for comparison (iii) ― in which the diuretic was the referent drug 
— the network meta- analysis included both direct and indirect evidence. 
 
The results of the network meta-analysis indicated that there was no statistically significant 
difference between ACE inhibitors and ARBs in the risk of incident diabetes. For comparison 
(ii), diuretic (OR 1.34 [95% CI: 1.12, 1.60]) and beta-blocker therapy (OR 1.25 [95% CI: 1.05, 
1.48]) were associated with significantly greater risk of incident diabetes than placebo.  For 
comparison (iii), ARBs (OR 0.62 [95% CI: 0.51, 0.77]), ACE inhibitors (OR 0.67 [95% CI: 0.57, 
0.79]), CCBs (OR 0.79 [95% CI: 0.67, 0.92]), and placebo (OR 0.75 [95% CI: 0.63, 0.89]) were 
associated with a lower risk of incident diabetes. The result between beta blocker therapy and 
diuretic was not statistically significant. The investigators also calculated the degree of 
incoherence in the model ω= 0.054 indicating a reasonable level of coherence.  Lumley in his 
paper identified an incoherence value of 0.001 to be small (i.e., good coherence) and 0.381 to be 
large (i.e., poor coherence).6 
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2.3 Models for Multi-parameter Synthesis and Consistency 
of Evidence 

The confidence profile method (CPM) is a category of techniques used to conduct both direct 
and indirect treatment comparisons. The methodology was first proposed by Eddy et al.,11 and 
later Ades12  extended the CPM’s methodology for indirect comparisons.  
 
Analyses conducted in the CPM are based on Bayesian inference. In the Bayesian framework for 
the analysis of epidemiologic data, when a result for a parameter of interest is obtained, it 
presents itself in the form of a distribution, rather than a point estimate.13 Additionally, before 
actual data is used to obtain information about a parameter, a mathematical model is constructed 
and includes a term to quantify prior knowledge about the parameter of interest. Prior knowledge 
about a parameter of interest is also presented in the form of a distribution and is called the “prior 
distribution.”13 In the event that there is no prior information known about the parameter of 
interest, the mathematical model consists of a “non-informative prior.”13 The model incorporates 
both the prior distribution and the actual data to generate an estimate for a given parameter. The 
result, presented as a distribution, is known as the “posterior distribution.” The combining of 
evidence to generate an indirect estimate of treatment effect involves the addition of posterior 
distributions, rather than the addition of point estimates. Within the CPM structure, two 
techniques have been indicated for the generation of indirect evidence: i) intermediate outcomes; 
and ii) technology families. One or both of these mechanisms may be required to assess the 
relative efficacy of treatments.    
 
Intermediate Outcomes: This method is used when interest lies in comparing the effect of two 
treatments on clinical endpoints or health outcomes, but the available data separately relates the 
effect of the treatments to intermediate endpoints or surrogate outcomes, and the effect of those 
intermediate endpoints on health outcomes. In this regard, the available data does not directly 
relate the interventions to clinical endpoints. Eddy et al.11 developed formulas to combine the 
posterior distributions obtained from the two types of data. The combination of posterior 
distributions results in a parameter that represents the effect of the intervention on a clinical 
endpoint.  

 
Technology Families: This method is used to compare two treatments, referred to as 
technologies, that have been compared to a common comparator, but not directly to each other. 
Eddy et al. have developed formulas to combine the posterior distributions that are generated 
when each of the treatments is compared to the control. The situation in which this methodology 
is used may be viewed as a Bayesian equivalent of the setting for which Bucher et al.3 developed 
an indirect approach to combining evidence. Eddy et al. described influence diagrams to 
represent estimation problems in the CPM and explained their application to the pairwise 
comparisons that are performed within the technology family framework (Figure 4). In an 
influence diagram, information within a square represents experimental data, parameters of 
interest are enclosed in circles, and arrows specify the course of influence.  iK ,θ denotes the value 
of the outcome parameter estimated for treatment K in trial i, where i=1,2,3…; iKJ ,−ε  represents 

the value for the effect measure that estimates the difference between two treatments, J and K, in 
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trial i. In an influence diagram, an arrow would point from iK ,θ to iKJ ,−ε  because the value of 

iKJ ,−ε  depends on iK ,θ . 
 
Ades extended the CPM model for indirect treatment comparisons and cited several reasons for 
its further development. Ades noted that the mathematical formulae outlined in the CPM 
framework assumed an equal study effects model in which the baseline probability of developing 
an intermediate outcome was the same across all trials. The CPM model also assumes a fixed 
treatment effect. Ades proposed a random study effects model in which, although the effect of 
treatment on an intermediate outcome is fixed, the baseline probability of the outcome is drawn 
from a normal distribution. Ades also extended both models in order that they may be used to 
combine direct and indirect evidence. Ades compared the two models by applying his model to a 
data set that was originally analyzed by Eddy et al. Three model-checking statistics were 
generated to determine the goodness of fit of each model, namely: the posterior mean deviance 
pD, which measures model fit for each parameter estimated in the model, and values greater than 
1 indicate that the model fits the parameter poorly; posterior predictive value p(ext)%, which 
represents the probability of obtaining a more extreme result than that which is observed; and the 
conditional predictive ordinate (CPO), which indicates the probability of the observed result 
while considering the model and the rest of the data. Cross-validatory predictive checking was 
also performed and its purpose was to quantify whether or not different sources of data that may 
be chosen to perform an indirect comparison are similar enough to be validly combined.  
Checking the similarity of studies has been referred to as checking for “evidence consistency.”  
Details of the model-checking statistics used by Ades and cross-validatory predictive checking 
can be found in the literature.14 
 
2.3.1 Assumptions 

• The method developed by Eddy et al. assumed a fixed study-effects and fixed treatment- 
effects model. Ades proposed a hierarchical model that assumes random study-effects and a 
fixed treatment-effects model.   

• A primary assumption underlying both models is that it is valid to combine the different 
sources of data that have been selected for the indirect comparison. Validity is obtained when 
the studies are similar enough to each other such that the effect of a treatment is the same 
across all trials included in the comparison. This assumption also underlies the network meta-
analysis approach and the methodology proposed by Bucher et al.   

• For the analysis of intermediate outcomes, the method proposed by Eddy et al., and further 
extended by Ades, assumes that a clinical and causal relationship exists between the 
surrogate and clinical endpoints.  

• The cross-validatory predictive checking method for evidence consistency requires the 
availability of direct evidence and can only determine whether or not the indirect sources of 
data can be validly combined with direct evidence. In the absence of direct evidence, cross-
validatory predictive checking cannot be performed to determine whether or not the selected 
sources of data can be validly combined to perform an indirect comparison.  
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Figure 4: Influence Diagram for an Indirect Comparison Using the 
Confidence ProfileMethod 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3.2 Strengths 

• As noted by Ades, preserving the randomized nature of randomized controlled trial data was 
necessary to generate valid estimates of treatment efficacy.  

• The model-checking statistics used by Ades are practical methods to determine whether or 
not direct and indirect sources can be combined to perform an indirect comparison.  

 
2.3.3 Limitations 

• The models described by Eddy et al. do not require that data from both arms of an RCT are 
used when the study is included in an indirect comparison. In the event that data from only 
one arm of an RCT is analyzed, the evidence from that trial equates to non-randomized 
evidence.  

• Although appropriate use of both models requires that the validity of combining different 
sources of data be ascertained, this assumption was not explained or considered by Eddy et 
al. and was not always satisfied in his applications of the model. 

• A lack of consistency between the direct and indirect estimates, as determined by cross-
validatory predictive checking, does not necessarily mean that the selected sources of data for 
an indirect comparison cannot be combined. Rather, a discrepancy between direct and 
indirect results may indicate that the results of the trials used in the indirect comparison are 
not generalizable to those of the direct comparison, or vice versa. It is important for 
investigators to determine whether or not all sources of data are measuring the same elements 
and whether those elements are of clinical significance to the investigators. 

• The complexity of the models may limit their use.  
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2.3.4 Example  

Simple published examples in which investigators have used the methods outlined by Eddy et 
al.11 and Ades12 could not be found. For illustrative purposes, the aforementioned analysis 
conducted by Eddy et al. and later re-analyzed by Ades will be described.  
 
Eddy et al.11 used the CPM for intermediate outcomes, as well as technology families, in the 
comparison of tissue-type plasminogen activator (t-PA) and conventional care (CC) on one-year 
survival in patients with acute myocardial infarction. Three forms of evidence were used in the 
analysis. The first form of evidence included three RCTs which provided data on pairwise 
comparisons between t-PA, CC, and streptokinase (SK). The TIMI trial evaluated t-PA versus 
SK, the trial by Collen evaluated t-PA versus CC, and the Kennedy-R study evaluated SK versus 
CC. The trials evaluated an intermediate outcome, reperfusion. The second form of evidence 
consisted of data from the SK arm of the Kennedy-S RCT which evaluated the impact of 
reperfusion on a clinical endpoint, one-year survival. The third form of evidence was a meta-
analysis of 20 trials that evaluated the relative efficacy between SK and CC on one-year survival.  
 
Eddy et al. used the three sources of evidence to generate a posterior distribution for the relative 
efficacy of t-PA versus CC on the one-year survival outcome among patients with acute 
myocardial infarction. Using the equal study effects with fixed treatment effects model, Eddy   et 
al. first performed an analysis of intermediate outcomes. Evidence from the TIMI study and the 
SK arm of the Kennedy-S study was combined to obtain an indirect estimate for the efficacy of  
t-PA versus SK with one-year survival as the primary outcome. An analysis of technology 
families was then carried out by combining the results of the intermediate outcomes analysis 
with data from meta-analysis of the 20 trials. A posterior distribution was generated for the 
comparison of t-PA versus CC for one-year survival. 
 
Ades12 re-analyzed the data set for a comparison between the effect of SK and CC on one-year 
survival. Ades applied the model used by Eddy et al., as well as the random study effects with 
fixed treatment effects model. Data from the Kennedy-R study was combined with data from the 
Kennedy-S study in an analysis of intermediate outcomes. The comparison provided an indirect 
estimate of the efficacy of SK versus CC on one-year survival. The models were also used to 
combine the direct evidence available through the 20 trials meta-analysis with the result of the 
intermediate outcomes analysis. Ades computed the three statistics for checking the model to 
determine the goodness of fit for each model and checked for evidence consistency. Using cross-
validatory predictive checking, the direct evidence was excluded from the models and the 
indirect results were compared with the direct results of the meta-analysis of the 20 trials. 
 
The model-checking statistics and cross-validatory predictive checking indicated that of the two 
models, the random study effects model fit the data with a greater degree of adequacy than the 
equal study effects model. Ades noted that the data set contained limited information on variance 
parameters, which were assigned weakly informative prior distributions. However, when the 
precision of the variance was increased, by assigning a more informative prior distribution to the 
variance parameter, the goodness of fit for the fixed effects model was greater than that for the 
random effects model. Ades indicated that for the dataset, assigning a greater amount of 
precision to the variance estimate also increases the amount of evidence consistency when the 



Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis 16 

indirect evidence is compared to the direct results obtained from the meta-analysis of the 20 
trials.  
 
In the fixed effects model, the SK-CC mean difference in survival was 0.038 (SE = 0.010). This 
value was the same as that obtained in the meta-analysis of the 20 trials. In the random effects 
model, the MD was 0.040 (SE = 0.010). Although the results of the analysis indicated that both 
models generate a similar estimate for the comparison of SK versus CC, for the comparison 
between SK and CC in an “average population” the random effects model presented a greater 
SE. The results of the cross-validatory predictive checking revealed that in the absence of the 
direct evidence, for the comparison between SK versus CC, the result of both the fixed and 
random effects models were similar and the 95% intervals contained the value observed in the 
20-trials meta-analysis. For the comparison between SK and CC in an average population, the 
difference (0.827) observed in the 20-trials meta-analysis was just inside the lower bound of the 
95% interval (difference 0.872 [95% interval: 0.825, 0.91]) for the fixed effects model. 
 
2.4 Mixed Treatment Comparisons  
Indirect comparisons may be performed through the mixed treatment comparison (MTC) 
method. The method is used in various situations, namely:  
• To evaluate the relative efficacy between two treatments (A and B, for example) by 

combining both direct and indirect evidence. When the results of a direct comparison 
between two treatments are inconclusive, and an indirect comparison can be made, the direct 
and indirect sources of evidence are combined to strengthen the result of the direct 
comparison. 

• When many competing interventions are available for the same medical condition, direct 
pair-wise comparisons are often only available for a subset of the treatments. MTC can be 
used to simultaneously perform indirect comparisons among the treatments for which results 
from direct comparisons do not exist. In this way, it is possible to obtain effect estimates for 
all possible pairwise comparisons and to rank the efficacy of these various competing 
treatments. 

 
Another term for MTC is mixed treatment meta-analysis (MTM).15 Because of its similarity to 
the model proposed by Lumley, MTC has also been referred to as “network meta-analysis.”15,16 
 
2.4.1 Combination of direct and indirect evidence in mixed treatment 

comparisons 

Lu and Ades have described the statistical methods for performing MTC in a Bayesian 
framework.17 Earlier attempts to outline methodologies for mixed treatment comparisons can be 
found in the literature.18,19 
 
This section provides an overview of Lu and Ades’ method for MTC. In the case where k (k ≥ 2) 
treatments have been compared, treatment one represents the reference treatment in a model for 
the meta-analysis of k treatment comparisons. When there is interest in comparing two 
treatments (let us say 1 and 2, by way of illustration), but there is limited evidence from RCTs 
for the comparison, then an MTC can be performed if there is sufficient evidence for the 
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comparison of each of treatment 1 and 2 to a third treatment, denoted 3. Treatment 3 acts as the 
reference treatment, and each of treatments 1 and 2 can be compared to treatment 3.  d31 and d32 
represent the relative efficacy of treatments 1 and 2 compared to reference treatment 3, 
respectively. Thereafter, the relative efficacy of treatment 2 versus 1 can be given by                 
d12 = d32 - d31, where d32 is the numerator treatment and d31 is the denominator treatment. A 
random treatment effects model simultaneously evaluates, on the logit scale, the relative efficacy 
of each treatment in comparison to the reference treatment 3.  
 
The general formulation for the random effects models proposed by Lu and Ades17 is the 
following:  

δi1k = logit(pik) – logit (pi1), k = 2,…,K 
 

        δi1k ~ N (dk1, ∑) 
 
where i is the trial number, the index number 1 refers to the reference treatment, and k represents 
the treatment which is compared to the reference treatment 1. The δi1k are the relative treatment 
effects with respect to reference treatment 1, all being on the logit scale. δi1k is considered a 
sample from a bivariate normal distribution whose mean is dk1, and ∑ is the variance-covariance 
matrix that accounts for the correlation observed between the different groups in a multi-armed 
trial. In this way, the MTC model can be applied to two-arm and multi-arm trials. The structure 
of ∑ varies, depending on whether or not the model assumes homogeneous treatment variance, 
heterogeneous treatment variance, or a random effects covariance structure. It should be noted 
that dk1 are referred to as “basic parameters” and d23 is an example of a “functional parameter,” 
which is determined through the combination of two basic parameters.11 Because the model 
assumes random treatment effects, both the basic and functional parameters represent the mean 
of the relative random treatment effect for any comparison of interest. For the MTC model, Lu 
and Ades specified five variations to explore the effects of different assumptions. The models 
are, as follows:  
• random multivariate treatment effects, unconstrained (fixed) baselines, homogeneous 

treatment variance 
• random multivariate treatment effects, unconstrained baselines, heterogeneous treatment 

variance 
• random multivariate treatment effects, random effects baselines, homogeneous treatment 

variance 
• random multivariate treatment effects, random effects baselines, heterogeneous treatment 

variance  
• random multivariate treatment effects, random effects baselines, random effects covariance 

structure.  
 
When applied to a dataset, the MTC should be performed using Markov Chain Monte Carlo 
models in WinBUGS software.17 
 
2.4.2 Evaluating evidence consistency  

Lu and Ades extended various aspects of their initial methodology.20 A model has been 
developed to estimate the inconsistency between direct and indirect evidence. The model has 
also been extended to specify more than one reference treatment when performing a MTC. 
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Salanti et al.16 have provided a detailed discussion of this methodology. A summary of the 
information provided by Lu and Ades20 and Salanti et al.16 is subsequently described.  
 
Consider three treatments A, B, C and the parameters ABμ , ACμ , and BCμ , each of which has 
been estimated in a randomized controlled trial. These parameters can be estimated through a 
MTC, because they form a “consistency model”. A consistency model is one in which a 
parameter, say BCμ , can be estimated directly through a BC comparison, and indirectly through a 
comparison between AC and AB. In the indirect comparison, one of the treatments, in this case 
treatment A, is chosen as the reference to which both B and C are compared. An indirect 
comparison between B versus C can then be obtained through combining ABμ  and ACμ . 
When BCμ  is measured indirectly, it is referred to as a “functional parameter” that is obtained 
through the combination of two “basic” parameters, ACμ  and ABμ .     
 
 
In a consistency model, BCμ  is expressed by the following relation:  
 

BCμ  = ACμ  – ABμ  
  

The assumption underlying a consistency model is that there is no discrepancy between the direct 
estimate of BCμ  and the estimate obtained by combining the basic parameters on the right side of 
the consistency relation. Because of this assumption, the consistency relation can be expressed in 
two other, equivalent ways:  
 

ABμ  = ACμ  - BCμ  ,  ACμ  = ABμ  + BCμ  
 
A property of a consistency model is that the pairwise comparisons in the consistency relation 
are part of a network that takes the shape of a closed loop. 
 
As mentioned previously, in some situations, direct and indirect evidence for all pairwise 
comparisons, Jmax, among T treatments of interest may not be available. A direct evaluation of 
only a subset of Jmax comparisons, denoted J, may have been performed in RCTs. Furthermore, 
the J comparisons may not involve a common reference treatment. In this case, if there are direct 
estimates for T-1 basic parameters, the MTC method can be used to calculate all possible       
pairwise contrasts. However, effect estimates that are only based on indirect comparisons cannot 
be expressed in a consistency relation. A consistency relation implies that its parameters form a 
closed loop and can therefore be estimated through direct and indirect evidence. When TJ ≥ , at 
least one consistency model can be specified. The number of independent consistency relations is 
determined through the following formula: )1( −− TJ .   
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The MTC analysis proceeds by choosing a reference treatment for each trial included in the 
analysis. For instance, let us suppose there is interest in obtaining estimates of all possible ORs 
for treatments 1, 2, 3, and 4 and sets of studies have directly compared d12, d13, d14 d23, d24 and 
d34. A baseline is chosen for each trial, such that G(1), G(2), and G(3) represent those trials for 
which 1, 2, and 3 were chosen as baseline. The formal statistical model is thus,  
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where:  
• itp  is the probability of the event for treatment t in trial i; 
• ibμ  is the log odds of the event for the reference treatment b in trial i;  
• itbδ  is the trial specific log odds ratio of treatment t relative to the reference treatment b 

( bt >  signifies that t is numerically after b); 
• G(X) is the set of trials for which X is chosen as the baseline; 
• (i) represents the set of treatments evaluated in trial; 
• dbt represents the mean of the distribution;  
• σ2 = 0 corresponds to a fixed effects model and σbk

2 = σ2 represents a random effects model 
that assumes homogeneity of between-trial variation. 

 
Visual illustrations of the methodology for MTC have been described by various sources.15,20,21 
Figure 5 presents pairwise comparisons in an MTC framework for T=1,2,3,4.  
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Figure 5: Network of Trials for Mixed-Treatment Comparisons* 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Solid blue lines represent treatment contrasts that have been measured directly. Dashed red lines represent indirect comparisons. 
In figure 5a, all functional parameters can be represented, determined in alternate ways, as follows: d12 = d14-d24, d13 = d12+d23,       
d14 = d12+d24, d24 = d14-d12, d23 = d24-d34, d34 = d14-d13 
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For effect parameters that can form a consistency relation, Lu and Ades have proposed a method 
to determine whether or not the consistency assumption is valid.20 An extra term, w, can be 
added to the consistency relation, as follows,  
 

wABACBC +−= μμμ  
 

),0(~ 2
wNw σ  

where: 
• w  is an inconsistency factor that represents the amount of inconsistency between a direct 

estimate of BCμ  and an indirect estimate of BCμ  
• σw

2 represents the inconsistency variance.  
 
Inconsistency degrees of freedom (ICDF), denoted L, correspond to the number of independent 
loops in an evidence network for T treatments being analyzed through MTC. L is determined 
through the same formula that calculates the number of independent consistency relations — 

)1( −−= TJL  — and represents the number of potential inconsistencies. The measurement of 
inconsistency is included in the hierarchical models proposed by Lu and Ades.20 A description of 
the statistical model is beyond the scope of this report. Readers are referred to the original 
references.16,20 Bayesian measures for determining the goodness of fit of a model and model 
criticism techniques can also be used to assess inconsistency.16,20 
 
2.4.3 Other contributions to the mixed treatment comparison framework  

Salanti et al.16 have discussed various alternative approaches to the parameterization of 
consistency models and the detection of inconsistency. The authors have also introduced the 
concept of network asymmetry. Asymmetry refers to the extent to which specific treatments or 
specific comparisons are represented more heavily than others in a network of treatment 
comparisons. Salanti et al. have proposed two methods to evaluate asymmetry. The first method 
determines whether some comparisons tend to occur more frequently than expected by chance 
alone. A second method determines whether some treatments occur more frequently than others 
in the network. Specific formulas to assess network asymmetry can be found in the original 
reference.  
 
The results of the mixed treatment comparison methodology can be used to determine the 
probability that each treatment has the greatest efficacy for a specified outcome. Caldwell et al.21 
determined these probabilities in a mixed treatment comparison for the effect of various 
treatments in subjects with myocardial infarction. The probabilities are determined through 
Markov Chain Monte Carlo methods. Computational details can be found in Caldwell et al.’s 
example. In another example, Jansen et al.22 used the mixed treatment comparison method to 
evaluate the relative efficacy of treatments for the management of chronic insomnia. For the 
different treatments considered, the probability that each was the best was determined.  
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2.4.4 Assumptions 

• The true effect of a given treatment is the same in all trials included in the indirect 
comparison.  

• The homogeneous variance models assume that the variance of the true treatment response 
rate, on the logit scale, is the same for all treatments evaluated in a single study. 

• The models assume that the correlation terms in the variance-covariance matrix have the 
same value.  

• All of the models assume that the event rates, on the logit scale, follow a multivariate normal 
distribution.  

 
2.4.5 Strengths 

• The MTC methodology can be used to perform an indirect comparison involving more than 
two interventions.  

• Analyses are based on the pooling of effect estimates across trials rather than individual 
treatment groups.  

• Results obtained through combining both direct and indirect evidence in the evaluation of 
two interventions may provide more precise estimates, as indicated by narrower confidence 
intervals, than results based on direct evidence alone.4,17 

• MTC can be applied to data from trials with more than two treatment groups (i.e., multi-arm 
trial).  

 
2.4.6 Limitations  

• Because this method, like other Bayesian techniques, involves judgments in specifying prior 
distributions, these judgments may or may not be valid.   

• The complexity of this method may limit its use.  
 
2.4.7 Example 

Caldwell et al.21 consider the limitations of two standard pairwise meta-analyses. The data from 
these meta-analyses are used to perform a MTC to strengthen the results of the reviews.  
 
The meta-analyses used to perform mixed comparisons evaluated the effects of different treatments 
in patients who had experienced a myocardial infarction. In one of the standard meta-analyses, 
Boland et al.23 summarized the results of two- or three-arm studies performing different pairwise 
comparisons among six different thrombolytics: streptokinase, alteplase, accelerated alteplase, 
streptokinase+alteplase, reteplase, and tenecteplase. The review provided summary estimates of the 
pairwise comparisons for which direct evidence was available in the literature. Because a summary 
estimate for all possible pairwise comparisons could not be calculated, Caldwell et al. indicated 
that it was not possible to rank the treatments from best to worst. In the second meta-analysis, 
Keeley et al.24 summarized the results of trials making various pairwise comparisons between 
primary percutaneous transluminal coronary angioplasty (PCTA) and streptokinase, alteplase, or 
accelerated alteplase. The investigators concluded that PCTA had a greater efficacy than 
thrombolytics; however, Caldwell et al. indicated that the thrombolytics were grouped together, 
and that it is not clear if a class effect for those medications can be assumed.  
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Using data from the two meta-analyses, Caldwell et al. performed a MTC analysis. The authors 
implemented a fixed-effects and random-effects logistic regression model to perform the 
analysis. The authors also calculated the probability that each treatment was best based on the 
premise of using mortality reduction as the outcome of interest. The MTC analysis generated a 
total of 21 odds ratios that represented the effect estimates for all possible pairwise comparisons. 
The results of the comparisons for which only direct evidence was available were in agreement 
with the results based on combining direct and indirect evidence. For example, for the 
comparison between accelerated alteplase and reteplase, results from each method indicated that 
there was no statistically significant difference between the treatments (ORdirect 1.02 [95%CI: 
0.64, 1.02]; ORMTC fixed effects 1.05 [95% CI: 0.94, 1.17]; ORMTC random effects 1.04 [95% CI: 
0.81,1.28]). The confidence intervals for results based on the MTC random effects model were 
generally wider than those for the MTC fixed effects model. The results of the MTC analysis 
illustrated an increase in precision when all available evidence was combined. For instance, for 
the comparison between accelerated alteplase and PCTA, direct evidence was inconclusive. The 
results from both fixed and random effects MTC analysis consisted of narrower confidence 
intervals. Based on all available evidence, Caldwell et al. concluded that there was a statistically 
significant difference between the two treatments. The probability that each treatment is most 
effective was determined. The results indicated that PCTA was associated with the highest 
probability for being the best treatment.  
 
2.4.8 Software for conducting the mixed treatment comparison method  

The WinBUGs software code for conducting the MTC methods for both fixed and random 
effects models are available on the website https://www.bris.ac.uk/cobm/research/mpes/mixed-
treatment-comparisons.html.25  
 
In particular, programs are available for performing a fixed effects model, a random effects 
model with no correlation structure for multi-arm trials, a random effects model with a 
correlation structure for three-arm trials, and a random effects model for multi-arm trials.  
Examples of applying these programs are given in Chapter 6. 
 
2.5 Summary of the Methods   
Table 1 indicates the various different networks of evidence that can be analyzed by the indirect 
comparison methods. These networks represent the star, ladder and closed and partially closed-
loop designs. The MTC method can be used to obtain measures of effect for each of the indicated 
patterns. The network meta-analysis method proposed by Lumley6 can compare treatments in a 
network geometry that contains at least one closed loop. The adjusted indirect comparison 
method proposed by Bucher et al.3 can be used to evaluate the effect of treatments that form a 
simple star design. The Bucher method has been proposed to perform indirect comparisons when 
direct evidence is not available, and the method is not applicable to the closed loop pattern. For 
the other designs, the Bucher method can be used to determine the indirect evidence of the pair-
wise contrasts that have not been directly compared in the star, ladder and network with one 
closed loop designs. 
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Table 1: Network Patterns that the Various Indirect Treatment  
Comparison MethodsCan Process 

Indirect Comparison Method Pattern 
Description 

Network 
Pattern Bucher Method Network Meta-

analysis 
Mixed Treatment 

Comparison 
Simple star  
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Star 
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(Pairwise contrasts) 
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Ladder  

 

 
 

 

 
__ 

 
 

Closed loop  

 

 
__ 

 
 

 
 

Network with at 
least one closed 
loop  

 

 
 

(Pairwise contrasts) 

 
 

 
 

 
When MTC or network meta-analysis is used to evaluate the evidence network depicted by the 
closed loop pattern, the methods can simultaneously combine the direct and indirect evidence 
and can evaluate the incoherence of the closed loop. The variance parameter w2 from Lumley’s 
model is equivalent to inconsistency variance σw

2 estimated in the MTC models.20  However, the 
two methods will calculate different values for treatment effects because of differences in the 
way that inconsistency is evaluated. As indicated by Salanti et al.16 and Lu and Ades,20 in the 
network meta-analysis approach, the number of incoherence terms ijξ is equal to the number of 
different comparisons. In the MTC framework, the number of inconsistency terms is equal to the 
number of different independent closed loops.  
 
The MTC model described by Lu and Ades measures the relative efficacy of treatments using the 
log OR effect measure. Various investigators have performed the MTC for other effect measures.  
For instance, Vandermeer et al. considered direct and indirect evidence to evaluate the relative 
efficacy between benzodiazepines and nonbenzodiazepenes26 based on mean differences for five 
of their clinical outcomes and risk difference on the adverse event outcome. Jansen et al.22 have 
outlined an MTC model to be applied to continuous outcomes. 
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Various approaches for indirect treatment comparisons have been reviewed. The mixed treatment 
comparison approaches by Lu and Ades are elegant, but require information that may not be 
available. The challenge of Lumley’s network meta-analysis is that it needs a data-based 
assessment of trial consistency; therefore, it requires information from a large number of 
different treatment comparisons. When analyzing a network of comparisons, the inconsistency of 
the network needs to be considered, as well as between-trial heterogeneity and sampling error.  
Large inconsistencies rule out a meta-analysis, and small inconsistencies should add uncertainty 
to the results. The inconsistency of the network can only be assessed for a closed loop of 
treatments, with more loops allowing for better diagnosis of consistency. Estimating 
inconsistency will be reliable to the extent that the trials in these closed loops are similar to other 
trials. In addition, consistency cannot be assessed for a star design comparing everything to 
placebo, or for a ladder design where new treatments are always compared to current standard. 
 
The attractiveness of the Bucher approach is that it has been designed to apply with minimal 
information to the common indirect treatment comparison involving a simple star design: using 
the direct comparisons X versus A and X versus B with the common comparator link “X,” to 
yield an indirect comparison of A versus B.  The Bucher approach has not been shown to work 
for the ladder design. That is, we have X versus C, C versus E, E versus F, F versus G and we 
want to use the comparator links “C”, “E” and “F” to yield an indirect comparison of X versus G.  
In Chapter 3, we extend the Bucher approach to apply to the ladder design and, as well, extend 
the approach for the effect measures relative risk, risk difference, hazard ratio, and mean 
difference. 
 
 
3 EXTENSION OF THE BUCHER APPROACH AND 

EMPIRICAL EVALUATION OF THE ESTIMATORS 
As noted in Chapter 2, the attractiveness of the Bucher approach is that it has been designed to 
apply with minimal information to the common indirect treatment comparison involving a simple 
star design: using the direct comparisons X versus A and X versus B with the common 
comparator link “X” to yield an indirect comparison of A versus B (Figure 6). 
 
The second objective was to derive general methods and procedures for effect measures of 
discrete and continuous outcomes within complex networks of evidence for the Bucher 
approach.  In this chapter (Section 3.1), we extend the Bucher approach to another common 
comparator link involving a ladder design in which several direct comparisons can be linked by 
common comparators. That is, we have X versus C, C versus E, E versus F, F versus G and we 
want to use the comparator links “C”, “E” and “F” to yield an indirect comparison of X versus G 
(Figure 6).  Also, in this chapter, we extend the Bucher approach to different measures of 
association (i.e., relative risk, risk difference, hazard ratio, and mean difference). 
 
The third objective was to assess the distributional properties of the indirect estimates using 
simulations for the Bucher approach. Later in this chapter (Section 3.2), simulations were 
conducted to determine the frequency distribution and the bias and mean square error for the 
various measures of association. 
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Figure 6: Open Loop Networks of Pathways ― Star and Ladder Designs 
 
  
   
 
   
                                 
 
 
 
 
 
 
 
 
3.1 Extension of the Bucher Approach 
For discrete outcomes, the indirect odds ratio approach by Bucher et al.3 was extended to more 
complex networks of evidence (“ladder” design) involving several direct comparisons. This 
generalized approach was also considered for the relative risk, hazard ratio, risk difference, and 
mean difference. Two fundamental propositions underlie the estimation and hypothesis testing 
procedures for these indirect measures, and details are provided in Appendix A. These 
propositions were applied to specific estimators of association, namely: 
   
Indirect Comparisons of Odds Ratios (OR) 
Indirect Comparisons of Relative Risks (RR) 
Indirect Comparisons of Hazard Ratios (HR) 
Indirect Comparisons of Risk Differences (RD) 
Indirect Comparisons of Mean Differences (MD). 
 
The summary of the indirect point and confidence interval estimators and test of association for 
these measures of association is provided in Table 2 when k treatments kAAA ,,, 21 L are 
considered. The notation is such that for consecutive pairs of treatmen, the direct estimator of the 
measure of association of interest (RR, as an example) for treatment Ai and Ai+1 is denoted 
by

1+ii AARR . Full statements of the estimators and tests for each of these measures of association 
are provided in Appendix A. 
 
Using empirical approaches, the extent and direction of biases associated with these indirect 
estimators were explored, with the goal of developing specific guidelines for using these 
methods (Section 3.2). A “reviewer-friendly” program was developed and made available to 
facilitate the evaluation of indirect evidence for reviewers (Chapter 4).
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Table 2: Indirect Point and Confidence Interval Estimators and Test of Association 
Indirect 100(1-α)% Confidence Interval Estimator  Measure of 

Association 
Indirect Estimator 

In Terms of Variance In Terms of Confidence Limits* 
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Test of Association 
For effect estimators (EE) ln(OR), ln(RR), ln(HR), RD, MD the test of association is:  
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HR=hazard ratio; MD=mean difference; OD=odds ratio; RD=risk difference 
*ucl, lcl indicate upper confidence limit and lower confidence limit, respectively
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3.2 Empirical Evaluation of the Estimators                              
A simulation was undertaken to determine the precision and accuracy of the indirect approach. 
For the case of k = 3 treatments, a simulated data set was created for each of three populations 
(A, B, C) and a simple random sample size of 100 was selected from each population to calculate 
direct estimates of the measure of association of interest relating A and B and for relating C and 
B, along with an indirect estimate of the measure of association for relating A and C. This 
process was repeated 1,000 times. The bias, variance, and mean square error (MSE) of the direct 
and indirect estimates were calculated and compared to determine the accuracy and precision of 
the indirect measures of association.  
 
Bias is the expected difference between the estimator and the parameter to be estimated, and the 
MSE is the expected squared deviation between the estimator and this parameter. The MSE 
summarizes information about the bias and variance of the estimator under study.   
 
This section provides a summary of the simulation results for each measure of association 
considered. Details of the simulation process and results can be found in Appendix B. 
                                     
3.2.1 Simulation results for the relative risk 

The simulation for RR followed a plan that would mimic the setting in which the indirect 
treatment comparison would be considered, as depicted in Figure 7. First, we need to have a 
common comparator (B); second, we would need to consider the RR relating treatment A and the 
common comparator B (RRAB); and third, we would need to consider the RR relating treatment 
C and the common comparator B (RRCB). The actual bias and MSE of the indirect treatment 
estimator depends on these values, as well as the likelihood of the event of interest in the 
common comparator group B (denoted by P(E│B), where E denotes the event of interest).   
 

Figure 7: Schematic of the Parameters Considered in the Simulation for Relative Risk 
 
 
 
 
 
 
 
 
 
 
 
RR=relative risk 

Details of the simulation results for the bias and MSE are given in Tables B.2.1 and Figures 
B.2.1 to B.2.4 in Appendix B. These tables and figures are instructive in providing information 
on the bias and MSE for the indirect treatment estimator of RR. In particular, Figures B.2.3 and 
B.2.4 provide graphs that can be used to quantify the degree of bias and MSE, respectively, when 
applying the indirect approach to a particular problem and will provide the user with an idea of 

           C           A 
 

 Event rate in population B 

              B RRAB RRCB 
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the degree of bias and precision of the resulting indirect treatment comparison. For example, 
consider Panel f of Figure B.2.3 and Panel f of Figure B.2.4 which are reproduced in Figures 8 
and 9 respectively. If in a particular application RRAB = 0.7, RRCB = 0.6 and the likelihood of the 
event in the comparator population B was 0.2, then the bias of the indirect estimator is 
approximately 0.15 (see Figure 8) and MSE is 0.50 (see Figure 9).    
 
 

Figure 8: Bias for Indirect Relative Risk Estimates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
RR=relative risk 
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Figure 9: Mean Square Error for Indirect Relative Risk Estimates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MSE=mean square error; RR=relative risk 
 
 
Several general observations regarding the bias and MSE for the direct and indirect estimators of 
the relative risk are provided in Table 3. 
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Table 3:  Summary of Simulation Results for the Direct and Indirect Estimators              
of the Relative Risk 

Description of 
RRAB 

Description of 
RRCB 

Description of 
Event Rate in 
Population B  

General Observed Pattern for bias and 
Mean Square Error  

Bias 
Fixed Fixed Increasing to 0.5 Bias for both the direct and indirect 

estimators decrease 
Fixed Increasing to 1 Fixed Bias for both the direct and indirect 

estimators decrease 
Increasing to 1  Fixed Fixed Bias for both the direct and indirect 

estimators increase  
Fixed Fixed Fixed  Bias for the indirect estimator is greater 

than for the direct estimator, particularly 
for event rates below 0.2  

MSE 
Fixed Fixed Increasing to 0.5  MSE for both the direct and indirect 

estimators decrease 
Fixed Increasing to 1  Fixed  MSE for both the direct and indirect 

estimators decrease 
Increasing to 1  Fixed Fixed  MSE for both the direct and indirect 

estimators increase 
Fixed Fixed Fixed MSE for the indirect estimator is greater 

than for the direct estimator, particularly 
for event rates below 0.2  

MSE=mean square error; RR=relative risk 

 
 
3.2.2 Simulation results for the odds ratio  

The simulation for OR followed a plan that would mimic the setting in which the indirect 
treatment comparison would be considered, as depicted in Figure 10. First, we need to have a 
common comparator (B); second we would need to consider the OR relating treatment A and the 
common comparator B (ORAB); and third we would need to consider the OR relating treatment C 
and the common comparator B (ORCB). The actual bias and MSE of the indirect treatment 
estimator depends on these values, as well as the likelihood of the event of interest in the 
common comparator group B (denoted by P(E│B), where E denotes the event of interest). 
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Figure 10: Schematic of the Parameters Considered in the Simulation for Odds Ratio  
 

 
 
 
 
 
 
 
 
 
 
 
 
OR=odds ratio 
 
Details of the simulation results for the bias and MSE are given in Tables B.3.1 and Figures 
B.3.1 to B.3.4 in Appendix B. These tables and figures are instructive in providing information 
on the bias and MSE for the indirect treatment estimator of OR. Several general observations 
regarding the bias and MSE for the direct and indirect estimators of the odds ratio are provided 
in Table 4. 
 

Table 4: Summary of Simulation Results for the Direct and                              
Indirect Estimators of the Odds Ratio 

Description of 
ORAB 

Description of 
ORCB 

Description of 
Event Rate in 
Population B  

General Observed Pattern for Bias 
and Mean Square Error (MSE) 

Bias 
Fixed Fixed Increasing to 0.5 Bias for both the direct and indirect 

estimators decrease 
Fixed Increasing to 1 Fixed Bias for both the direct and indirect 

estimators decrease 
Increasing to 1 Fixed Fixed Bias for both the direct and indirect 

estimators increase 
Fixed Fixed Fixed  Bias for the indirect estimator is greater 

than for the direct estimator, particularly 
for event rates below 0.2  

MSE 
Fixed Fixed Increasing to 0.5  MSE for both the direct and indirect 

estimators decrease 
Fixed Increasing to 1  Fixed  MSE for both the direct and indirect 

estimators decrease 
Increasing to 1  Fixed Fixed  MSE for both the direct and indirect 

estimators increase 
Fixed Fixed Fixed MSE for the indirect estimator is greater 

than for the direct estimator, particularly 
for event rates below 0.2  

OR=odds ratio; MSE=mean square error 
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3.2.3 Simulation results for the risk difference  

The simulation for RD followed a plan that would mimic the setting in which the indirect 
treatment comparison would be considered, as depicted in Figure 11. First, there must be a 
common comparator (B); second, one would have to consider the RD relating treatment A and 
the common comparator B (RDAB); and third, one would have to consider the RD relating 
treatment C and the common comparator B (RDCB). The actual bias and MSE of the indirect 
treatment estimator depends on these values, as well as the likelihood of the event of interest in 
the common comparator group B (denoted by P(E│B), where E denotes the event of interest. 
 
 

Figure 11: Schematic of the Parameters Considered in the Simulation for the RiskDifference  
 
 
 
 
 
 
 
 
 
 
 
RD=risk difference 
 
Details of the simulation results for the bias and MSE are given in Tables B.4.1 and Figures 
B.4.1 to B.4.4 in Appendix B. These tables and figures are instructive in providing information 
on the bias and MSE for the indirect treatment estimator of RD. Several general observations 
regarding the bias, variance, and MSE for the direct and indirect estimators of the risk difference 
are provided in Table 5. Since the risk difference is an unbiased estimator, the simulation results 
for the bias are essentially zero and the variance and MSE results are the same. 
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Table 5: Summary of Simulation Results for the Direct and Indirect                        
Estimators of the Risk Difference 

Description of 
RDAB 

Description of 
RDCB 

Description of 
Event Rate in 
Population B  

Observed Pattern for Bias and Mean 
Square Error or Variance  

Bias  
Fixed Fixed Increasing to 1 Bias essentially zero  
Fixed Decreasing to -6 Fixed Bias essentially zero  

  
Decreasing to -6  Fixed Fixed Bias essentially zero 
 Fixed Fixed Fixed  Bias (absolute) for the indirect estimator 

is greater than for the direct estimator 
MSE 
Fixed Fixed Increasing  MSE for the direct estimators increase;  

MSE for the indirect estimators have a 
fairly similar value regardless of the 
event rate 

Fixed Increasing Fixed  No effect on the MSE for the direct 
estimators;  
MSE for the indirect estimators increase  

Increasing Fixed Fixed  No effect on the MSE for the direct 
estimators;  
MSE for the indirect estimators increase  

Fixed Fixed Fixed MSE for the indirect estimators is 
consistently larger than the MSE for the 
direct estimators   

MSE=mean square error; RD=risk difference 
 
3.2.4 Summary of the simulation results for mean difference  

The simulation for RD followed a plan that would mimic the setting in which the indirect 
treatment comparison would be considered, as depicted in Figure 12. First, there must be a 
common comparator (B); second, one would have to consider the MD relating treatment A and 
the common comparator B (MDAB), which is expressed in terms of effect size ESAB = 
MDAB/SDAB where SDAB is the standard deviation of MDAB; and third, one would need to 
consider the MD relating treatment C and the common comparator B (MDCB) expressed in terms 
of the effect size ESCB = MDCB/SDCB where SDCB is the standard deviation of MDCB. The actual 
bias and MSE of the indirect treatment estimator depends on these values, as well as the mean of 
the outcome of interest in the comparator group (MB) and the coefficient of variation CVB = 
SDB/MB where SDB is the standard deviation of the outcome in the comparator group B. 
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Figure 12: Schematic of the Parameters Considered in the Simulation for Mean Difference 
                    
 
 
 
 
 
 
 
 
 
 
 
Details of the simulation results for the bias and MSE are given in Tables B.5.1 and Figures 
B.5.1 to B.5.4 in Appendix B. These tables and figures are instructive in providing information 
on the bias and MSE for the indirect treatment estimator of MD. Several general observations 
regarding the bias, variance, and MSE for the direct and indirect estimators of the risk difference 
are provided in Table 6. Since the mean difference is an unbiased estimator, the simulation 
results for the bias are essentially zero and the variance and MSE results are the same. 
 

Table 6: Summary of Simulation Results for the Direct and Indirect                        
Estimators of the Mean Difference 

Description of 
ESAB 

Description of 
ESCB 

Description 
of CVB 

Description of 
Mean in 
Population B  

General Observed Pattern for 
Bias and Mean Square Error 
or Variance 

Bias  
Fixed Fixed Fixed Increasing  For both the direct and indirect 

estimators, the absolute value of 
the bias increases  

Fixed Increasing Fixed Fixed For both the direct and indirect 
estimators, a similar value for 
the bias is observed, regardless 
of a change in ESCB 

Increasing Fixed Fixed Fixed For both the direct and indirect 
estimators, a similar value for 
the bias is observed, regardless 
of a change in ESAB 

Fixed Fixed Increasing to 
0.5 

Fixed Bias increases for both the direct 
and indirect estimates   

Fixed Fixed Fixed Fixed  No general pattern observed 
MSE 
Fixed Fixed Fixed Increasing  For both the direct and indirect 

estimates, the MSE increases  
Fixed Increasing Fixed Fixed  For both the direct and indirect 

estimators, a similar value for 
the MSE is observed, regardless 
of a change in ESCB 

           C           A 
 

  Mean in population B 

              B ESAB ESCB 
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Table 6: Summary of Simulation Results for the Direct and Indirect                        
Estimators of the Mean Difference 

Description of 
ESAB 

Description of 
ESCB 

Description 
of CVB 

Description of 
Mean in 
Population B  

General Observed Pattern for 
Bias and Mean Square Error 
or Variance 

Increasing Fixed Fixed Fixed  For both the direct and indirect 
estimators, a similar value for 
the MSE is observed, regardless 
of a change in ESAB 

Fixed Fixed Increasing to 
0.5 

Fixed MSE increases for both the 
direct and indirect estimators  

Fixed Fixed Fixed Fixed The MSE of the indirect 
estimator is consistently larger 
than that for the direct estimator  

 
MD=mean difference; MSE=mean square error 
 
3.2.5 Simulation results for the hazard ratio 

The simulation for HR followed a plan that would mimic the setting in which the indirect 
treatment comparison would be considered, as depicted in Figure 13. First, we need to have a 
common comparator (B); second we would need to consider the HR relating treatment A and the 
common comparator B (HRAB); and third we would need to consider the HR relating treatment C 
and the common comparator B (HRCB). The actual bias and MSE of the indirect treatment 
estimator depends on these values, as well as the hazard rate in the common comparator group B. 
 

Figure 13: Schematic of the Parameters Considered in the Simulation for Hazard Ratio 
                   
 
 
 
 
 
 
 
 
 
 
 
 
HR=hazard ratio 
 
Details of the simulation results for the bias and MSE are given in Tables B.6.1 and Figures 
B.6.1 to B.6.4 in Appendix B. These tables and figures are instructive in providing information 
on the bias and MSE for the indirect treatment estimator of HR. Several general observations 
regarding the bias and MSE for the direct and indirect estimators of the hazard ratio are provided 
in Table 7.  
 

           C           A 
 

 Hazard rate in population B 

              B HRAB HRCB 
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Table 7: Summary of Simulation Results for the Direct and Indirect                        
Estimators of the Hazard Ratio 

Description of 
HRAB 

Description of 
HRCB 

Description of 
Hazard Rate in 
Population B  

Observed Pattern for Bias and Mean 
Square Error  

Bias 
Fixed Fixed Increasing  Bias for the direct estimator is generally zero 

regardless of the event rate;  
Bias for the indirect estimate, no pattern 
observed 

Fixed Increasing Fixed Bias for the direct estimator is generally 
zero; 
Bias for the indirect estimate, no pattern 
observed 

Increasing Fixed Fixed Bias for the direct estimator is generally 
zero; 
Bias for the indirect estimator, no pattern 
observed 

 Fixed Fixed Fixed  For any combination of the parameters, the 
bias of both the direct and indirect estimators 
is small 

MSE 
Fixed Fixed Increasing  For both the direct and indirect estimators, 

generally, the MSE is constant regardless of 
the event rate 

Fixed Increasing Fixed  For both the direct and indirect estimators, 
for any given HRAB, the larger HRCB then the 
smaller the MSE for both direct and indirect 
estimators 

Increasing Fixed Fixed  For both the direct and indirect estimators, 
for any given HRCB, the larger HRAB then the 
larger the MSE for both direct and indirect 
estimators 

Fixed Fixed Fixed For any combination of the parameters, the 
MSE of the indirect estimator is consistently 
larger than that for the direct estimator  

HR=hazard ratio; MSE=mean square error 

 

 

4 ITC PROGRAM 
To meet the fourth objective of developing a user-friendly program for conducting indirect 
treatment comparisons for the methods and procedures derived for the Bucher approach, a 
program is described in this chapter for making the needed calculations. 
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4.1 Introduction  
The ITC (Indirect Treatment Comparison) program has been developed in Visual Basic to assist 
with the various calculations associated with indirect comparisons that are described in Chapter 
3.  It consists of two screens, which are described in detail in Section 4.2. On the first screen, the 
effect measure of interest is identified, and information for each consecutive pair of treatments of 
interest is requested regarding the point estimate and 95% CI of the effect measure for each 
direct comparison involved in the indirect comparison. The resulting indirect comparison 
estimates for the effect measure and the 95% CI, as well as the p-value for the test of association 
corresponding to this effect measure, are provided. On the second screen, the weights needed for 
a specific direct comparison is requested in order to calculate the test statistic for the test of 
association. There are various formats in which the information to calculate these weights can be 
provided and are identified through the weight selections (direct versus derived; fixed versus 
random), and the specific information for each study involved in the direct comparison is then 
identified and requested.  

      
       SCREEN 1             SCREEN 2 
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4.2 Instructions 
Input (Screen 1)  
 
1. Check circle indicating effect estimate of interest: 
 
 Effect measure: Relative Risk (RR)     О 
   Odds Ratio (OR)      О       
   Risk Difference (RD)    О 
   Mean Difference (MD) О 
   Hazard Ratio (HR)     О 
 
2.  Select the number of treatments k (maximum 10): 
   Number of Treatments: ___________ 
 
3.  For each consecutive pair of treatments, provide the direct estimates of the measure of 

association and the 95% lower and upper confidence limits. The order of entry of the 
treatment pairs must follow the exact sequence indicated with the bridging comparison groups 
linking the treatment pairs. 

 
Treatment Estimate 95%LCL 95%UCL 
(1,2)  ________ ________ ________ 
(2,3)  ________ ________ ________ 
(3,4)  ________ ________ ________ 
   . 
   . 
   . 
(k-1,k)  ________ ________ ________ 
 

4.  For each treatment comparison, an option to reverse the order of a treatment comparison is 
provided.  For example, if 1 = Treatment A, 2 = Treatment B, and 3 = Treatment C, then (1,2) 
is (A,B), and for (2,3) we can enter (C,B) and use the reverse option to switch it to (B,C). This 
option can be useful when B is placebo and results are given as the active treatment versus 
placebo; i.e., A versus Placebo (B) and C versus Placebo (B). 

     
Reverse 
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Input (Screen 2) 
 
If the test of association is needed, then the weights used for the calculation of each weighted 
average estimate from Screen 1 are required for its calculation. This is the purpose of Screen 2. 
 
1.  For a direct treatment comparison (i, i+1) from Screen 1, press the arrow bar which will 
 activate Screen 2 for inputting the weights used for the effect measure estimate for that direct 
 treatment comparison. 
 
2.  For (i, i+1), indicate the number of studies upon which the estimate is based: 
    Number of Studies: ___________  
 
3.  The option is available to enter the weights directly. In particular, if the effect estimate is 
 based on one study, then a single weight of 1 can be inputted. 
   
4.  The weights can also be computed from first principles, based on the frequencies (for RR, 
 OR, and RD) or the standard errors (for MD), using either the fixed or random effects model. 
 
 
Output (Screen 1): 
 
 Indirect Estimate: Treatments (1,k) 
 Effect measure:     _____________________ 
 Estimate:     _____________________ 
 95% confidence interval:  LCL  __________ 
  UCL __________ 
 Test of Association (p-value):    _______________ 
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4.3 Worked Example 
Osteoporosis is associated with important medical, social, and financial implications and its 
incidence is expected to increase significantly as the Canadian population ages. Many of the 
consequences of osteoporosis are potentially lessened through use of a number of non-
pharmacological and pharmacological interventions. The oral bisphosphonate drugs— 
etidronate, alendronate and risedronate ― have been introduced as pharmacological options for 
the primary and secondary prevention of osteoporotic fractures. We have conducted a systematic 
review assessing the clinical effectiveness of etidronate, alendronate, and risedronate in the 
primary and secondary prevention of osteoporotic fractures in postmenopausal women receiving 
these agents compared with untreated women over a follow-up period of at least one year.27 A 
systematic literature search of the evidence from randomized placebo-controlled trials of each of 
the three drugs was conducted using a standardized Cochrane Collaboration approach to 
literature search, article selection, data extraction, and quality assessment. Clinical data analysis 
was conducted according to the methodology of The Cochrane Collaboration for systematic 
reviews and meta-analyses.  
 
Considering the data available for the longest treatment duration in the trials and using the 
follow-up denominators for the number of patients in the trial, a detailed worked example will be 
considered. For this detailed worked example, the weighted relative risk effect estimates of 
fracture after treatment with the bisphosphonates alendronate and etidronate compared to 
placebo will be used to derive an indirect estimate. The indirect treatment comparison method 
will be used to evaluate the head-to-head comparison of alendroante to etidronate using the 
placebo as the bridging group in the one-step comparison (i.e., k = 3). 
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On the first screen, the effect measure of interest is identified and information for each 
consecutive pair of treatments of interest is requested regarding the point estimate and 95% CI of 
the effect measure for each direct comparison involved in the indirect comparison. 
 
The effect measure of interest is the relative risk and this was selected by checking the circle 
corresponding to “Relative Risk (RR)”.   
 
There are three treatments involved in this indirect comparison (i.e., alendronate, etidronate, and 
placebo) and, therefore, the “Number of Treatments” box is selected to be “3”. 
 
For each consecutive pair of treatments, the direct estimates of the measure of association and 
the 95% lower and upper confidence limits need to be provided. The order of entry of the 
treatment pairs must follow the exact sequence indicated with the bridging comparison groups 
linking the treatment pairs. The interest here is to compare alendronate to placebo and then 
placebo to etidronate, and so use placebo as the bridging comparison group. 
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A systematic review was conducted for trials that compared alendronate to placebo for primary 
or secondary prevention. Non-vertebral fractures were reported in eight trials. One trial did not 
report fractures separately by treatment groups and one trial reported that no fractures occurred 
in either treatment group.  
    
The pooled estimate of the RR of non-vertebral fractures from the five trials that could be 
analyzed demonstrated a significant reduction (16%) in non-vertebral fractures (RR 0.84 [95% 
CI: 0.74, 0.94]). 
 
The direct estimate from this meta-analysis for the relative risk (0.84) and the 95% lower 
confidence limit (0.74) and 95% upper confidence limit (0.94) are entered on the first direct 
comparison line (1 = alendronate, 2 = placebo). 
 
The arrow at the end of the “(1,2)” line is pressed to activate Screen 2. If the test of association is 
not of interest, then Screen 2 need not be activated and the next step can be skipped.
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On Screen 2, the weights used for calculating the weighted effect measure for the direct 
comparison on Screen 1 are requested. These weights are needed for calculating the test statistic 
for the test of association. There are various formats in which the information to calculate these 
weights can be provided and these formats are identified through the weight selections (direct 
versus derived; fixed versus random); the specific information for each study involved in the 
direct comparison is then identified and requested.  
 
The pooled estimate of the RR of non-vertebral fractures (RR 0.84 [95% CI: 0.74, 0.94]) was 
based on five trials.  To calculate the weights that were used for this weighted relative risk, the 
“Derived” circle was checked and the “Fixed effect” model weights were selected since 
heterogeneity was not an issue. 
 
Rates for the treatment and control groups for each study are requested in the form of numerator 
(number of events): denominator (number of subjects). Rates from the systematic review are 
shown here: 
 

Treatment 
(n/N) 

Control 
(n/N) 

122/1022 148/1005 
261/2214 294/2218 

3/46 1/45 
45/500 38/332 
19/792 37/841 

 
These results are then entered in the  
corresponding lines provided. 
 
The “Close” bar is pressed to save  
the entries.
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A systematic review was conducted for trials that compared etidronate to placebo for primary or 
secondary prevention. Non-vertebral fractures were reported in seven trials.  
 
The pooled estimate of the RR of non-vertebral fractures from the seven trials indicated a lack of 
effect of etidronate on non-vertebral fractures. The 95% CI around the RR estimate for all non-
vertebral fractures was wide with a relative risk reduction (RRR) of approximately 32% and a RRR 
increase of 42% (RR 0.95 [95% CI: 0.66, 1.36]). Results were consistent across the seven trials. 
 
The direct estimate from this meta-analysis for the relative risk (0.95) and the 95% lower 
confidence limit (0.66) and 95% upper confidence limit (1.36) are entered on the second direct 
comparison. The results entered compare etidronate to placebo, however, the “Reverse” box was 
checked and so these results will be reversed so that placebo is compared to etidronate and the 
(2,3) will correspond to (2 = placebo, 3 = etidronate).   
 
The arrow at the end of the (2,3) line is pressed to activate Screen 2. If the test of association is not 
of interest, then Screen 2 need not be activated and the next step can be skipped.
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On Screen 2, the weights used for calculating the weighted effect measure for the direct 
comparison on Screen 1 are requested. These weights are needed for calculating the test statistic 
for the test of association. There are various formats in which the information to calculate these 
weights can be provided and these formats are identified through the weight selections (direct 
versus derived; fixed versus random), and the specific information for each study involved in the 
direct comparison is then identified and requested.  
 
The pooled estimate of the RR of non-vertebral fractures (RR 0.95 [95% CI: 0.66, 1.36]) was 
based on seven trials.  To calculate the weights that were used for this weighted relative risk, the 
“Derived” circle was checked and the “Fixed effect” model weights were selected since 
heterogeneity was not an issue. 
 
Rates for the treatment and control groups for each study are requested in the form of numerator 
(number of events): denominator (number of subjects). Rates from the systematic review are 
shown here: 
 

Treatment 
(n/N) 

Control 
(n/N) 

3/39 5/35 
2/25 3/24 
3/45 6/46 
5/20 6/20 

20/92 16/89 
14/91 12/89 
1/14 1/14 

 
These results are then entered in the  
corresponding lines provided. 
 
The “Close” bar is pressed to save  
the entries.
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Once all the data are entered, the resulting indirect comparison estimates for the effect measure 
and the 95% CI, as well as the P value for the test of association corresponding to this effect 
measure, are provided on Screen 1 for the comparison of treatments (1,3) using treatment 2 as 
the bridging comparison. 
 
All the data was entered and the “Calculate” bar was pressed. 
 
The indirect treatment effect estimate for the relative risk of alendronate compared to etidronate 
was 0.88 with the 95% CI (0.60, 1.29). The result indicates that alendronate and etidronate are 
not significantly different. This is confirmed with the P value for the test of association of 0.79. 
 
“Save” can be pressed to save the results. 
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5 APPLICATION OF THE ITC PROGRAM: 
ILLUSTRATIONS FROM THE LITERATURE 

The fifth objective was to illustrate the application of the empirically derived distributional 
properties of the indirect estimates and the program by applying it to examples selected from the 
literature. In this chapter, the ITC program is applied using examples from the literature in which 
indirect treatment comparisons were used. Five examples were considered from the literature 
illustrating the indirect treatment comparisons for RR, OR, RD, MD, HD.   
 
For each example, the background and analysis from the article are provided. The results based 
on the ITC program are then provided and compared to the published results. Finally, 
assessments of the bias and MSE associated with the indirect treatment comparison based on the 
simulated results are provided.  
 
5.1 Relative Risk 
Reference: Lim et al.28  
 
Background: Coronary artery bypass graft (CABG) surgery is a frequently performed procedure; 
in the United Kingdom, the estimated number of procedures exceeds 25,000 annually.  The 
saphenous vein graft is commonly used in the procedure and its occlusion rate is approximately 
15% to 30% in the first year after surgery. Antiplatelet therapy is an important intervention that is 
prescribed post-operatively after CABG surgery to inhibit the platelet aggregation that results from 
the physiological stress experienced during surgery.   
 
Aspirin has been shown to be an effective antiplatelet therapy for graft patency. Although three 
meta-analyses, based on trials between 1979 to 1993, have each illustrated the efficacy of aspirin, 
none of these meta-analyses determined whether the observed benefits of aspirin were consistent 
across different doses of the medication. The range of aspirin doses analyzed in the meta-analyses 
varied between 75 mg and 325 mg. Low-dose aspirin (75 mg to 100 mg) is often prescribed, even 
though its relative efficacy compared to medium-dose aspirin has not been established.  
 
Analysis: Lim et al.28 (2003) used the adjusted indirect comparison method to evaluate the efficacy 
of low dose aspirin in their study (50 mg to150 mg) compared to medium dose (300 mg to 325 mg) 
therapy on graft patency after coronary artery surgery. The investigators used placebo as the 
common comparator and their analysis included trials that compared either low dose aspirin or 
medium dose aspirin to placebo therapy. The primary endpoint was graft patency and was reported 
as graft occlusion and event rate. Graft occlusion was defined as a distal anastamosis that could not 
be visually detected through angiography. An event rate was defined as one or more occlusions of 
the saphaneous vein graft.  
 
Comparison of indirect treatment comparisons program with reported indirect estimate: We 
used the ITC program to recalculate the adjusted indirect estimate for graft occlusion. Figure 14 
shows the RR and its 95% CI calculated by Lim et al., as well as the ITC program. The result 
obtained from the ITC program is in agreement with the estimate calculated by Lim et al.  
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Figure 14: Relative Risk for the Indirect Comparison Between Low- and Medium-Dose Aspirin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CI=confidence interval; RR=relative risk 
 
 
Results from a direct comparison: Not available. 
  
Estimated bias and mean square error associated with the indirect estimate: The following 
parameter settings were chosen from the simulation data in order to determine the bias and mean 
square error (MSE) of the indirect estimate: RRAB = 0.6 (RRAB(reported) = 0.55), RRCB = 0.7 
(RRCB(reported)=0.74) and P(E|B) = 0.4. The event rate in the placebo group was based on the 
calculation of the average event rate across the placebo groups in all trials included in the 
indirect comparison. Based on these parameter settings, the bias was 0.041 and the MSE was 
0.068 (Figure 15).  
 
 

      RRAB=0.55 
(95% CI: 0.41, 0.73) 

        RRCB=0.74 
 (95% CI: 0.60, 0.91) 

Medium-dose aspirin    Low-dose aspirin    

          Placebo    

        RRAB=0.55 
(95% CI: 0.41, 0.73) 

       RRBC=1.351 
(95% CI: 1.099, 1.667) 

       Indirect Estimate using ITC program: 
                           RRAC=0.743 
                   (95% CI: 0.521, 1.061)  
 

  Reported Adjusted indirect estimate: 
                    RRAC=0.74 
             (95% CI: 0.52, 1.06) 
 
                                                         
                             

          Placebo    

Medium-dose aspirin    Low-dose aspirin    
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Figure 15: Expected Bias and Mean Square Error of the Relative Risk 
for theIndirect Comparison Between Low- and Medium-Dose 

Aspirin for GraftOcclusion and Event Rate 
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5.2 Odds Ratio  
Reference: Fisher et al.1   
 
Background: Atherothrombotic disease involves platelet activation that can subsequently result 
in an increased risk of ischemic stroke, myocardial infarction, and vascular death.  Antiplatelet 
therapy is recommended for platelet inhibition in order to reduce the occurrence of such events 
in patients with atherothrombotic disease. The CAPRIE trial,29 a randomized controlled trial 
which followed patients between 1992 to 1996, established the relative efficacy of clopidogrel — 
a new antiplatelet therapy ― over aspirin in reducing the risk of a composite outcome that 
included ischemic stroke, myocardial infarction, and vascular death. Clopidogrel was compared 
to aspirin rather than placebo because aspirin was considered standard treatment for patients at 
high risk of developing negative outcomes associated with platelet activation.  The efficacy of 
aspirin over placebo was established in a large number of clinical trials that were also meta-
analyzed by the Antiplatelet Trialists’ Collaboration (APTC) systematic review.30 The review 
assessed the effect of various antiplatelet therapies on the risk of developing the composite 
outcome.  
 
Although the CAPRIE trial provided evidence of the benefit associated with clopidrogrel in 
relation to aspirin, data from that trial cannot provide an estimate of the total effect of the drug.  
To calculate this estimate, clopidogrel would have had to be compared with placebo. The ethics 
and usefulness of comparing the new therapy against placebo may be questioned in the presence 
of an established active control; however, for regulatory purposes, there is interest in knowing 
the true effect of the drug. In some countries, in order for regulatory agencies to approve a drug 
for use, its superiority against placebo needs to be illustrated; such a comparison demonstrates 
the total effect of the drug. Although “add-on” trials (in which a new therapy administered in 
combination with standard treatment is compared to standard therapy alone) may be performed 
in order to compare a new drug with placebo, such trials do not provide any information about 
the total effect of a new therapy alone.    
 
Analysis: Fisher et al. used the adjusted indirect comparison methodology to evaluate 
clopidogrel versus placebo. The investigators used aspirin as the common comparator and their 
analysis included the CAPRIE trial that assessed clopidogrel versus aspirin and the APTC meta- 
analysis that compared aspirin to placebo. Fisher et al. calculated the adjusted indirect estimate 
of the OR and its 95% CI for various outcomes. In particular, a composite outcome cluster 
consisting of any stroke, myocardial infarction, and vascular death (including hemorrhage) was 
analyzed.  
 
Comparison of indirect treatment comparisons program with reported indirect estimate: 
We used the ITC program to recalculate the indirect estimate of the OR for the composite 
outcome consisting of any stroke, myocardial infarction, and vascular death. Figure 16 shows the 
OR and its 95% CI that was calculated by Fisher et al., as well as the estimate derived from the 
ITC program. The result obtained from the ITC program is in agreement with the estimate 
calculated by Fisher et al. 
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Figure 16: Odds ratio for the indirect comparison between 
clopidogrel andplacebo 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ITC=indirect treatment comparison; OR=odds ratio 
 
 
Results from a direct comparison: Not available. 
 
Estimated bias and mean square error associated with the indirect estimate: The following 
parameter settings were chosen from the simulation data in order to determine the bias and MSE 
of the indirect estimate: ORAB=0.9 (ORAB(reported)=0.9), ORCB=1.3 (ORCB(reported)=1.28) and 
P(E|B)=0.05 (P(E|B)reported=0.0583). Based on these parameter values, the bias and MSE 
associated with the indirect estimate is 0.43 and 2.5, respectively (Figure 17). The bias and MSE 
are quite large and care must be exercised in interpreting the indirect estimate.  
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Figure 17: Expected Bias and Mean Square Error of the Odds Ratio for the Indirect 
Comparison Between Clopidogrel and Placebo for the Composite Outcome 

Consisting of Stroke, Myocardial Infarction, or Vascular Death 

ORCB=1.3

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0 0.1 0.2 0.3 0.4 0.5 0.6

P(event)

B
ia

s OR_AB=0.7
OR_AB=0.8
OR_AB=0.9

bias of ITC estimate 

 

ORCB=1.1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6

P(event)

M
SE

 OR_AB=0.7
OR_AB=0.8
OR_AB=0.9

MSE of ITC estimate 

 
ITC=indirect treatment comparison; MSE=mean square error; OR=odds ratio 

 
 



Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis 54 

5.3 Risk Difference  
A literature search did not result in a published example of an indirect comparison that used both 
the Bucher methodology and reported treatment effect on the risk difference scale. However, a 
report in which a general linear model (GLM) approach was utilized to perform indirect 
comparisons, and in which efficacy was expressed as risk difference (RD), had been published.31 

Although the method used for the indirect treatment comparisons performed in the published 
example varies from the Bucher method (and a discussion of the GLM approach is not included 
in this report), this example has been included to demonstrate that the results obtained through 
the use of the ITC program are similar to the result obtained through the GLM approach. 
 
Reference: Ballesteros31   
 
Background: Medications from various drug classes have been prescribed for the treatment of 
dysthymia and placebo-controlled trials have evaluated the relative efficacy of tricyclic 
antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), as well as monoamine 
oxidase inhibitors (MAOIs). From a regulatory perspective, placebo-controlled trials have been 
useful in evaluating the effectiveness of each of the three psychotropic drugs. Clinically, 
however, evidence about the relative efficacy between these classes of antidepressant 
medications provides useful information to physicians who need to consider various different 
treatment options for their patients. Ballesteros has indicated that, although direct comparisons 
between TCAs versus SSRIs have been performed, there is limited direct evidence for the 
relative efficacy of each of TCAs and SSRIs to MAOIs.   
 
Analysis: To illustrate the use of the GLM approach, Ballesteros performed an indirect 
comparison to evaluate the efficacy of TCAs versus MAOIs, SSRIs versus MAOIs, and TCAs 
versus SSRIs. The investigators used placebo as the common comparator, and the analysis 
included trials in which each of TCAs, SSRIs, and MAOIs had been compared to placebo. 
Ballesteros calculated the indirect estimate of the risk difference for the outcome defined as a 
50% decrease from baseline, in depressive symptoms, or other similar criteria.  
 
Comparison of indirect treatment comparisons program with reported indirect estimate: 
We used the ITC program to recalculate the indirect estimate of the RD for the aforementioned 
outcome. Figure 18 shows the RD and its 95% CI that was calculated by Ballesteros, as well as 
the estimate derived from the ITC program. The result obtained from the ITC program is in 
agreement with the estimate calculated by Ballesteros.  
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Figure 18: Risk Difference for the Indirect Comparison Between Tricyclic 
Antidepressants and Selective Serotonin Reuptake Inhibitors 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ITC=indirect treatment comparison; RD=risk difference; SSRIs=selective serotonin reuptake inhibitors; TCAs=tricyclic 
antidepressants 

 
Results from a direct comparison: Ballesteros provided the results of a study which directly 
compared SSRIs versus TCAs. In the direct comparison, there was no statistically significant 
difference between TCAs and SSRIs (RD -0.05 [95% CI: -0.07, 0.17]).  
 
Estimated bias and MSE associated with the indirect estimate: The following parameter 
settings were chosen from the simulation data to determine the bias and MSE of the indirect 
estimate. RDAB=-0.3 (RDAB(reported)=0.25), RDCB=-0.2 (RDCB(reported)=0.22) and P(E|B)=0.4. It 
should be noted that in the Ballesteros comparison, the probability of an event referred to the 
success rate; however, the event rate in the simulation data represents the rate of a failed 
response. Therefore, in order to apply the results of the simulation, we changed the direction of 
the RDAB and RDCB provided by the authors. The event rate was calculated as an average of the 
placebo group event rates reported in all the trials included in the ITC.  Based on the parameter 
values, the bias and MSE associated with the indirect estimate is 0.0008 and 0.0045, respectively 
(Figure 19). 
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Figure 19: Expected Bias and Mean Square Error of the Risk Difference for the 
IndirectComparison Between Tricyclic Antidepressants and Selective  
Serotonin Reuptake Inhibitors, for a 50% Decrease, Since Baseline, 

in Depressive Symptoms or Other Similar Criteria 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ITC=indirect treatment comparison; RD=risk difference; SSRIs=selective serotonin reuptake inhibitors; TCAs=tricyclic 
antidepressant;s 
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5.4 Mean Difference 
Reference: Sauriol et al.32  
 
Background: Conventional antipsychotic medications for the treatment of schizophrenia have 
been effective in the alleviation of positive symptoms; however, their efficacy is limited for the 
reduction of negative symptoms and these drugs present with significant side effects. Second 
generation therapies have been developed to provide improved effectiveness and fewer side 
effects. Second generation therapies, olanzapine and respiridone, have each been compared to 
haloperidol, a first generation medication that is considered the standard therapy in treatment of 
schizophrenia. Although a number of published clinical trial reports have compared each of 
olanzapine and respiridone to haloperidol, clinical trial data comparing olanzapine to respiridone 
is very limited. Only one study, conducted by Tran et al.33 (1997), has evaluated these two 
medications in a head-to-head trial.  
 
Analysis: Sauriol et al.32 (2001) performed an adjusted indirect comparison to evaluate the 
relative efficacy of olanzapine versus respiridone, and compared their results with the result of 
the single head-to-head trial. The investigators used haloperidol as the common comparator, and 
the analysis included trials of olanzapine versus haloperidol and respiridone versus haloperidol.  
Each of the studies utilized for the indirect comparison presented the mean difference between 
olanzapine versus haloperidol or respiridone versus haloperidol for various efficacy and safety 
outcomes. The following safety outcomes were analyzed, change from baseline in:  
• Brief Psychiatric Rating Scale (BPRS)  
• Positive and Negative Syndrome Scale (PANSS), negative subscale score.   

 
The following tolerability outcomes were assessed,  difference, from baseline, in the percentage 
of patients who:  
• used anticholinergic drugs 
• dropped out due to side effects 
• dropped out due to lack of efficacy 
• dropped out due to any cause.   

 
Through use of the results for the aforementioned outcomes, Sauriol et al. indirectly calculated 
the MD between olanzapine and respiridone for the same outcomes.  
 
Comparison of ITC program with reported indirect estimate: We used the ITC program to 
recalculate the indirect estimates of the MDs for all of the efficacy and safety parameters. For the 
outcome BPRS total score change, Figure 20 provides the indirect MD and its 95% CI that was 
calculated by Sauriol et al., as well as the ITC program. The value for the MD obtained using the 
ITC program is in agreement with Sauriol et al.’s result. For all other safety and efficacy 
outcomes, Table 8 provides the adjusted indirect estimates reported by the investigators and 
those obtained from the ITC program. All of the indirect estimates obtained from the ITC 
program are in agreement with those provided by Sauriol et al.  
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Figure 20: Mean Difference for the Indirect Comparison 
Between Respiridone andOlanzapine 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CI=confidence interval; MD=mean difference 
 
Results from a direct comparison: Sauriol et al. provided the results of a study which directly 
compared olanzapine versus respiridone.  In the direct comparison, for the outcome BPRS total 
score change, there was no statistically significant difference between olanzapine and respiridone  
(MD 1.80 [95% CI: -1.40, 5.00]).  For all other safety and efficacy outcomes, Table 8 provides 
the results of the direct comparison.   
 
Estimated bias and mean square error associated with the indirect estimate: For the 
outcome BPRS total score change, the following simulation parameter setting for effect size (ES) 
and coefficient of variation (CV) were used to determine the bias and MSE for the indirect MD 
reported in Sauriol et al.’s example: ESAB=0.2, ESCB=0.2, CVB=0.5, MeanB=10 
(MeanB(reported)=9.38). To obtain values for ESAB and ESCB, we divided MDAB and MDCB by their 
standard deviations. CVB=0.5 was selected to represent the high level of variation observed in 
the haloperidol group. Based on the values of the various parameters, the expected bias for the 
indirect estimate is -0.366 and the expected MSE is 1.101 (Figure 21). 
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Table 8: Direct and Adjusted Indirect Results for Various Outcomes in the Comparison of 
Olanzapine and Risperidone for the Treatment of Schizophrenia 

Two Treatments Comparison 
MD (95% CI) 

Direct 
Method 

MD (95% CI) 

Adjusted Indirect Method 
MD (95% CI) 

1Risperidone 
(A) vs. 

Haloperidol 
(B)  

1,2Haloperidol 
(B) vs. 

Olanzapine 
(C) 

Risperidone 
(A) vs. 

Olanzapine 
(C) 

Risperidone (A) vs. 
Olanzapine (C) 

Variables 

Reported Reported Reported Reported Using ITC 
Program 

Efficacy 
BPRS total 
score change 

2.43 
(0.94, 3.91) 

-2.80 
(-3.92, -1.69) 

-1.80 
(-5.00, 1.40) 

-0.37 
(-2.20, 1.50) 

-0.37 
(-2.227, 1.487) 

PANSS 
negative score 
change 

0.81 
(-0.07, 1.69) 

-1.35 
(-1.89, -0.81) 

-1.10 
(-2.60, 0.44) 

-0.54 
(-1.60, 0.49) 

-0.54 
(-1.572, 0.492) 

Tolerability (difference in % of patients) 
Anticholinergic 
drug use 

13.4 
(8.0, 18.9) 

-33.0 
(-36.8, -29.1) 

-13.1 
(-22.5, -3.9) 

-19.5 
(-26.2, -

12.8) 

-19.6 
(-26.273, -

12.927) 
Dropped out 
due to side 
effects 

1.2 
(-2.3, 4.7) 

-3.4 
(-5.5, -1.2) 

-0.3 
(-6.7, 6.1) 

-2.2 
(-6.7, 2.4) 

-2.2 
(-6.308, 1.908) 

Dropped out 
due to lack of 
efficacy 

4.0 
(-0.1, 8.0) 

-9.7 
(-13.4, -6.0) 

-2.8 
(-10.5, 4.9) 

-5.7 
(-11.2, -0.2) 

-5.7 
(-11.186, -

0.214) 
Dropped out 
due to any 
cause 

7.1 
(1.9, 12.2) 

-17.0 
(-21.2, -12.9) 

-10.3 
(-20.8, 0.3) 

-10.0 
(-16.6, -3.3) 

-9.9 
(-16.514, -

3.28) 
BPRS= Brief Psychiatric Rating Scale; CI=confidence interval; MD=mean difference; PANSS= Positive and Negative Syndrome 
Scale; vs=versus 
1Difference in variations from baseline to end point;  
2 The B versus C risk difference, MDBC, and 95% CI (lclBC, uclBC) are obtained from the corresponding values for MDCB by using the 
relations: MDBC =-MDCB, lclBC = -uclCB and  uclBC =-lclCB. 
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Table 8: Direct and Adjusted Indirect Results for Various Outcomes in the Comparison       
of Olanzapine and Risperidone for the Treatment of Schizophrenia (cont’d) 

Differences from head-
to-head RCT of 

Risperadone versus 
Olanzapine 

 
MD (95% CI) 

Adjusted Indirect Comparison of 
Risperidone versus Olanzapine 

 
MD (95% CI) 

Outcome measure 

Reported by Tran et al33 Reported by 
Sauriol et al32 

Using ITC 
program 

BPRS total score change -1.80 
(-5.00, 1.40) 

-0.37 
(-2.20, 1.50) 

-0.37 
(-2.227, 1.487) 

PANSS negative score change -1.10 
(-2.60, 0.44) 

-0.54 
(-1.60, 0.49) 

-0.54 
(-1.572, 0.492) 

Anticholinergic drug use (%) -13.1 
(-22.5, -3.9) 

-19.5 
(-26.2, -12.8) 

-19.6 
(-26.273, -

12.927) 
Dropped out due to side effects 
(%) 

-0.3 
(-6.7, 6.1) 

-2.2 
(-6.7, 2.4) 

-2.2 
(-6.308, 1.908) 

Dropped out due to lack of 
efficacy (%) 

-2.8 
(-10.5, 4.9) 

-5.7 
(-11.2, -0.2) 

-5.7 
(-11.186, -0.214) 

Dropped out due to any cause 
(%) 

-10.3 
(-20.8, 0.3) 

-10.0 
(-16.6, -3.3) 

-9.9 
(-16.514, -3.28) 

BPRS= Brief Psychiatric Rating Scale; CI=confidence interval; MD=mean difference; PANSS= Positive and Negative Syndrome 
Scale; vs=versus 
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Figure 21: Expected Bias and Mean Square Error of the Mean Difference for the 
IndirectComparison Between Respiridone and Olanzapine 

for the Outcome BPRSTotal Score Change 
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5.5 Hazard Ratio 
Reference: von der Maase et al.34  
 
Background: Various combination therapies have been established for the treatment of bladder 
cancer, most of which are based on the anti-tumor medication, cisplatin. Although never 
compared to placebo, until at least 2000, methotrexate, vinblastine, doxorubicin and cisplatin 
(MVAC) was considered the standard of care for the treatment of bladder cancer.34 The efficacy 
of the multi-modal MVAC therapy was established through trials35,36 in which it was compared 
separately to two strategies, cisplatin alone or cisplatin, cyclophosphamide and adriamycin 
(CISCA), both of which are considered ineffective.  Despite its efficacy, MVAC presents with a 
significant toxicity profile. As such, there was a need for the development of therapy that had 
comparable or superior efficacy to MVAC and an improved toxicity profile. Phase 2 studies have 
shown gemcitabine/cisplatin (GC) to have comparable efficacy to MVAC, but significantly less 
toxic side effects. Von der Maase et al. conducted a phase 3 clinical trial to compare GC versus 
MVAC. The results of the trial did not show a significant difference in efficacy between GC and 
MVAC; however, GC was associated with fewer side effects.  Based on the results of the trial, 
von der Maase et al. asserted that GC should be considered the standard therapy for treatment of 
bladder cancer.  
 
In a letter to the editor, Cohen and Rothmann37 (2001) criticised the abovementioned suggestion 
and disagreed with the authors. Cohen and Rothmann stated that the lack of a statistically 
significant difference between the two combination therapies does not equate to the non-
inferiority of GC. Also, they stated that in order for the non inferiority of GC to be established, it 
was necessary to first determine the efficacy of MVAC on the outcome survival and then 
determine the amount of survival benefit from MVAC that is maintained when GC is used 
instead of MVAC. To determine the true effect of MVAC on survival, a comparison between 
MVAC and placebo was required. Since no placebo-controlled trials had been performed to 
evaluate MVAC, its effect on survival was based on the results of the trials in which it was 
compared separately to CISCA and cisplatin. Cohen and Rothmann performed several 
calculations. Of interest, they pooled the results of the MVAC versus CISCA trial and the 
MVAC versus cisplatin trial to determine the hazard ratio for the survival benefit of MVAC 
versus “control therapy”, which included cisplatin and CISCA. Once the effect of MVAC was 
determined, Cohen and Rothmann utilized various methodologies to determine the amount of 
survival benefit that could potentially be maintained through the use of GC instead of MVAC.  
Their results indicated that the survival benefit observed when MVAC is administered in 
comparison to CISCA or cisplatin would be lost if GC were administered instead. As such, 
Cohen and Rothmann concluded that MVAC should remain the standard of care.  
 
In response to Cohen and Rothmann’s letter, von der Maase et al. opposed several aspects of the 
methodologies that Cohen and Rothman used to compare GC with MVAC. Additionally, von der 
Maase discussed reasons why it was inappropriate to use CISCA as a control therapy in order to 
quantify MVAC’s efficacy.     
 
Analysis: In order to illustrate that GC was able to maintain the observed efficacy of MVAC in 
comparison to cisplatin, von der Maase et al. first performed an indirect comparison between GC 
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and cisplatin and then used a Bayesian methodology to illustrate the amount MVAC’s survival 
benefit is maintained when GC is used instead of MVAC in the treatment of bladder cancer. To 
indirectly compare GC with cisplatin, von der Maase et al. chose MVAC as the common 
comparator; their analysis included the trial in which MVAC was compared to cisplatin, as well 
as their own trial in which GC was compared to MVAC. The investigators calculated the HR for 
the outcome survival.   
 
Comparison of indirect treatment comparisons program with reported indirect estimate: 
We used the ITC program to recalculate the adjusted indirect estimate of the hazard ratio for 
survival. Figure 22 provides the indirect hazard ratio and its 95% CI for GC versus cisplatin that 
was reported by von der Maase et al., as well as the estimate obtained from the ITC program. 
The value for the HR obtained from the ITC program is in agreement with the result obtained by 
von der Maase et al. 
 

Figure 22: Hazard Ratio for the Indirect Comparison Betweeen Gemcitabin 
and Cisplatinand Methotrexate, Vinblastine, Doxorubicin, 

and Cisplatin for the OutcomeSurvival 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CI=confidence interval; GC=gemcitabi and cisplatin; HR=hazard ratio; ITC=indirect treatment comparisons;  
MVAC= methotrexate, vinblastine, doxorubicin, and cisplatin 
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Results of a direct comparison: Not available  
 
Estimated bias and mean square error associated with the indirect estimate: 
The parameter settings chosen from the simulation data to estimate the bias and MSE associated 
with the indirect HR were, as follows: HRAB=1.5 (HRAB(reported)=1.524), HRCB=1.1 
(HRCB(reported)=1.04), baseline hazard rate in the MVAC group = 0.5. To calculate the hazard rate 
in the MVAC group, we used data from the trial in which MVAC was compared to cisplatin. An 
average was calculated for the hazard rate at three different time points in the survival curve for 
patients treated with MVAC. Like von der Maase et al., we assumed a constant survival hazard 
because of limited information in the study. Based on these parameter settings, the bias 
associated with the indirect estimate is -0.017 and the value for the MSE is 0.014 (Figure 23).  
 
 

Figure 23: Expected Bias and Mean Square Error of the Hazard Ratio for the Indirect 
Comparison Betweeen Gemcitabin and Cisplatin and Methotrexate, 

Vinblastine, Doxorubicin, and Cisplatin for the Outcome Survival 
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GC=gemcitabi and cisplatin; HR=hazard ratio; ITC=indirect treatment comparisons; MVAC= methotrexate, vinblastine, 
doxorubicin, and cisplatin; MSE=mean square error 

 
 
5.6 Interpretation of Indirect Comparisons From the 

Illustrative Examples  
In addition to considering the magnitude of the bias and MSE associated with an indirect 
estimate, the external and internal validity of the indirect estimate should be assessed.4 When 
considering the external validity, sources of discrepancies between the direct and indirect results 
should be considered. Specifically, it should be determined whether or not there exists a lack of 
comparability between the linking treatment, patient/clinical characteristics, methodological 
quality, and study design, as well as date of publication in the set of trials that estimate measure 
of association YCB or YAB and any trials that estimate YAC directly. Any other sources of 
heterogeneity should also be examined. When considering internal validity, comparability 
between trials for YAB and those for YCB should be evaluated to determine whether the trials 
were similar enough to be combined. 
 
5.6.1 Bias and Mean Square Error 

For each of the indirect estimates of YAC in the illustrative examples, the magnitude of the bias 
and MSE has been provided.  
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5.6.2 External Validity 

Whether the indirect estimates discussed in the illustrative examples are significantly different 
from the results of a direct comparison could only be determined for the comparison performed 
by Sauriol et al.32 and that performed by Ballesteros.31 For the other examples, a direct estimate 
was not available.  
  
For the Sauriol et al.32 comparison, where there were differences between the direct and indirect 
results, the authors attributed them to the inclusion of older trials in the meta-analysis for the 
indirect comparison. Specifically, the average dose at which respiridone was administered in the 
trials included in the indirect comparison was 8.13 mg, but some studies included doses as high 
as 20 mg. The recommended dosage for respiridone has decreased over time ― the single RCT 
included respiridone doses that ranged from 4 mg to 12 mg and at the time of Sauriol et al.’s 
publication, the recommended dosage for respiridone was 6 mg. Higher doses of respiridone may 
be associated with higher levels of extra pyramidal side effects (EPS) and, consequently, higher 
use of anticholinergic drug use. If the indirect analysis was based on doses of respiridone 
prescribed today, then the drug may have been associated with lower rates of EPS and, therefore, 
lower rates of anticholinergic drug use. As such, the results may not represent the clinical side 
effect profile that would be observed in the current clinical setting.   
 
In Ballesteros’31 study, for the comparison between tricyclic antidepressants (TCAs) and SSRIs, 
the result of the indirect comparison were similar to the direct estimate. Although not focused on 
in this report, for the comparison between monoamine oxidase inhibitors (MAOIs) versus TCAs, 
the direct and indirect approach generated different magnitudes for the point estimate and the 
range of values within the 95% CI; however, both approaches indicate that there is no 
statistically significant difference in efficacy between MAOIs and TCAs. Ballesteros has not 
provided reasons for the observed discrepancy between the direct and indirect risk difference.  
As such, there is a need for clinical investigators to determine whether or not there exists a lack 
of comparability between the linking treatment, patient/clinical characteristics, methodological 
quality, and study design, as well as date of publication in the set of trials that estimated the risk 
difference for MAOIs versus placebo or TCAs versus placebo and the trials that directly 
compared MAOIs with TCAs.  
 
5.6.3 Internal Validity 

Two studies considered comparability between the set of trials that estimated YAB and those that 
estimated YCB.31,32 
 
In Sauriol et al.’s32 indirect comparison, the authors noted the presence of hetereogeneity/clinical 
differences between the olanzapine versus haloperidol trials and the respiridone versus 
haloperidol trials. For instance, the baseline BPRS scores for the studies included in the 
respiridone versus haloperidol analysis were higher than those for the studies included in the 
olanzapine versus haloperidol studies.  
 
Further to this, the follow-up time and the rate of anticholinergic drug use was higher in the 
respiridone versus haloperidol than in the olanzapine versus haloperidol studies. The authors 
indicated that the greater use of anticholinergic drugs in the respiridone versus haloperidol 
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studies perhaps occurred due to a longer follow-up period. Also, extra pyramidal side effects are 
more likely to occur over a longer treatment time and anticholinergic medication is used in the 
treatment of such side effects.  
 
There were no differences in the linking treatment, haloperidol, in the two sets of studies 
included in the meta-analysis; however, due to the aforementioned heterogeneity in patient 
characteristics, the comparator may not have had the same effect in each of the two sets of trials 
and, therefore, may have influenced the observed variability between the direct and indirect 
estimates.  
 
Although not mentioned by the authors, there may be methodological differences between the 
olanzapine versus haloperidol trials and the respiridone versus haloperidol trials that may also 
account for the observed differences between the direct and indirect results. For instance, the 
indirect comparison of respiridone and olanzapine seems to include trials that have three 
treatment arms. Because the method proposed by Bucher et al. does not provide a variance 
estimate for correlated comparison groups, trials that contain more than two comparison groups 
perhaps should not be analyzed through Bucher’s indirect treatment comparison technique. As 
such, inclusion of the three-arm trials may have resulted in biased estimates for the relative 
efficacy of the two therapies.  
 
In the Lim et al.28 study, the authors indicated the presence of clinical heterogeneity between the 
two sets of trials included in the indirect comparison between low-dose aspirin and medium- 
dose aspirin. Specifically, the follow-up period was shorter in the clinical trial reports for the 
comparison of low-dose aspirin to placebo. In the largest trial comparing low-dose aspirin to 
placebo, the mean time to angiography for the low-dose aspirin group and the placebo group was 
10 and 11 days, respectively.  In the two other trials included in this comparison, the mean time 
to angiography, in days, was 131/129 (aspirin/placebo) and 180/180 (aspirin/placebo). In 
contrast, the two trials included in the comparison of medium-dose aspirin to placebo consisted 
of a follow-up period, in days, of 363/363 (aspirin/placebo) and 367/367 (aspirin/placebo). Lim 
et al. stated that graft occlusion at 10 and 11 days post-operatively is usually related to surgical 
technique rather than antiplatelet therapy. Because the trial with the shortest follow-up period 
was the largest of the trials included in the low-dose versus placebo comparison, its results had 
the greatest impact on the estimate of the relative risk. As such, the observed efficacy of the  
low-dose aspirin may, in actuality, not be due to the therapeutic effects of the medication, but, 
rather, due to a surgical technique that may have caused graft occlusions and may have been 
used more frequently in the placebo group. The result of this would be an overestimate of the 
beneficial effects of low-dose aspirin in comparison to placebo. The authors do not mention any 
additional differences in patient or clinical characteristics between the two sets of trials and have 
not commented on the methodological quality of all trials included in the indirect comparison.  
Any additional differences related to patient heterogeneity and differences in methodological 
quality that may exist between the trials included in the low-dose aspirin versus placebo 
comparison and the medium-dose aspirin versus placebo comparison could affect the validity of 
the reported results. 
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Importantly, the trials included in the indirect meta-analysis were published in the time period 
1979 to 1993 and may not reflect the current clinical practice related to the administration of 
aspirin after coronary artery bypass graft surgery.  
 
 
6 ILLUSTRATIONS OF THE VARIOUS METHODS: 

BUCHER, LUMLEY, MIXED TREATMENT 
COMPARISON 

The sixth objective of this technical report was to illustrate the application of the various 
methods for indirect treatment comparisons. In this chapter, examples are presented in which the 
Bucher-adjusted indirect comparison method, Lumley’s network meta-analysis approach, and 
mixed treatment comparisons (as described by Lu and Ades) methods are applied. 
 
In their article, Vandermeer et al26 considered different methods for evaluating the relative 
efficacy of benzodiazepines (BNZ) and nonbenzodiazepenes (NBNZ) in the management of 
chronic insomnia. The methods considered were: 
• Frequentist direct — the inverse variance random effects meta-analysis method 
• Frequentist indirect ― the Bucher-adjusted indirect comparison method 
• Frequentist modified indirect ― the Bucher-adjusted indirect comparison method, which 

excluded 3-arm trials (comparing BNZ, NBMZ, placebo), since these trials appeared in the 
direct estimate, and the authors did not want to double-count the data from these three-arm 
trials when calculating the “frequentist combined estimate” 

• Frequentist combined estimate ― the frequentist direct and modified indirect estimates 
combined according to a normal random effects, meta-analysis model with weights 
determined using the inverse variance concept 

• Bayesian direct estimate ― a random effects, Bayesian meta-analysis 
• Bayesian combined estimate ― the mixed treatment comparisons method proposed by Lu 

and Ades.  
 
These methods were used to compare the BNZ and NBNZ on six outcomes: sleep-onset latency, 
wakefulness after sleep onset, sleep efficiency, total sleep time, sleep quality, and adverse events.  
For each of the indirect, direct and combined methods, the meta-analytic results for each 
outcome are summarized in Table 9.     
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Table 9: Comparison of the Results for the Different Methods for Evaluating the Relative 
Efficacy of Benzodiazepines and Nonbenzodiazepenes                                 

in the Management of Chronic Insomnia26 
 Frequentist Bayesian 
Outcome   Direct  Indirect Modified 

Indirect 
Combined Direct Combined 

Sleep onset latency (minutes: mean difference) 
Significant No No No No No No 
Favours NBNZ NBNZ NBNZ NBNZ NBNZ NBNZ 
Width of CI 9.92 11.96 13.68 8.03 11.69 9.95 
Number of 
studies 

11 62 54 65 11 65 

Wakefulness after sleep onset (minutes: mean difference) 
Significant No No No No No No 
Favours  BNZ BNZ BNZ BNZ NBNZ BNZ 
Width of CI 38.85 32.62 34.6 25.84 53.26 29.48 
Number of 
studies 

3 17 16 19 3 19 

Sleep efficiency (% points: mean difference) 
Significant Yes No No Yes Yes No 
Favours  BNZ BNZ NBNZ BNZ BNZ BNZ 
Width of CI  4.2 5.44 7.92 3.71 6.03 5.21 
Number of 
studies 

3 16 13 16 3 16 

Total sleep time (minutes: mean difference) 
Significant Yes No No Yes No No 
Favours  NBNZ NBNZ NBNZ NBNZ NBNZ NBNZ 
Width of CI 23.48 27.28 33.86 19.29 24.88 20.79 
Number of 
studies 

8 37 31 39 8 39 

Sleep quality (standardized mean difference) 
Significant No Yes Yes Yes No Yes 
Favours NBNZ NBNZ NBNZ NBNZ NBNZ NBNZ 
Width of CI 0.31 0.36 0.44 0.26 0.34 0.29 
Number of 
studies 

11 45 38 49 11 49 

Adverse events (risk difference) 
Significant  Yes Yes Yes Yes No Yes 
Favours NBNZ NBNZ NBNZ NBNZ NBNZ NBNZ 
Width of CI 0.14 0.12 0.16 0.11 0.21 0.13 
Number of 
studies 

17 59 52 69 17 69 

 BNZ=benzodiazepines; CI=confidence interval; NBNZ=nonbenzodiazepines 
 
Adapted from Vandermeer BW, Buscemi N, Liang Y, Witmans M. Comparison of meta-analytic results of indirect, direct, and 
combined comparisons of drugs for chronic insomnia in adults: a case study. Med Care 2007;45(10 Supl 2):S166-S172, with 
permission from Wolters Kluwer Health.  
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The following observations were noted regarding the summary estimates calculated: 
• Number of studies: A greater number of studies were involved in the indirect comparisons 

than in the direct comparisons. 
• Comparison of direct and indirect evidence: For each outcome, the following specific 

comparisons were made: frequentist direct versus frequentist modified indirect, frequentist 
direct versus frequentist combined, and Bayesian direct versus Bayesian combined. In these 
comparisons, differences between methods were small when compared to the effect size for 
the outcomes sleep onset latency, wakefulness after sleep onset, total sleep time, and adverse 
events. For the outcomes Sleep Efficiency and Sleep Quality, there was a moderate 
difference between methods. It was noted that, for some outcomes, some methods resulted in 
statistically significant differences between the two drugs, while others did not. When the 
direct comparisons resulted in a statistically significant difference, but the indirect methods 
did not, the authors stated that the difference could be attributable to the wider CIs of the 
indirect methods compared to the direct, assuming the same sample size. When the direct 
estimates were not significant but the indirect estimates were significant, then the difference 
in samples size resulting from the inclusion of a larger number of trials may be the reason. 

• Comparison of frequentist and Bayesian methods: The frequentist direct and combined 
estimates have narrower CIs than Bayesian direct and Bayesian combined estimates, 
respectively. The CIs for frequentist methods were narrower than Bayesian methods since the 
frequentist approach assumes a constant known between-study variance and the Bayesian 
method was based on a varying between-study variance parameter. 

• Assuming all studies have equal standard errors and variances, approximately four times as 
many studies are required in the indirect comparison relative to the direct comparison in 
order for the variance of the direct and indirect comparison to be the same. 

• The Bayesian methods were insensitive to the prior chosen for the mean, but were sensitive 
to the prior chosen for the between study variance; between study prior sensitivity was 
directly related to the number of studies in the analysis.  

 
Vandermeer et al. concluded that: (1) the indirect evidence was not substantially different from 
the direct evidence and can at least be used in sensitivity analyses; and (2) that frequentist and 
Bayesian indirect comparisons should be considered when conducting meta-analysis. 
 
Three examples are considered in this section to explore the differences in the Bucher-adjusted 
indirect comparison, the Lumley network meta-analysis and the mixed treatment comparison 
methods. 
 
6.1 Example 1: Clopidrogrel Versus Placebo in the 

Development of the Composite Outcome of Stroke, 
Myocardial Infraction or Vascular Death 

Fisher et al.1 (2001) used the adjusted indirect comparison methodology of Bucher to evaluate 
clopidogrel versus placebo. The investigators used aspirin as the common comparator, and their 
analysis included the CAPRIE trial,29 which assessed clopidogrel versus aspirin, and the 
Antiplatelet Trialists’ Collaboration (APTC) meta-analysis,30 which compared aspirin to placebo.  
Fisher et al. calculated the adjusted indirect estimate of the OR and its 95% CI for various 
outcomes. In particular, a composite outcome consisting of stroke, myocardial infarction, and 
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vascular death (including hemorrhage) was analyzed. The APTC considered a number of meta-
analyses for various patient subgroups, and in making this comparison of aspirin to placebo, the 
meta-analysis studies categorized under prior myocardial infarction (11 studies), acute 
myocardial infarction (eight studies), prior stroke/transient ischemic attack (15 studies), and 
intermittent claudication (22 studies) were homogeneous with respect to the odds ratio for the 
composite outcome. So, for this example, the meta-analytic result for each of these subgroups 
was considered as a separate “study” in the analysis. This example has been described in Section 
5.2, and the estimate calculated using Bucher’s adjusted indirect comparison method comparing 
clopidrogrel to placebo was OR = 0.71 (95%CI: 0.64, 0.78) (Figure 24). In this section, the 
mixed treatment comparisons method is used to analyze the data. 
 

Figure 24: Evidence Network of the Reported Clinical Trials of Clopidogrel and Aspirin for the 
Occurrence of the Composite Outcome of Stroke, Myocardial Infarction, Or Vascular Death 
Considered in Fisher’s Analysis Using the Bucher Adjusted Indirect Comparison Method* 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*The summary odds ratio and associated 95% confidence interval appear below trial names in which 
drugs were compared directly; the arrowhead is directed to the drug for which there is a lower risk of the 
occurrence of the composite outcome of stroke, myocardial infarction or vascular death.  

 
To apply the mixed treatment comparisons method, the frequency data of the number of events 
(i.e., composite outcome of any stroke, myocardial infarction, or vascular death) and the number 
of patients were needed (Table 10). The code and data used for applying the mixed treatment 
comparisons method is given in Box 1.  
 
 

Clopidogrel Placebo 

 Aspirin 

APTC1 0.76 (0.70, 0.82) 
APTC2 0.70 (0.65, 0.77) 
APTC3 0.79 (0.73, 0.87) 
APTC4 0.80 (0.64, 1.00) 
 

      CAPRIE 0.90 (0.82, 0.99) 
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Table 10: Frequency Data Needed for Applying the Mixed Treatment Comparison Method to 
Clopidogrel, Aspirin, and Placebo for the Occurrence of the                              

Composite Outcome of Stroke, Myocardial Infarction, or Vascular Death 
Study 
 

Placebo 
(Events/n)* 

Aspirin 
(Events/n) 

Clopidogrel 
(Events/n) 

CAPRIE  1021/17519 939/17636 
APTC meta-analysis (prior MI) 1693/9914 1331/9877  
APTC meta-analysis (acute MI) 1348/9385 992/9388  
APTC meta-analysis (prior stroke/TIA) 1301/5870 1076/5837  
APTC meta-analysis (intermittent claudication) 195/1649 160/1646  

APTC=Antiplatelet Trialists’ Collaboration; MI=myocardial infarction; TIA=transient ischemic attack 
* Event refers to the occurrence of the composite outcome of any stroke, myocardial infarction, or vascular death and n is the 
number of patients 
 

Box 1: WinBUGS Code and Data for Applying the Mixed Treatment Comparison Method to 
Clopidogrel, Aspirin, and Placebo for the Occurrence of the Composite  

Outcome of Stroke, Myocardial infarction, or Vascular Death20,21,25 
 
  

Random effects model: no correlation structure in multi-arm trials 
 
model{ 
 
for(i in 1:N)  {   logit(p[i])<-mu[s[i]]+ delta[i]  * (1-equals(t[i],b[i]))                                                #  model  
                           r[i]~dbin(p[i],n[i])                                                                                #  binomial likelihood 
                           delta[i] ~ dnorm(md[i],tau)                                                 # trial-specific LOR distributions 
                           md[i] <- d[t[i]] - d[b[i]]   }                                                       # means of LOR distributions 
 
for(j in 1:NS){ mu[j]~dnorm(0,.0001) }                                                      # vague priors for 5 trial baselines 
    
d[1]<-0 
for (k in 2:NT)  {d[k] ~ dnorm(0,.0001) }                                                 # vague priors for basic parameters 
    
sd~dunif(0,2)                                                                   #  vague prior for random effects standard deviation   
tau<-1/pow(sd,2) 
 
 
# Absolute treatment effects on mean response on Aspirin over 5 trials  
mA ~ dnorm(0,1) 
for (k in 1:NT)   { logit(T[k])<- mA  +d[k] }       
 
# Ranking and probability {treatment k is best}  
for (k in 1:NT) { rk[k]<- NT+1 - rank(T[],k) 
                        best[k]<-equals(rk[k],1)} 
 
# Pairwise odds ratios 
for (c in 1:(NT-1)) 
          {  for (k in (c+1):NT)   
                 {  lor[c,k] <- d[k] - d[c] 
                    log(or[c,k]) <- lor[c,k]  
                } 
           } 
} 
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Data: 
 
#  treatment definitions: 1=aspirin, 2=clopidogrel, 3=placebo 
 
list(N=10, NS=5, NT=3) 
 
s[]  t[]      r[]        n[]   b[] 
1    1    1021  17519   1 
1    2      939  17636   1 
2    1    1331    9877   1 
2    3    1693    9914   1 
3    1      992    9388   1 
3    3    1348    9385   1  
4    1    1076    5837   1 
4    3    1301    5870   1 
5    1      160    1646   1 
5    3      195    1649   1 
END 
 
#initial 
list( 
d=c(NA,0,0), 
sd=1, 
mu=c(0,0,0,0,  0,0,0,0,  0,0,0,0,  0,0,0,0,  0,0,0,0) 
) 
 
Source: https://www.bris.ac.uk/cobm/research/mpes/mixed-treatment-comparisons.html, reproduced with 
permission.  
 
Applying the MTC method to these data yielded similar results to those obtained using the 
Bucher method (Table 11), with a slightly smaller point estimate for OR (0.67 versus 0.71) and a 
wider credible interval (0.32 versus 0.14).  Recall that the estimated bias and MSE associated 
with the Bucher indirect estimate were quite large, and care must be exercised in interpreting this 
indirect estimate. Given the similarity of the results, the same caution must be noted for the  
mixed treatment comparisons method.  
 
 

Table 11: Comparison of Clopidogrel and Placebo Using the Bucher-Adjusted Indirect 
Comparison Method and the Mixed Treatment Comparison Method for the Occurrence        

of the Composite Outcome of Stroke, Myocardial Infarction, or Vascular Death 
Comparison Bucher 

OR (95% CI) 
MTC 

OR (95% CrI) 
Clopidogrel versus Placebo 0.71 (0.64,0.78) 0.67 (0.54,0.86) 

OR=odds ration 
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6.2 Example 2: Antihypertensive Drugs and Development of 
Incident Diabetes 

A complex network of clinical trials of antihypertensive drugs was reported by Elliott and 
Meyer9,10 in assessing the development of incident diabetes (Figure 25).  The Lumley network 
meta-analysis method was used to analyze the data.  In this section, the mixed treatment 
comparisons method is used to analyze the data.  
 

Figure 25: Evidence Network of the Reported Clinical Trials of Antihypertensive Drugs for  
the Development of Incident Diabetes Considered in Elliot and  

Meyer’s Analysis Using the Lumley Network Meta-analysis Method*9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* The summary odds ratio and associated 95% confidence interval appear below the trial names in which drug classes were 
compared directly; the arrowhead is directed to the drug class for which there is a lower risk of developing incident diabetes 
 
Reproduced from The Lancet, 369 (9557), 201-7, Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive drugs: 
a network meta-analysis9 Copyright ©  (2007), with permission from Elsevier.  
 
 
To apply the mixed treatment comparisons method, the frequency data of the number of events 
(i.e., incident diabetes) and the number of patients are needed (Table 12). The code and data used 
for applying the mixed treatment comparisons method is given in Box 2. 
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Table 12: Frequency Data needed for Applying the Mixed Treatment Comparison Method to 
Antihypertensive Drugs for the Development of Incident Diabetes 

Study Diuretic 
(Events/n)* 

Β Blocker 
(Events/n) 

Placebo 
(Events/n) 

CCB 
(events/n) 

ACE 
(Events/n) 

ARB 
(Events/n) 

HAPPHY 75/3272 86/3297     
MRC-E 43/1081 37/1102 34/2213    
EWPHE 29/416  20/424    
SHEP 140/1631  118/1578    
INSIGHT 176/2511   136/2508   
ALLHAT 302/6766   154/3954 119/4096  
ANBP-2 200/2826    138/2800  
ALPINE 8/196     1/196 
INVEST  665/8078  569/8098   
NORDIL  251/5059  216/5095   
ASCOT  799/7040  567/7072   
AASK  70/405  32/202 45/410  
STOP-2  97/1960  95/1965 93/1970  
CAPPP  380/5230   337/5183  
LIFE  320/3979    242/4020 
FEVER   154/4870 177/4841   
HOPE   155/2883  102/2837  
PEACE   399/3472  335/3432  
DREAM   489/2646  449/2623  
SCOPE   115/2175   93/2167 
CHARM   202/2721   163/2715 
VALUE    845/5074  690/5087 

* Event refers to the development of incident diabetes and n is the number of patients 
 

Box 2: WinBUGS Code and Data for Applying the Mixed Treatment Comparison Method  
to Antihypertensive Drugs for the Development of Incident Diabetes20,21,25 

 

 
Random effects model: includes correlation structure for 3-arm trials 
 
model{ 
sw[1] <- 0 
for(i in 1:N)  {  
       logit(p[i])<-mu[s[i]]+ delta[i]  * (1-equals(t[i],b[i]))                                                        #  model  
       r[i]~dbin(p[i],n[i])                                                                                            #  binomial likelihood 
        delta[i] ~ dnorm(md[i],taud[i])                                               # trial-specific LOR distributions 
        taud[i] <- tau * (1 + equals(m[i],3) /3)                                   # precisions of LOR distributions 
       md[i] <- d[t[i]] - d[b[i]]  +  equals(m[i],3) * sw[i]                                  # means of LOR distributions 
       }            
for (i in 2:N)  {   sw[i] <- (delta[i-1] -  d[t[i-1]] + d[b[i-1]])/2}                          # adjustment for 3-arm trials 
 
for(j in 1:NS){ mu[j]~dnorm(0,.0001) }                                     # vague priors for 22 trial baselines 
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d[1]<-0 
for (k in 2:NT)  {d[k] ~ dnorm(0,.0001) }                                            # vague priors for 6 basic parameters 
 sd~dunif(0,2)                                                # vague prior for random effects standard deviation   
tau<-1/pow(sd,2) 
 
# Absolute treatment effects based on mean response on Diuretics over 8 trials 
mA ~ dnorm(0,1) 
for (k in 1:NT)   { logit(T[k])<- mA  +d[k] }        
 
# Ranking and probability {treatment k is best} 
for (k in 1:NT) { rk[k]<- NT+1 - rank(T[],k) 
                        best[k]<-equals(rk[k],1)} 
 
# All pairwise odds ratios 
for (c in 1:(NT-1)) 
          {  for (k in (c+1):NT)   
                 {  lor[c,k] <- d[k] - d[c] 
                    log(or[c,k]) <- lor[c,k]  
                 } 
           } 
} 
 
Data: 
 
# treatment definitions: 1=diuretic, 2=beta blocker, 3=CCB, 4=placebo, 5=ACE inhibitor, 6=ARB 
 
list(N=48, NS=22, NT=6) 
 
s[]  t[]  r[]       n[]   b[] m[] 
1    1    75   3272    1   1 
1    2    86   3297    1   2 
2    1    43   1081    1   1 
2    2    37   1102    1   2 
2    3    34   2213    1   3 
3    1    29     416    1   1 
3    3    20     424    1   2 
4    1  140   1631    1   1 
4    3  118   1578    1   2 
5    1  176   2511    1   1 
5    4  136   2508    1   2 
6    1  302   6766    1   1 
6    4  154   3954    1   2 
6    5  119   4096    1   3 
7    1  200   2826    1   1 
7    5  138   2800    1   2 
8    1      8     196    1   1 
8    6      1     196    1   2 
9    2  665   8078    2   1  
9    4  569   8098    2   2 
10  2  251   5059    2   1 
10  4  216   5095    2   2 
11  2  799   7040    2   1 
11  4  567   7072    2   2 
12  2    70     405    2   1 
12  4    32     202    2   2 
12  5    45     410    2   3 
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13  2    97   1960    2   1 
13  4    95   1965    2   2 
13  5    93   1970    2   3 
14  2  380   5230    2   1 
14  5  337   5183    2   2 
15  2  320   3979    2   1 
15  6  242   4020    2   2 
16  3  154   4870    3   1 
16  4  177   4841    3   2 
17  3  155   2883    3   1 
17  5  102   2837    3   2 
18  3  399   3472    3   1 
18  5  335   3432    3   2 
19  3  489   2646    3   1 
19  5  449   2623    3   2 
20  3  115   2175    3   1 
20  6    93   2167    3   2  
21  3  202   2721    3   1 
21  6  163   2715    3   2 
22  4  845   5074    4   1 
22  6  690   5087    4   2 
END 
 
#initial 
list( 
d=c(NA,0,0,0,0,0), 
sd=1, 
mu=c(0,0,0,0,0,0,0,  0,0,0,0,0,0,0,  0,0,0,0,0,0,0,  0,0,0,0,0,0,0,  0,0,0,0,0,0,0) 
) 
 
Source: https://www.bris.ac.uk/cobm/research/mpes/mixed-treatment-comparisons.html, reproduced with 
permission.  
 
Applying the mixed treatment comparisons method to these data yielded similar results to those 
obtained using the Lumley network meta-analysis method (Table 13). The point estimates for 
odds ratios were sometimes larger or smaller using the mixed treatment comparisons method 
compared to those using Lumley’s method, but the confidence intervals resulting from the mixed 
treatment comparisons method were always narrower. 
 
 

Table 13: Comparisons of Various Antihypertensive Drugs and Diuretics Using the           
Lumley Network Meta-analysis Method and the Mixed Treatment                         
Comparison Method for the Development of Incident Diabetes* 

Comparison MTC 
OR (95% CrI) 

Lumley 
OR (95% CI)+ 

β blocker vs. Diuretic 0.93 (0.80,1.08) 0.93 (0.78,1.11) 
CCB vs. Diuretic 0.74 (0.63,0.86) 0.79 (0.67,0.92) 
Placebo vs. Diuretic 0.78 (0.68,0.90) 0.75 (0.63,0.89) 
ACE inhibitor vs. Diuretic 0.66 (0.57,0.76) 0.67 (0.57,0.79) 
ARB vs. Diuretic 0.62 (0.51,0.73) 0.62 (0.51,0.77) 

CI=confidence interval; MTC=mixed treatment comparisons method; OR=odds ratio;vs.=versus 
* Diuretic was used as the standard for comparisons as recommended. 
+ Incoherence: 0.054 
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6.3 Example 3: Cardiac Devices ICD/CRT versus ICD Alone 
and Total Mortality in Heart Failure Patients 

An international, multi-centre, randomized controlled trial known as the RAFT study 
(Resynchronization/Defibrillation for Ambulatory Heart Failure Trial)38 is currently being 
conducted. The hypothesis being evaluated in this cardiac device trial is that, in patients with left 
ventricular (LV) dysfunction (ejection fraction ≤ 30%) and QRS duration ≥ 120 ms with 
moderate to severe congestive heart failure symptoms, the addition of cardiac resynchronization 
therapy (CRT) to Implantable Cardioverter Defibrillator (ICD) and optimal medical therapy 
(OMT) reduces the combined end point of mortality and CHF hospitalization. In the study, 
patients are randomized in a 1:1 proportion to: ICD (single or dual chamber) or ICD/CRT. The 
randomization is stratified for centre and single/dual ICD indication. Patients and heart failure 
care personnel are blinded, and only device care personnel are unblinded. The primary outcome 
measure is a composite of total mortality or hospitalization for CHF, where hospitalization for 
CHF is defined as an admission to hospital with a diagnosis of worsening CHF for > 24 hours. 
For this illustration, only total mortality is considered. 
 
Emerging information from two recent device trials put into question recruitment of New York 
Heart Association (NYHA) Class III patients into the RAFT study. The COMPANION Trial was 
a three-arm, randomized controlled trial comparing ICD/CRT, CRT, and OMT, while the CARE-
HF trial was a two-arm randomized controlled trial comparing ICD and OMT. Taking the results 
of these trials into consideration, the American Heart Association recommended ICD therapy for 
NYHA Class III patients. Although ICD/CRT has never been compared to ICD alone in a well- 
designed, randomized controlled trial, the decision by the American Heart Association has 
effectively prevented such a study from being conducted in NYHA Class III patients. Although 
the RAFT study continues to recruit NYHA Class II patients, Class III patients cannot be 
enrolled in the study, and the results for these patients will never be known. 
 
A network meta-analysis of clinical trials comparing OMT, ICD, CRT, and ICD/CRT has been 
conducted assessing total mortality in heart failure patients (Figure 26). To compare ICD/CRT 
versus ICD alone, the Bucher-adjusted indirect comparison method, the Lumley network meta-
analysis method, and the mixed treatment comparison method were used. 
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Figure 26: Evidence Network of the Reported Clinical Trials of Optimal Medical Therapy, 
Implantable Cardioverter Defibrillator (ICD), Cardiac Resynchronization Therapy (CRT)  

and ICD/CRT for Total Mortality in Heart Failure Patients* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CRT=cardiac resynchronization therapy; ICD= Implantable Cardioverter Defibrillator; OMT=optimal medical therapy; 
*The summary odds ratio and associated 95% confidence interval appear below trial names in which treatments were compared 
directly; the arrowhead is directed to the treatment for which there is a lower risk of mortality. 

 
 
To apply the optimal medical therapy, the frequency data of the number of events (i.e., all cause 
mortality) and the number of patients are needed (Table 14). For illustrative purposes, various 
branches of the overall network are considered in order to provide different network patterns, 
namely: simple star, star, ladder, and at least one closed loop. The code and data used to identify 
the optimal medical therapy for these various network patterns are given in Box 3. 
 

OMT 

ICD/CRT CRT 

ICD 

 COMPANION 0.64 (0.46, 0.90) 

COMPANION 0.81 (0.59, 1.12) 
MUSTIC AF 1.46 (0.05, 45.95)    
MUSTIC SR 2.04 (0.07, 63.15)  
MIRACLE 0.73 (0.34, 1.57) 
CARE HF 0.59 (0.43, 0.82)  
          

  COMPANION 0.79 (0.60, 1.06) 

AMOVIRT 0.86 (0.27, 2.75)  
CAT 0.76 (0.33, 1.80) 
MADIT-1 0.30 (0.15, 0.59) 
DEFINITE 0.66 (0.39, 1.11) 
DINAMIT 1.12 (0.76, 1.67) 
MUSTT 0.31 (0.20, 0.46) 
MADIT-2 0.67 (0.49, 0.90) 
CABG Patch 1.11 (0.81, 1.52)  
SCD HeFT 0.70 (0.56, 0.87) 
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Table 14: Frequency Data Needed for Applying the Mixed Treatment Comparison Method     
to Implantable Cardioverter Defibrillator (ICD), Cardiac Resynchronization                  

Therapy, (CRT), and ICD/CRT Cardiac Devices for Total Mortality 
Study OMT 

(Events/n)* 
ICD 

(Events/n) 
CRT 

(Events/n) 
ICD/CRT 

(Events/n) 
AMOVIRT 7/52 6/51   
CAT 17/54 13/50   
MADIT 1 39/101 15/95   
DEFINITE 40/229 28/229   
DINAMIT 58/342 62/332   
MUSTT 255/537 35/161   
MADIT 2 97/490 105/742   
CABG Patch 95/454 101/446   
SCD HeFT 244/847 182/829   
MUSTIC SR 0/29  1/29  
MUSTIC AF 0/18  1/25  
MIRACLE 16/225  12/228  
CARE HF 120/404  82/409  
COMPANION 77/308  131/617   105/595 

CRT=Cardiac Resynchronization Therapy; ICD=Implantable Cardioverter Defibrillator; OMT=optimal medical therapy  
* Event refers to any cause mortality and n is the number of heart failure patients 
 
 

Box 3: WinBUGS Code and Data for Applying the Mixed Treatment Comparison Method to 
Implantable Cardioverter Defibrillator (ICD), Cardiac Resynchronization Therapy,  

(CRT), and ICD/CRT Cardiac Devices for Total Mortality20,21,25 
 

 
Random effects model: no correlation structure in multi-arm trials 
 
model{ 
 
for(i in 1:N)  {   logit(p[i])<-mu[s[i]]+ delta[i]  * (1-equals(t[i],b[i]))                                                #  model  
                           r[i]~dbin(p[i],n[i])                                                                                #  binomial likelihood 
                           delta[i] ~ dnorm(md[i],tau)                                          # random effects: trial-specific LORs 
                           md[i] <- d[t[i]] - d[b[i]]   }                                                   # means of trials-specific LORs 
 
for(j in 1:NS){ mu[j]~dnorm(0,.0001) }                                                         # vague priors for trial baselines 
    
d[1]<-0 
for (k in 2:NT)  {d[k] ~ dnorm(0,.0001) }                                                 # vague priors for basic parameters 
    
sd~dunif(0,2)                                                                   #  vague prior for random effects standard deviation   
tau<-1/pow(sd,2) 
 
 
# Absolute treatment effects on mean response on OMT over trials involved  
mA ~ dnorm(0,1) 
for (k in 1:NT)   { logit(T[k])<- mA  +d[k] }       
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# Ranking and probability {treatment k is best}  
for (k in 1:NT) { rk[k]<- NT+1 - rank(T[],k) 
                        best[k]<-equals(rk[k],1)} 
 
# Pairwise odds ratios 
for (c in 1:(NT-1)) 
          {  for (k in (c+1):NT)   
                 {  lor[c,k] <- d[k] - d[c] 
                    log(or[c,k]) <- lor[c,k]  
                 } 
           } 
} 
 
Data: 
 
#2 arm star 
list(N=20, NS=10, NT=3) 
 
s[]  t[]  r[]       n[]   b[] 
1    1      7       52    1 
1    2      6       51    1 
2    1    17       54    1 
2    2    13       50    1 
3    1    39     101    1 
3    2    15       95    1 
4    1    40     229    1 
4    2    28     229    1 
5    1    58     342    1 
5    2    62     332    1 
6    1  255     537    1 
6    2    35     161    1 
7    1    97     490    1 
7    2  105     742    1 
8    1    95     454    1 
8    2   101    446    1 
9    1   244    847    1 
9    2   182    829    1 
10    1     77    308    1 
10    3   105    595    1 
END 
 
#initial 
list( 
d=c(NA,0,0), 
sd=1, 
mu=c(0,0,0,0,  0,0,0,0,  0,0,0,0,  0,0,0,0,  0,0,0,0) 
) 
 
#3 arm star 
list(N=30, NS=15, NT=4) 
 
s[]  t[]   r[]      n[]   b[] 
1    1      7       52    1 
1    2      6       51    1 
2    1    17       54    1 
2    2    13       50    1 
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3    1    39     101    1 
3    2    15       95    1 
4    1    40     229    1 
4    2    28     229    1 
5    1    58     342    1 
5    2    62     332    1 
6    1  255     537    1 
6    2    35     161    1 
7    1    97     490    1 
7    2  105     742    1 
8    1    95     454    1 
8    2   101    446    1 
9    1   244    847    1 
9    2   182    829    1 
10    1     77    308    1 
10    3   105    595    1 
11  1      0       18    1 
11  3      1       25    1 
12  1    16     225    1 
12  3    12     228    1 
13  1  120     404    1 
13  3    82     409    1 
14  1    77     308    1 
14  3  131     617    1 
15  1    77     308    1 
15  4  105     595    1 
END 
 
#initial 
list( 
d=c(NA,0,0,0), 
sd=1, 
mu=c(0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0) 
) 
 
#ladder design 
list(N=30, NS=15, NT=4) 
 
s[]  t[]   r[]      n[]    b[] 
1    1      7       52    1 
1    2      6       51    1 
2    1    17       54    1 
2    2    13       50    1 
3    1    39     101    1 
3    2    15       95    1 
4    1    40     229    1 
4    2    28     229    1  
5    1    58     342    1 
5    2    62     332    1 
6    1  255     537    1 
6    2    35     161    1 
7    1    97     490    1 
7    2  105     742    1 
8    1    95     454    1 
8    2   101    446    1 
9    1   244    847    1 
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9    2   182    829    1 
10    1       0      29    1 
10    3       1      29    1 
11   1       0      18    1 
11   3       1      25    1 
12  1     16    225    1 
12  3     12    228    1 
13  1    120   404    1 
13  3      82   409    1 
14  1      77   308    1 
14  3    131   617    1 
15  3    131   617    3 
15  4    105   595    3 
END 
 
#initial 
list( 
d=c(NA,0,0,0), 
sd=1, 
mu=c(0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0) 
) 
  
#abd design 
list(N=32, NS=16, NT=4) 
 
s[]  t[]   r[]      n[]   b[] 
1    1      7       52    1 
1    2      6       51    1 
2    1    17       54    1 
2    2    13       50    1 
3    1    39     101    1 
3    2    15       95    1 
4    1    40     229    1 
4    2    28     229    2 
5    1    58     342    1 
5    2    62     332    1 
6    1  255     537    1 
6    2    35     161    1 
7    1    97     490    1 
7    2  105     742    1 
8    1    95     454    1 
8    2   101    446    1 
9    1   244    847    1 
9    2   182    829    1 
10    1       0      29    1 
10   3       1      29    1 
11  1       0      18    1 
11  3       1      25    1 
12  1     16    225    1 
12  3     12    228    1 
13  1    120   404    1 
13  3      82   409    1 
14  1      77   308    1 
14  3    131   617    1 
15  1      77   308    1 
15  4    105   595    1 
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16  3    131   617    3 
16  4    105   595    3 
END 
 
#initial 
list( 
d=c(NA,0,0,0), 
sd=1, 
mu=c(0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0,  0,0,0,0,0) 
) 
 
Source: https://www.bris.ac.uk/cobm/research/mpes/mixed-treatment-comparisons.html, reproduced with 
permission.  
 
The results of applying the Bucher, Lumley, and mixed treatment comparison methods to these 
data are summarized in Table 15. The mixed treatment comparison method could be used for all 
four patterns, the Bucher method could be used directly for the simple star and ladder patterns, 
and the Lumley method could only be used for the closed loop. Although never reaching 
statistical significance, the point estimates for odds ratio always exceeded 1 when the mixed 
treatment comparison method was used, and were less than 1 for the Bucher and Lumley 
methods. The confidence intervals were always narrower for the Bucher method. For the one 
pattern in which the Lumley method could be used, the incoherence was large (0.38). As a result, 
the 95% CI was (-0.87, 2.75) when adding the incoherence (0.38) and standard deviation (0.84) 
of the odd ratio (0.94). As the incoherence was high,we got a negative lower confident limit.  
The 95% CI is presented as (0, 2.75) in Table 15, but it indicates that the odds ratios and 95% 
CIs from the Lumley method are not valid when the incoherence is high. 
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Table 15: Comparison of ICD/CRT versus ICD Cardiac Devices Using the Bucher-Adjusted    
Indirect Method, the Lumley Network Analysis Method, and the Mixed                      

Treatment Comparison Method for Total Mortality 
ICD/CRT versus ICD Pattern Branches of Network Used in the 

Estimation: OR (95% CI) Bucher 
OR (95% CI) 

Lumley 
OR (95% CI) 

MTC 
OR (95% CI) 

Simple 
star 

 
 

ICD vs OMT: 0.66(0.51,0.86)  
ICD/CRT vs OMT: 0.64(0.46,0.90) 

 
0.97 

(0.62,1.53) 

 
NA 

 
1.20 

(0.37,2.61) 

Star 

 
 

CRT vs OMT: 0.70(0.57,0.88) 
ICD vs OMT: 0.66(0.51,0.86)  
ICD/CRT vs OMT: 0.64(0.46,0.90) 

 
NA* 

 
NA 

 
1.16 

(0.38,2.49) 

Ladder 

 
 

ICD/CRT vs CRT: 0.79(0.60,1.06) 
CRT vs OMT: 0.70(0.57,0.88) 
OMT vs ICD: 1.52(1.16,1.96) 

 
0.84 

(0.53,1.35) 

 
NA 

 
1.16 

(0.32,2.59) 

At least 
one 
closed 
loop 

 
 

ICD/CRT vs CRT: 0.79(0.60,1.06) 
CRT vs OMT: 0.70(0.57,0.88) 
ICD/CRT vs OMT: 0.64(0.46,0.90) 
OMT vs ICD: 1.52(1.16,1.96) 

 
NA 

 
0.94 

(0.00,2.75) 

 
1.06 

(0.49,1.95) 

CI=confidence interval; CRT=Cardiac Resynchronization Therapy; ICD=Implantable Cardioverter Defibrillator; OMT=optimal medical 
therapy; vs=versus  
*NA=Not Applicable 
 
6.4 Summary 
The Bucher-adjusted indirect comparison, the Lumley network meta-analysis, and the mixed 
treatment comparison methods can lead to different estimates of the odds ratio effect measure. 
Based on the examples, the following observations are made: 
• Although point estimates were not the same, all methods agreed regarding the statistical 

significance of the effect measure. 
• Point estimates could differ by being on opposite sides of the neutral point OR=1. 
• Confidence intervals were the widest for the Lumley method, and the confidence intervals for 

the mixed treatment comparison method were wider than for the Bucher method. 
• The software is readily available for computing estimates for odds ratio using all three 

methods, but not for the other effect measures except for the Bucher method. 
• The mixed treatment comparison method could be used for all network patterns. 
• The Bucher method required the least amount of information for computation. 
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7 SUMMARY  
The review of the various approaches for indirect treatment comparisons has identified three 
general approaches: the Bucher-adjusted indirect comparison method, the Lumley network 
analysis method, and the mixed treatment comparison method. Table 16 indicates the various 
different networks of evidence that can be analyzed by the indirect comparison methods. These 
networks represent the star, ladder, and closed and partially closed-loop designs. The mixed 
treatment comparison method can be used to obtain measures of effect for each of the indicated 
patterns. The network meta-analysis method proposed by Lumley can compare treatments in a 
network geometry that contains at least one closed loop. The adjusted indirect comparison 
method proposed by Bucher can be used to evaluate the effect of treatments that form a simple 
star design. The Bucher method has been proposed to perform indirect comparisons when direct 
evidence is not available, and the method is not applicable to the closed loop pattern. For the 
other designs, the Bucher method can be used to determine the indirect evidence of the pairwise 
contrasts that have not been directly compared in the star, ladder, and network with one closed 
loop designs. 
 
 

Table 16: Network Patterns that the Various Indirect Treatment                           
Comparison Methods Can Process 

Indirect Comparison Method Pattern Description Network 
Pattern Bucher Method Network Meta-

analysis 
Mixed 

Treatment 
Comparison 

Simple star 

 

 
 
 

 
__ 

 
 
 

Star 

 

 
__ 

(Pairwise 
contrasts) 

 
__ 

 
 

Ladder 

 

 
 

 

 
__ 

 
 

Closed loop 

 

 
__ 

 
 

 
 

Network with at least 
one closed loop 

 

 
 

(Pairwise 
contrasts) 
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When mixed treatment comparison or network meta-analysis is used to evaluate the evidence 
network depicted by the closed loop pattern, the methods can simultaneously combine direct and 
indirect evidence, and can evaluate the incoherence of the closed loop. The variance parameter 
w2 from Lumley’s model is equivalent to inconsistency variance σw

2 estimated in the mixed 
treatment comparison models.20  However, the two methods will calculate different values for 
treatment effects because of differences in the way that inconsistency is evaluated. As indicated 
by Salanti et al.16 and Lu and Ades,20 in the network meta-analysis approach, the number of 
incoherence terms ijξ is equal to the number of different comparisons. In the mixed treatment 
comparison framework, the number of inconsistency terms is equal to the number of different 
independent closed loops.  
 
The mixed treatment comparison model described by Lu and Ades measures the relative efficacy 
of treatments using the log odds ratio effect measure. Various investigators have performed the 
mixed treatment comparison  for other effect measures. For instance, Vandermeer et al. 
considered direct and indirect evidence to evaluate the relative efficacy between benzodiazepines 
and nonbenzodiazepenes26 based on mean differences for five of their clinical outcomes and risk 
difference on the adverse event outcome. Jansen et al.22 have outlined a mixed treatment 
comparison model to be applied to continuous outcomes. 
 
Various approaches for indirect treatment comparisons have been reviewed. The mixed treatment 
comparison approaches by Lu and Ades are elegant, but require information that may not be 
available. The challenge of Lumley’s network meta-analysis is that it needs a data-based 
assessment of trial consistency; therefore, it requires information from a large number of 
different treatment comparisons. When analyzing a network of comparisons, the inconsistency of 
the network needs to be considered, as well as between-trial heterogeneity and sampling error.  
Large inconsistencies rule out a meta-analysis, small inconsistencies should add uncertainty to 
the results. The inconsistency of the network can only be assessed for a closed loop of 
treatments, with more loops allowing for better diagnosis of consistency. Estimating 
inconsistency will be reliable to the extent that the trials in these closed loops are similar to other 
trials. In addition, consistency cannot be assessed for a star design comparing everything to 
placebo, or for a ladder design where new treatments are always compared to current standard. 
 
The attractiveness of the Bucher approach is that it has been designed for application with 
minimal information to the common indirect treatment comparison involving a simple star 
design: using the direct comparisons X versus A and X versus B with the common comparator 
link “X” to yield an indirect comparison of A versus B. The Bucher approach has not been 
shown to work for the ladder design. That is, we have X versus C, C versus E, E versus F, F 
versus G, and we want to use the comparator links “C,” “E,” and “F” to yield an indirect 
comparison of X versus G.  In Chapter 3, we extended the Bucher approach to apply to the 
ladder design and, as well, extended the approach for the effect measures relative risk, risk 
difference, hazard ratio, and mean difference. 
 
We extended the Bucher approach to different measures of association and to the “ladder” design 
in which several direct comparisons can be linked by common comparators. A methodology for 
indirect evidence for both discrete and continuous outcomes has been developed by expanding 
the indirect odds ratio approach by Bucher et al. (1997) involving k direct comparisons. This 
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generalized approach was then considered for the relative risk, hazard ratio, risk difference, and 
mean difference. The indirect point and confidence interval estimators and test of association for 
these different effect parameters were derived. 
 
The distributional and statistical properties of the Bucher-adjusted indirect comparison 
estimators have been explored using Monte Carlo simulations for the case of k=3 treatments. In 
particular: 
   
Frequency distribution for the indirect estimators ln(relative risk), ln(odds ratio), ln(hazard ratio), 
risk difference, and mean difference all are mound shape and symmetric. 

 
For relative risk and odds ratio, the bias, variance, and mean square error: 
• for the direct and indirect estimators decrease as the event rate approaches 0.5 
• for the indirect estimator are larger than the direct estimator; in particular, for small event 

rates 
• for both direct and indirect estimators increase as the effect measure being estimated 

increases. 
 

For risk difference and mean difference: 
• for any combination of the parameters, the bias of both the direct and indirect estimators is 

small (theoretically zero) and of similar magnitude 
• for any combination of the parameters, the variance of the indirect estimator is consistently 

larger than that for the direct estimator 
• similarly for any combination of the parameters, the mean square error of the indirect 

estimator is consistently larger than that for the direct estimator. 
 
Although, in theory, there is no limit to the number of treatments that can be included in the 
indirect comparisons, in practice, the number of treatments should be limited. The confidence 
intervals continue to increase in width as the number of treatments increase and become 
impractically large. Further, the point estimates for the risk difference and mean difference 
continue to increase. 
 
Our conclusions about the degree of bias associated with direct versus indirect effect estimates 
are not consistent with results of a study by Song et al.39 For the evaluation of the relative 
efficacy between new and conventional drugs, Song et al. examined the discrepancy between 
treatment effects based on direct comparisons versus indirect comparisons using the approach of 
Bucher. The results showed that the effect sizes of direct estimates were greater than those of 
indirect estimates. For this reason, the authors concluded that the results of direct comparisons 
may be associated with a greater amount of bias than results of indirect comparisons. More 
specifically, these investigators performed meta-analyses for three pairwise comparisons. The 
authors evaluated buproprion versus nicotine replacement therapy for smoking cessation, 
rispiridone versus haloperidol for schizophrenia, and fluoxetine versus imipramine for depressive 
disorders. For each comparison, a meta-analysis was performed by pooling together the results of 
trials in which the drugs were compared directly. Another meta-analysis was conducted for each 
comparison by pooling the results of trials in which each drug was compared to placebo, and 
then performing an indirect comparison. Treatment differences were measured on the odds ratio 
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scale. The results indicated that the effect size of the odds ratio from the meta-analyses, based on 
direct evidence, was larger than the effect size of the indirect odds ratio. Their conclusions need 
to be verified by further investigations. Interestingly, the authors performed a simulation study 
which indicated that when placebo-controlled trials of new drugs are associated with less bias 
than placebo-controlled trials of conventional drugs, the adjusted indirect comparison will 
underestimate the true treatment effect. Song et al. also showed that, for any given level of bias 
in placebo-controlled trials of new drugs, as the level of bias for placebo-controlled trials of 
conventional drugs increases, the bias of the adjusted indirect estimate decreases. Based on the 
results of their simulation study, the authors concluded that although indirect estimates could be 
biased, the magnitude of this bias may still be less than the bias of estimates based on direct 
evidence. However, their simulation study did not specifically investigate the discrepancy 
between direct and indirect estimates, and such a simulation study should be conducted. 
 
A “reviewer-friendly” program was developed and made available to facilitate the evaluation of 
indirect evidence for reviewers. The Indirect Treatment Comparison program has been 
developed in Visual Basic to assist with the various calculations associated with indirect 
comparisons. It consists of two screens. On the first screen, the effect measure of interest is 
identified and information for each consecutive pair of treatments of interest is requested for the 
point estimate and 95% CI of the effect measure for each direct comparison involved in the 
indirect comparison. The resulting indirect comparison estimates for the effect measure and the 
95% CI, as well as the P value for the test of association corresponding to this effect measure, are 
provided. On the second screen, the weights needed for a specific direct comparison is requested 
in order to calculate the test statistic for the test of association. There are various formats in 
which the information to calculate these weights can be provided and are identified through the 
weight selections (direct versus derived; fixed versus random), and the specific information for 
each study involved in the direct comparison is then identified and requested. 
 
This report has expanded on a previously published report on indirect comparisons.39 In a health 
technology assessment report, Glenny et al.40 performed a comprehensive survey of the literature 
for published examples of indirect comparisons. The authors reported the frequency of indirect 
comparisons in the published literature and described the methods being used at the time of their 
review to obtain indirect treatment effects. The report also consisted of empirical investigations 
to compare effect parameters based on direct versus indirect evidence, and to analyze the 
discrepancy between results from each of these sources of evidence. 
 
The objectives of the investigation have been met. We have: identified and reviewed the 
different popular methods available for making indirect treatment comparisons; derived general 
methods and procedures for effect measures of discrete and continuous outcomes within complex 
webs of evidence following a ladder design; determined the distributional properties of the 
indirect estimates using simulations and derived bias and mean square error tables and charts 
providing guidance on the indirect treatment comparison results; and developed a user-friendly 
program for conducting indirect treatment comparisons for the methods and procedures derived. 
We have replicated the indirect treatment comparison results in several examples from the 
literature using the indirect treatment comparisons program, and have used the bias and mean 
squared error tables and charts to assess the goodness of the adjusted indirect comparison 
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treatment estimates. Further, for the various methods identified, we have illustrated the 
application of these methods for indirect treatment comparisons. 
 
Note of caution: In the absence of previously performed randomized controlled trials in which 
two interventions of interest have been compared, indirect methods may be used. However, 
indirect treatment comparisons should be restricted to those situations in which it is not possible 
to perform a direct head-to-head trial. Furthermore, if there is interest in comparing treatment A 
to treatment C and trials have compared each of A and C to treatment B separately, it is 
important to be certain that the fundamental assumption underlying this method for indirect 
comparisons is fulfilled: the effect of A, observed in the A versus B trials, is expected to have 
been constant had it been administered instead of C in the C versus B trials. Likewise, the 
observed effect of C should be expected to be constant in the A versus B trials.  
 
Whether an indirect treatment comparison provides a valid estimate of the relative efficacy for an 
intervention of interest significantly depends on the fulfillment of this primary assumption. To 
determine whether or not this assumption is met, trials included in the indirect comparison can be 
assessed according to three criteria:  
• comparability of the linking treatment;  
• comparability of patients/heterogeneity; 
• methodological comparability of included trials.  
  
If there are significant differences in the aforementioned criteria between the two sets of trials, 
the effect estimate will not represent the true value. Differences in the linking treatment may 
occur when, for instance, an active control was administered at different doses in each set of 
studies, or when a placebo is not truly equivalent in both sets of studies. This latter situation 
occurs when there is heterogeneity between patient groups. Heterogeneity may arise when there 
are clinical differences in the two sets of studies related to diagnostic criteria, disease severity, 
follow-up time, trial setting, assessment of outcomes, chosen outcome measures, age, and sex. 
Heterogeneity in patients may not only affect the comparability of the linking group but, also, the 
consistency of the observed effect of the intervention. Further to this, if one set of trials — the A 
versus B trials, for instance ― was of relatively weaker methodological quality than the other set 
of trials (C versus B), the effect of A may be exaggerated and could not be expected to be 
reproducible if A were administered in place of C in the C versus B trials.   
 
The validity of the indirect comparison also depends on the following additional criteria: 
• the inclusion of non randomized studies 
• date of publication. 
 
Because non-randomized studies are associated with unmeasureable biases that can only be 
accounted for through the conduct of randomized controlled trials, these types of studies should 
not be included in an indirect comparison. Additionally, even in the case that the two sets of 
trials included in the indirect comparison are the same, if the trials used in the indirect 
comparison were published in a time period that does not reflect the current day clinical practice, 
any estimate derived from such comparisons may be insensible. This is especially important 
because indirect comparisons are often based on older trials. For instance, Yazdanpanah et al.41 
conducted an indirect treatment comparison to evaluate the relative efficacy of non-nucleoside 



Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis 91

reverse transcriptase inhibitor (NNRTI) based triple therapy versus protease inhibitor-based 
triple therapy in preventing the primary outcome of an AIDS-defining disease or death among 
patients with advanced immunodeficiency. Each treatment had been compared to a two-drug 
regimen consisting of nucleoside analogue reverse transcriptase inhibitors (NRTIs). Based on the 
results of the comparison, Yazdanpanah et al. concluded that protease inhibitor-based triple 
therapy was more effective than NNRTI-based triple therapy (OR 0.54 [95% CI: 0.40, 0.73]).41  
However, a review article by Lundgren and Phillips42 stated that Yazdanpanah’s conclusions 
were based on protease inhibitors that are obsolete, due to their limited potency. Yazdanpanah   
et al.’s41 results were not replicated in two recent randomized controlled trials, which directly 
compared NNRTI-based triple therapy to protease inhibitor-based triple therapy.  
 
7.1 Future Work 
• The methods and applications presented in this report apply to data from randomized 

controlled trials. Using data from non-randomized studies to perform indirect comparisons 
requires further methodological developments. Such methods would require the incorporation 
of techniques to adjust for biases associated with data from non-randomized studies. Using 
appropriate statistical methods, adjusted confidence interval estimates could be derived and 
used in the Bucher-adjusted indirect comparison method, but the interpretation of the bias in 
light of different levels of confounding should be investigated. For the Lumley network meta-
analysis and mixed treatment comparison  methods, the statistical models used will need to be 
generalized to incorporate potential confounding variables. 

• A comprehensive simulation to formally evaluate the bias and mean square error properties of 
Lumley and mixed treatment comparison methods should be undertaken.  

• This report extended the adjusted indirect comparison method for applicability to various 
measures of treatment effect. The use of the other indirect comparison methods to a range of 
different effect scales is in need of additional elaboration. The mixed treatment comparison 
model is formally based on the odds ratio. Further work is required to determine the validity of 
the results when the mixed treatment comparison model is applied to effect measures. 

• This report has presented an indirect treatment comparison program to perform the Bucher-
adjusted indirect comparison method for consecutive pairs of k treatments. The Lumley 
network meta-analysis method can be performed using statistical software programs such as S-
plus or R, which are used for routine statistical analyses and programming.1 The mixed 
treatment comparison method can be implemented in WinBUGs, a platform for performing 
advanced statistical procedures in a Bayesian framework.2 Extensive statistical and 
computational knowledge is needed to properly use S-plus, R, and WinBUGS. The 
development of a software program that simplifies the process for performing network meta-
analysis and mixed treatment comparison— such as the indirect treatment comparisons 
program described in this report ― would be a valuable contribution. 

• For treatment differences that are not statistically significant, a power analysis can be 
conducted to determine the power of the study to reject the null hypothesis. Considerations 
related to the power of studies are part of the general body of knowledge for statistical 
analyses. For this reason, a section on power has not been included in this report. However, a 
formal evaluation of power should be reviewed and, in addition, as indicated by Salanti et al.,16 
future research may indicate procedures through which results of meta-analyses based on 
indirect comparisons can be used to determine power when planning a new study. 
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APPENDIX A: GENERAL THEORY FOR EFFECT SIZE 
ESTIMATOR AND TEST STATISTIC OF ASSOCIATION 
 
Two fundamental propositions underlie the estimation and hypothesis testing procedures for the 
indirect measures. 
  
Consider k treatments kAAA ,,, 21 L .  If for consecutive pairs of treatment the direct estimator of 

the measure of association (Y) for treatment Ai and Ai+1 is )1,...,2,1(ˆ
1

−=
+

kiY
ii AA  then the effect 

size estimator and test statistic for evaluating the indirect association between treatments A1 and 
Ak  can be expressed in terms of the direct estimators as summarized in Figure A.1. 
 
 
Figure A.1: Indirect effect size estimator and test statistic for association 
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• Indirect estimator of Y for treatments A1 and Ak: ∑
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• Indirect 100(1-α)% confidence interval estimator of Y for treatments A1 and Ak:  
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where 2/αZ is the 100(1-α) percentile of the standard normal distribution 
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• Test statistic for evaluating the indirect association between treatments A1 and Ak: 
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The formal statement of the two theorems that underlie the estimation and hypothesis testing 
procedures are: 
 
 
A.1 Effect Size Estimator 
 
Proposition: 
Consider k treatments kAAA ,,, 21 L .  If for consecutive pairs of treatments the direct estimator of 

the measure of association (Y) for treatment Ai and Ai+1 is 
1

ˆ
+ii AAY and this has the functional form 

)()(ˆ
11 +−=

+ iiAA AfAfY
ii

, )1,...,2,1( −= ki  then the indirect estimator of Y for treatments A1 and 
Ak is 

 ∑
−

=
+

=
1

1
11

ˆˆ
k

i
AAIndirectAA iik

YY        (A.1.1) 

The indirect 100(1-α)% confidence interval estimator of Y is given by 
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where 2/αZ is the upper 100(1-α/2) percentile of the standard normal distribution. 

 

Proof: 

 The proof of the relationship will be done by mathematical induction.  First, for the case 

of an indirect estimator of n=1 steps (i.e. k=3).  Consider k=3 treatments, the direct estimator 

of Y for treatments A1 and A3 is  

 )()(ˆ
3131

AfAfY AA −=        (A.1.3) 

Adding and subtracting )( 2Af  in (A.1.3) yields 
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which is the indirect estimator of Y.  That is 

 
322131

ˆˆˆ
AAAAIndirectAA YYY +=  

implying that the relationship is true for a 1 step indirect estimator. 
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Assume that the relationship is true for an indirect estimator of n-3 (n>5) steps (i.e. k-1 

treatments).  That is, for k-1 treatments it is assumed that the indirect estimator of the 

measure of association between treatments A1 and Ak-1 is given by 

 ∑
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The direct estimator of the measure of association between treatments A1 and Ak is  
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which is the indirect estimator of the measure of association for k treatments.  That is 

 ∑
−

=
+

=
1

1
11

ˆˆ
k

i
AAIndirectAA iik

YY  

implying that the relationship is true for a n-3 step indirect estimator (i.e. k treatments).  By 

the principle of mathematical induction this relationship holds for all values of k treatments 

(k>2) or equivalently n steps (n>3, n=k-2). 

 

 The indirect 100(1-α)% confidence interval estimator of Y is given by 
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ii AA  are estimated from different studies, they are statistically 

independent and hence 
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Substituting (A.1.6) into (A.1.5) yields the indirect 100(1-α)% confidence interval estimator 

of Y as given in (A.1.2).  This completes the proof.  
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Remark: 
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A.2 Test Statistic of Association 
 
In combining measures of association ),,2,1( hjYj L= across several (h) studies, the overall 

measure of association Ŷ  is a weighted average of the measures with weights 
),,2,1( hjWj L= being the inverse of the variance of the measures for each study.  Further, as 

indicated in Figure A.2.1, under the null hypothesis of no association in any of the studies, 
various sums of squares of the measures have approximate chi-square distributions that can be 
used to assess the degree of association and the homogeneity of the measures across the studies.  
 
 
Figure A.2.1: Combining measures of association 
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For the direct comparison of Ai and Ai+1 involving 

1+ii AAh studies, we have 

 222
111 ityheterogeneAAnassociatioAAtotalAA iiiiii +++

+= χχχ  

where ∑
+

+++
=

=
1

111
1

2
,,

2
iAiA

iiiiii

h

j
jAAjAAtotalAA YWχ  

 ∑∑
+

+

+

+++
==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

1

1

1

111
1

,

2

1
,,

2
iAiA

ii

iAiA

iiiiii

h

j
jAA

h

j
jAAjAAnassociatioAA WYWχ  

 ∑
+

++++
=

−=
1

1111
1

2
,,

2 )ˆ(
iAiA

iiiiiiii

h

j
AAjAAjAAityheterogeneAA YYWχ     (A.2.1) 

  where ∑∑
+

+

+

+++
==

=
1

1

1

111
1

,
1

,,
ˆ iAiA

ii

iAiA

iiiiii

h

j
jAA

h

j
jAAjAAAA WYWY   (A.2.2) 

and under the null hypothesis of no association 
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and under the null hypothesis of no association 
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In considering a test statistic 2

1 nassociatioIndirectAA k
χ  for evaluating the association between treatments 

A1 and Ak when only an indirect comparison of the treatments A1 and Ak is available, based on 
direct estimators for consecutive pairs of treatment Ai and Ai+1 (i=1,2,…,k-1), the following is 
proposed 
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which is approximately distributed as 2
1χ .  A rationale for this formulation is provided after the 

proof of the following theorem. 
 
 
Proposition:  
Consider k treatments kAAA ,,, 21 L .  If for consecutive pairs of treatments the direct estimator of 

the measure of association (Y) for treatment Ai and Ai+1 is )1,...,2,1(ˆ
1

−=
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kiY
ii AA  then the test 

statistic for evaluating the indirect association between treatments A1 and Ak  can be expressed as 



 A-7

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑ ∑∑∑ ∑∑

−

= =

−

=

−

+= ==

+

+++

+

+

+

+

1

1 1
,

2
2

1

1

1' 1
,

1
,

2
1

11''1

1''

1''

1

11
)ˆˆ(

k

i

h

j
jAAAAAA

k

i

k

ii

h

j
jAA

h

j
jAAnassociatioIndirectAA

iAiA

iiiiii

iAiA

ii

iAiA

iik
WYYWWχ  

 
          (A.2.6) 
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the number of studies involved in the direct comparison of Ai and Ai+1. 
 

Proof: 
 
Substituting (A.2.1) and (A.2.3) into (A.2.5) yields 
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 since from (A.2.2) and (A.2.4) 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∑∑ ∑∑ ∑

+

++

+

++

+

+

+

++
==

−

= =

−

= =

1

11

1

11

1

121

1

11
1

,
1

,,

1

1 1
,

1

1 1
,,

ˆˆ iAiA

iiii

iAiA

iiii

iAiA

iik

iAiA

iiii

h

j
jAAAA

h

j
jAAjAA

k

i

h

j
jAAAAA

k

i

h

j
jAAjAA WYYWandWYYW L

  respectively  
  
 

∑ ∑∑ ∑
−

= =

−

= =

+

+

+

++
−=

1

1 1

2
,

1

1 1

2
,

1

211

1

11
ˆˆ

k

i

h

j
AAAjAA

k

i

h

j
AAjAA

iAiA

kii

iAiA

iiii
YWYW L  

 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑ ∑∑ ∑∑ ∑∑ ∑

−

= =

−

= =

−

= =

−

= =

+

+

+

++

+

++

+

+

1

1 1
,

2
1

1 1
,

1

1 1

2
,

1

1 1
,

1

1

1

11

1

11

1

1
ˆˆ

k

i

h

j
jAA

k

i

h

j
AAjAA

k

i

h

j
AAjAA

k

i

h

j
jAA

iAiA

ii

iAiA

iiii

iAiA

iiii

iAiA

ii
WYWYWW  

 
          (A.2.7) 
 since substituting (A.2.2) into (A.2.4) and simplifying yields 
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The following terms in (A.2.7) can be expressed as: 
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and 
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          (A.2.9) 
 
Substituting (A.2.8) and (A.2.9) in (A.2.7) yields 
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This completes the proof. 

 
 
Rationale for equation (A.2.5) 

 For analysis of variance (ANOVA) with one factor having k levels, the total sum of 

squares (SST) is 
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where 

 jn  is the number of observations in j th level kj ,,1L=  
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Expanding the square on right hand side (A.2.10), yields 
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The cross-product term in (A.2.11) is zero, that is 
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Thus (A.2.11) reduces to 
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For k=2, (A.2.12) reduces to 
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          (A.2.13) 

which can be expressed as SSR = SST - SSW1 - SSW2 where 

SST  represents the overall heterogeneity, that is the sum of squares of differences of all 

observations from overall mean; this corresponds to 2
ityheterogeneχ . 

SSW1 represents the heterogeneity due to the A1A2 comparison, that is sum of squares of 

differences of observations in A1A2 comparison group from their group mean; this 

corresponds to 2
21 ityheterogeneAAχ . 

SSW2 represents the heterogeneity due to A2A3 comparison, that is sum of squares of  

differences of observations in A2A3 comparison group from their group mean; this 

corresponds to 2
32 ityheterogeneAAχ . 

SSR is the residual sum of squares and represents the statistic 2
31 ityheterogeneAAχ . 
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Similarly for k treatments kAAA ,,, 21 L , for the indirect comparison between 1A  and 

kA using k-1 pairwise direct comparisons between iA  and 1+iA , 1,,1 −= ki L , equation 

(A.2.12) can be expressed as an extension of (A.2.13).  That is 
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This completes the rationale. 

 
 
 
A.3 Model for Indirect Comparisons of Odds Ratios (OR) 
 
Consider k treatments kAAA ,,, 21 L .  For consecutive pairs of treatments, the direct estimator of 
the logarithm odds ratio (ln(OR)) for treatment Ai and Ai+1 is 

))1/(ln())1/(ln()ln( 111 ++ −−−=
+ iiiiAA PPPPOR

ii
 where )( ii APP =  denotes the outcome rate for 

patients on treatment Ai (i=1,2,…,k-1).  This has the functional form )()( 1+− ii AfAf  
where ))1/(ln()( iii PPAf −= .  Applying the Effect Size Estimator Proposition to the special case 
of estimating the logarithm odds ratio, the indirect estimator of the ln(OR) for treatments A1 and 
Ak is 
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and the indirect 100(1-α)% confidence interval estimator of ln(OR) is given by 
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where 2/αZ is the upper 100(1-α/2) percentile of the standard normal distribution.  On the 
arithmetic scale the corresponding indirect estimators for the odds ratio are 
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respectively. 
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Remark: 

Given the 100(1-α)% CI estimator ),(
11 ++ iiii AAAA ucllcl for )1,...,2,1(

1
−=

+
kiOR

ii AA , the standard 
error of the indirect estimator )ln(

1 IndirectAA k
OR  can be expressed as 

2/

1

1

2 2))ln()(ln(
11 αZlclucl

k

i
AAAA iiii∑

−

=
++

−  

and the 100(1-α)% confidence interval estimator of ln(OR) and OR are 

∑∑
−

=

−

=
+++

−±
1

1

2
1

1
))ln()(ln(

2
1)ln(

111

k

i
AAAA

k

i
AA iiiiii

lcluclOR    (A.3.5) 

and 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−± ∑∑

−

=

−

=
+++

2
1

1

1

1
))ln()(ln(

2
1)ln(exp

111

k

i
AAAA

k

i
AA iiiiii

lcluclOR    (A.3.6) 

respectively. 
 
 
The test statistic for evaluating the indirect association OR between treatments A1 and Ak  can be 
expressed as: 
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          (A.3.7) 
 
This is a special case of Test Statistic for Association Proposition applied to the estimation of the 
odds ratio.  

  

 

A.4 Model for Indirect Comparisons of Relative Risk (RR) 
 
Consider k treatments kAAA ,,, 21 L .  For consecutive pairs of treatments, the direct estimator of 
the logarithm relative risk (ln(RR)) for treatment Ai and Ai+1 is )ln()ln()ln( 11 +−=

+ iiAA PPRR
ii

 
where )( ii APP =  denotes the outcome rate for patients on treatment Ai (i=1,2,…,k-1).  This has 
the functional form )()( 1+− ii AfAf  where )ln()( ii PAf = .  Applying the Effect Size Estimator 
Proposition to the special case of estimating the logarithm relative risk, the indirect estimator of 
the ln(RR) for treatments A1 and Ak is 
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and the indirect 100(1-α)% confidence interval estimator of ln(RR) is given by 
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where 2/αZ is the upper 100(1-α/2) percentile of the standard normal distribution.  On the 
arithmetic scale the corresponding indirect estimators for the relative risk are 
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respectively. 
 
 
The test statistic for evaluating the indirect association RR between treatments A1 and Ak  can be 
expressed as: 
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          (A.4.7) 
 
This is a special case of Test Statistic for Association Proposition applied to the estimation of the 
relative risk.  

  

 



 A-14

A.5 Model for Indirect Comparisons of Hazard Ratio (HR) 
 
Consider k treatments kAAA ,,, 21 L .  For consecutive pairs of treatments, the direct estimator of 
the logarithm hazard ratio (ln(HR)) for treatment Ai and Ai+1 is 

))(ln())(ln()ln( 11
ththHR iiAA ii +−=

+
 where )(thi  denotes the hazard of the outcome for patients on 

treatment Ai at time t (i=1,2,…,k-1).  This has the functional form )()( 1+− ii AfAf  
where ))(ln()( thAf ii = .  Applying the Effect Size Estimator Proposition to the special case of 
estimating the logarithm hazard ratio, the indirect estimator of the ln(HR) for treatments A1 and 
Ak is 
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and the indirect 100(1-α)% confidence interval estimator of ln(HR) is given by 
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where 2/αZ is the upper 100(1-α/2) percentile of the standard normal distribution.  On the 
arithmetic scale the corresponding indirect estimators for the hazard ratio are 
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respectively. 
 
Remark: 

Given the 100(1-α)% CI estimator ),(
11 ++ iiii AAAA ucllcl for )1,...,2,1(
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+
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error of the indirect estimator )ln(
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respectively. 
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The test statistic for evaluating the indirect association HR between treatments A1 and Ak  can be 
expressed as: 
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          (A.5.7) 
 
This is a special case of Test Statistic for Association Proposition applied to the estimation of the 
relative risk.  

  

 

A.6 Model for Indirect Comparisons of Risk Difference (RD) 
 
Consider k treatments kAAA ,,, 21 L .  For consecutive pairs of treatments, the direct estimator of 
the risk difference for treatment Ai and Ai+1 is 11 +−=

+ iiAA PPRD
ii

 where )( ii APP =  denotes the 
the outcome rate for patients on treatment Ai (i=1,2,…,k-1).  This has the functional form 

)()( 1+− ii AfAf  where )()( ii APAf = .  Applying the Effect Size Estimator Proposition to the 
special case of estimating the risk difference, the indirect estimator of the RD for treatments A1 
and Ak is 
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and the indirect 100(1-α)% confidence interval estimator of RD is given by 
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where 2/αZ is the upper 100(1-α/2) percentile of the standard normal distribution. 
 

Remark: 
Given the 100(1-α)% CI estimator ),(
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The test statistic for evaluating the indirect association between treatments A1 and Ak  can be 
expressed as: 
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         (A.6.4) 
 
This is a special case of Test Statistic for Association Proposition applied to the estimation of the 
risk difference.  
 

  

A.7 Model for Indirect Comparisons of Mean Difference (MD) 
 
Consider k treatments kAAA ,,, 21 L .  For consecutive pairs of treatments, the direct estimator of 
the mean difference for treatment Ai and Ai+1 is 11 +−=

+ iiAA MMMD
ii

 where )( ii AMM =  
denotes the mean of the outcome for patients on treatment Ai (i=1,2,…,k-1).  This has the 
functional form )()( 1+− ii AfAf  where )()( ii AMAf = .  Applying the Effect Size Estimator 
Proposition to the special case of estimating the mean difference, the indirect estimator of the 
MD for treatments A1 and Ak is 
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and the indirect 100(1-α)% confidence interval estimator of MD is given by 
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where 2/αZ is the upper 100(1-α/2) percentile of the standard normal distribution. 
 
Remark: 
Given the 100(1-α)% CI estimator ),(
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The mean difference (MD) for treatment Ai and Ai+1 is )1,...,2,1(
1

−=
+

kiMD
ii AA  then the test 

statistic for evaluating the indirect association between treatments A1 and Ak  can be expressed 
as: 
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         (A.7.4) 
 
This is a special case of Test Statistic for Association Proposition applied to the estimation of the 
mean difference.  
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APPENDIX B: SIMULATION- DESCRIPTION, TABLE 
AND FIGURES  
 
B.1 Empirical Evaluation of the Estimators 
 
Bias and Mean Square Error  
The bias is the expected difference between the estimator and the parameter to be estimated and 
the mean square error (MSE) is the expected squared deviation between the estimator and this 
parameter. The MSE summarizes information about the bias and variance of the estimator under 
study.  The purpose of the analyzing the bias, variance and MSE was evaluate the accuracy and 
precision of the various measures of association, Y (i.e., OR, RR, RD, MD and HR) for both the 
direct and indirect approaches.  
  
Description of the Monte Carlo Simulation Process  
In order to determine the precision and accuracy of the indirect approach, a Monte Carlo 
simulation analysis was undertaken.  The initial step was to generate the population according to 
the specified outcome risk level. For the case of k=3 treatments, a data set was created for each 
of the three populations (A, B and C) according to the specified outcome risk level.  The second 
step was to take a simple random sample (SRS) from each of the three populations and calculate 
the direct and indirect estimates being considered. This step would be repeated 1000 times.  The 
third step was to calculate the bias, variance and MSE for the 1000 direct and indirect estimates 
and to compare the accuracy and precision of direct and indirect estimators in order to assess 
whether the indirect method performed adequately.  A schematic of the Monte Carlo simulation 
for the case of the relative risk is provided in Figure B.1.  
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Figure B.1: Monte Carlo simulation process  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 1: Simulating the populations 
A data set with 1000 observations was generated for each of the three populations (A, B and C) 
according to the specified outcome risk levels (P(E│A, B or C)) determined through the 
indicated parameters (YAB, YCB, and P(E│B)). For time to event data, the uniform random 
number generator was used to generate a simulated data set of 5000 observations according to 
the specified outcome risk level in each population based on Cox proportional hazards models 
assuming exponential distributions for survival time. 
 
Step 2: Simple random sampling 
In order to calculate the direct and indirect effect estimates, a simple random sampling without 
replacement procedure was used to select 100 observations from each of the three populations. 
For time to event data, 500 observations were selected from each of the three populations. In this 
procedure, each observation in the population has an equal chance of being selected, once 
selected it cannot be chosen again. This procedure was repeated 1000 times. Zero event in 
simulated samples was corrected by adding 0.5. 
 
Step 3: Statistical analysis 
The direct and indirect estimates of YAC were computed for each of the 1000 simulations. The 
bias, variance and MSE of the direct and indirect estimates based on 1000 simulations were 
calculated and evaluated in order to assess the precision and accuracy of indirect estimation 

SRS SRS 

SRS SRS 

SRS

SRS

Population A  

1000

Population B  

1000

Population C  

1000

Sample A    
    100 

Sample C    
    100 

Sample B    
   100

Sample A    
   100

Sample C    
   100

Sample B    
    100 

YAC 

Direct=YAC 

YAB YBC 

Indirect=YAB + YBC 

Note: SRS-Simple Random Sampling 
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approach. The sampling errors in the generation of three populations were adjusted in the 
calculation of bias and MSE. 
 
It should be noted that the simulation does not take into account differences that could exist 
related to methods of patient selection and ascertainment of outcome. 
 
For each measure of association, steps 1-3 were repeated by choosing different settings for the 
indicated parameters: YAB, YCB, and P(E│B). These settings and simulation results are provided 
in section B.2 to B.6 for RR, OR, RD, MD and HR, respectively.  
 
B.2 Simulation Results for the Relative Risk  
 
For each of the three populations (A, B and C) in the Monte Carlo simulation for the relative 
risk, the outcome risk level  for each population was selected according to a specific combination 
of values for the parameters RRAB, RRCB, and the probability of the event in population B 
P(E│B)) as follows:  
 
 RRAB: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
 RRCB: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
 P(E│B)): 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 
 
For the various combinations of these parameters, the results of the simulation for the variance, 
bias and MSE for the direct and indirect estimators of the RR are provided in Table B.2.1. 
 
As an illustration of the frequency distribution of the estimators, the frequency distributions for 
the parameter settings RRAB=0.6, RRCB=0.8 and P(E│B)=0.05, 0.3, 0.5 for the direct and 
indirect estimators are presented graphically in Figure B.2.1 on the logarithmic scale.  It is 
apparent from these figures that both estimators have a mound shape, symmetric distribution (on 
the logarithmic scale). The indirect estimator has a larger variance and bias. 
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Table B.2.1: Bias, variance and mean square error (MSE) of direct and indirect relative 
risk (RR) estimators for different settings of the indicated parameters (k=3 treatments) 

                   Direct Estimator                  Indirect Estimator Relative 
Risk 
Settings 

Event 
Rate 
P(E|B) 

 
Variance 

 
Bias 

 
MSE  

 
Variance

 
Bias  

 
MSE  

RRAB=0.9 0.05 2.364 0.392 2.518 7.349 0.750 7.912
RRCB=0.9 0.1 0.356 0.124 0.371 0.797 0.232 0.851
 0.2 0.108 0.055 0.111 0.216 0.060 0.219
 0.3 0.057 0.034 0.058 0.112 0.054 0.115
 0.4 0.031 0.009 0.031 0.068 0.026 0.069
 0.5 0.023 0.005 0.023 0.041 0.016 0.041
RRAB=0.9 0.05 1.917 0.379 2.060 6.304 0.733 6.841
RRCB=0.8 0.1 0.563 0.138 0.582 1.290 0.259 1.357
 0.2 0.153 0.055 0.156 0.323 0.095 0.332
 0.3 0.076 0.038 0.077 0.164 0.067 0.168
 0.4 0.050 0.027 0.050 0.093 0.046 0.095
 0.5 0.033 0.020 0.033 0.059 0.020 0.059
RRAB=0.9 0.05 3.601 0.616 3.980 51.588 1.197 53.021
RRCB=0.7 0.1 1.222 0.230 1.275 2.158 0.450 2.360
 0.2 0.241 0.083 0.248 0.471 0.136 0.489
 0.3 0.115 0.054 0.118 0.206 0.097 0.215
 0.4 0.081 0.040 0.083 0.132 0.060 0.136
 0.5 0.052 0.038 0.053 0.080 0.028 0.081
RRAB=0.9 0.05 4.624 0.648 5.043 11.509 1.122 12.769
RRCB=0.6 0.1 1.080 0.262 1.149 2.547 0.423 2.726
 0.2 0.402 0.141 0.422 0.843 0.233 0.897
 0.3 0.208 0.080 0.214 0.286 0.115 0.299
 0.4 0.111 0.037 0.113 0.189 0.069 0.194
 0.5 0.081 0.041 0.083 0.129 0.050 0.132
RRAB=0.9 0.05 7.252 0.957 8.169 20.774 1.472 22.941
RRCB=0.5 0.1 3.923 0.574 4.253 9.451 0.823 10.127
 0.2 0.802 0.209 0.846 1.201 0.270 1.274
 0.3 0.367 0.126 0.383 0.645 0.151 0.668
 0.4 0.192 0.055 0.195 0.327 0.087 0.334
 0.5 0.143 0.037 0.144 0.214 0.102 0.225
RRAB=0.9 0.05 9.614 1.188 11.026 24.417 1.696 27.294
RRCB=0.4 0.1 10.159 0.996 11.150 19.845 1.286 21.500
 0.2 2.472 0.325 2.578 2.275 0.495 2.520
 0.3 0.676 0.129 0.693 1.347 0.267 1.419
 0.4 0.479 0.118 0.493 0.617 0.154 0.641
 0.5 0.263 0.068 0.268 0.420 0.080 0.427
RRAB=0.8 0.05 1.436 0.305 1.529 9.253 0.521 9.524
RRCB=0.9 0.1 0.265 0.110 0.277 0.641 0.225 0.692
 0.2 0.084 0.039 0.085 0.186 0.079 0.192
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                   Direct Estimator                  Indirect Estimator Relative 
Risk 
Settings 

Event 
Rate 
P(E|B) 

 
Variance 

 
Bias 

 
MSE  

 
Variance

 
Bias  

 
MSE  

 0.3 0.048 0.018 0.048 0.085 0.029 0.085
 0.4 0.031 0.013 0.031 0.050 0.030 0.051
 0.5 0.021 0.014 0.021 0.034 0.009 0.034
RRAB=0.8 0.05 1.698 0.323 1.802 8.455 0.787 9.075
RRCB=0.8 0.1 0.803 0.169 0.832 0.811 0.239 0.868
 0.2 0.118 0.042 0.120 0.222 0.086 0.230
 0.3 0.078 0.052 0.080 0.117 0.043 0.119
 0.4 0.045 0.026 0.045 0.075 0.027 0.076
 0.5 0.026 0.010 0.026 0.047 0.029 0.048
RRAB=0.8 0.05 3.136 0.569 3.460 8.460 0.896 9.262
RRCB=0.7 0.1 1.230 0.248 1.291 1.500 0.361 1.630
 0.2 0.222 0.077 0.228 0.484 0.125 0.500
 0.3 0.102 0.039 0.104 0.183 0.056 0.187
 0.4 0.064 0.023 0.064 0.116 0.053 0.119
 0.5 0.044 0.020 0.045 0.068 0.021 0.068
RRAB=0.8 0.05 4.126 0.647 4.545 9.855 0.955 10.766
RRCB=0.6 0.1 1.638 0.298 1.727 4.389 0.547 4.688
 0.2 0.331 0.131 0.348 0.582 0.167 0.610
 0.3 0.179 0.052 0.182 0.272 0.073 0.278
 0.4 0.095 0.037 0.097 0.153 0.057 0.157
 0.5 0.077 0.015 0.078 0.106 0.047 0.108
RRAB=0.8 0.05 6.143 0.914 6.978 24.769 1.571 27.237
RRCB=0.5 0.1 3.965 0.474 4.190 4.975 0.653 5.401
 0.2 0.974 0.166 1.002 1.044 0.219 1.092
 0.3 0.288 0.106 0.299 0.412 0.115 0.425
 0.4 0.196 0.071 0.201 0.287 0.127 0.303
 0.5 0.125 0.036 0.126 0.195 0.063 0.199
RRAB=0.8 0.05 7.209 0.883 7.990 55.287 1.985 59.228
RRCB=0.4 0.1 7.029 0.827 7.713 13.207 1.058 14.325
 0.2 1.478 0.324 1.583 1.925 0.417 2.099
 0.3 0.667 0.178 0.698 1.035 0.218 1.083
 0.4 0.417 0.115 0.431 0.571 0.136 0.590
 0.5 0.230 0.068 0.234 0.358 0.105 0.369
RRAB=0.7 0.05 1.497 0.316 1.597 3.972 0.533 4.257
RRCB=0.9 0.1 0.190 0.078 0.196 0.451 0.168 0.479
 0.2 0.076 0.045 0.078 0.144 0.062 0.148
 0.3 0.042 0.031 0.043 0.084 0.057 0.088
 0.4 0.026 0.012 0.026 0.052 0.036 0.054
 0.5 0.018 0.006 0.019 0.032 0.026 0.033
RRAB=0.7 0.05 1.500 0.326 1.606 6.093 0.709 6.595
RRCB=0.8 0.1 0.458 0.127 0.474 0.774 0.225 0.825
 0.2 0.103 0.049 0.106 0.197 0.076 0.203
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                   Direct Estimator                  Indirect Estimator Relative 
Risk 
Settings 

Event 
Rate 
P(E|B) 

 
Variance 

 
Bias 

 
MSE  

 
Variance

 
Bias  

 
MSE  

 0.3 0.060 0.034 0.061 0.113 0.058 0.117
 0.4 0.038 0.014 0.038 0.061 0.032 0.062
 0.5 0.025 0.003 0.025 0.041 0.005 0.041
RRAB=0.7 0.05 2.833 0.449 3.034 5.689 0.689 6.163
RRCB=0.7 0.1 0.785 0.164 0.812 2.680 0.336 2.793
 0.2 0.141 0.051 0.144 0.303 0.121 0.317
 0.3 0.079 0.032 0.080 0.171 0.076 0.177
 0.4 0.051 0.023 0.051 0.092 0.030 0.093
 0.5 0.036 0.020 0.036 0.062 0.030 0.063
RRAB=0.7 0.05 3.136 0.623 3.524 8.963 0.799 9.601
RRCB=0.6 0.1 1.265 0.287 1.348 2.598 0.429 2.781
 0.2 0.250 0.077 0.256 0.498 0.152 0.521
 0.3 0.135 0.049 0.137 0.215 0.079 0.221
 0.4 0.082 0.036 0.083 0.151 0.075 0.157
 0.5 0.064 0.032 0.066 0.093 0.044 0.095
RRAB=0.7 0.05 4.103 0.650 4.526 18.552 1.315 20.282
RRCB=0.5 0.1 1.731 0.344 1.849 5.299 0.670 5.747
 0.2 0.459 0.146 0.481 0.679 0.212 0.723
 0.3 0.210 0.075 0.215 0.341 0.121 0.355
 0.4 0.157 0.064 0.161 0.221 0.086 0.228
 0.5 0.098 0.047 0.100 0.149 0.074 0.155
RRAB=0.7 0.05 6.884 0.874 7.647 65.695 1.984 69.633
RRCB=0.4 0.1 6.421 0.806 7.070 9.906 1.033 10.974
 0.2 2.410 0.275 2.485 4.262 0.396 4.419
 0.3 0.507 0.161 0.533 0.595 0.148 0.617
 0.4 0.324 0.112 0.337 0.483 0.097 0.493
 0.5 0.213 0.072 0.218 0.346 0.104 0.356
RRAB=0.6 0.05 1.170 0.244 1.230 2.696 0.534 2.981
RRCB=0.9 0.1 0.180 0.086 0.188 0.403 0.175 0.434
 0.2 0.062 0.019 0.063 0.128 0.062 0.131
 0.3 0.037 0.030 0.038 0.055 0.024 0.056
 0.4 0.022 0.017 0.022 0.037 0.015 0.037
 0.5 0.014 0.009 0.014 0.027 0.024 0.027
RRAB=0.6 0.05 1.343 0.282 1.423 3.777 0.639 4.186
RRCB=0.8 0.1 0.284 0.110 0.296 0.542 0.172 0.572
 0.2 0.075 0.025 0.075 0.159 0.075 0.165
 0.3 0.051 0.023 0.052 0.081 0.042 0.082
 0.4 0.035 0.020 0.035 0.050 0.030 0.051
 0.5 0.022 0.020 0.022 0.034 0.023 0.034
RRAB=0.6 0.05 1.924 0.366 2.058 9.423 0.680 9.885
RRCB=0.7 0.1 0.423 0.159 0.448 1.063 0.305 1.156
 0.2 0.127 0.059 0.131 0.220 0.095 0.229
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                   Direct Estimator                  Indirect Estimator Relative 
Risk 
Settings 

Event 
Rate 
P(E|B) 

 
Variance 

 
Bias 

 
MSE  

 
Variance

 
Bias  

 
MSE  

 0.3 0.071 0.025 0.072 0.103 0.055 0.107
 0.4 0.043 0.019 0.043 0.067 0.041 0.068
 0.5 0.031 0.019 0.032 0.045 0.022 0.045
RRAB=0.6 0.05 2.714 0.510 2.974 9.318 0.858 10.054
RRCB=0.6 0.1 0.764 0.204 0.806 1.548 0.334 1.659
 0.2 0.178 0.057 0.181 0.330 0.122 0.345
 0.3 0.107 0.054 0.110 0.219 0.082 0.226
 0.4 0.068 0.031 0.069 0.102 0.051 0.105
 0.5 0.047 0.007 0.047 0.075 0.034 0.076
RRAB=0.6 0.05 3.215 0.636 3.619 16.220 1.205 17.671
RRCB=0.5 0.1 2.224 0.367 2.359 3.945 0.485 4.181
 0.2 0.438 0.158 0.464 0.710 0.165 0.737
 0.3 0.176 0.062 0.180 0.257 0.084 0.264
 0.4 0.122 0.026 0.123 0.171 0.075 0.176
 0.5 0.079 0.025 0.080 0.109 0.050 0.111
RRAB=0.6 0.05 4.275 0.772 4.871 52.812 1.656 55.555
RRCB=0.4 0.1 3.407 0.526 3.683 5.668 0.668 6.115
 0.2 0.866 0.228 0.917 1.937 0.265 2.007
 0.3 0.360 0.104 0.371 0.720 0.216 0.766
 0.4 0.359 0.117 0.373 0.312 0.089 0.320
 0.5 0.164 0.060 0.168 0.219 0.066 0.223
RRAB=0.5 0.05 0.582 0.202 0.623 3.801 0.424 3.981
RRCB=0.9 0.1 0.148 0.069 0.153 0.321 0.134 0.339
 0.2 0.047 0.021 0.048 0.090 0.049 0.092
 0.3 0.026 0.020 0.026 0.042 0.026 0.042
 0.4 0.018 0.009 0.018 0.028 0.026 0.028
 0.5 0.011 0.004 0.011 0.019 0.021 0.020
RRAB=0.5 0.05 0.849 0.243 0.909 4.274 0.551 4.578
RRCB=0.8 0.1 0.245 0.107 0.256 0.359 0.162 0.385
 0.2 0.070 0.040 0.072 0.128 0.069 0.132
 0.3 0.033 0.017 0.033 0.057 0.031 0.058
 0.4 0.025 0.018 0.026 0.039 0.013 0.039
 0.5 0.020 0.016 0.020 0.026 0.020 0.027
RRAB=0.5 0.05 1.155 0.301 1.246 3.746 0.533 4.030
RRCB=0.7 0.1 0.383 0.106 0.394 0.922 0.234 0.977
 0.2 0.096 0.053 0.099 0.164 0.079 0.171
 0.3 0.061 0.037 0.062 0.090 0.045 0.092
 0.4 0.039 0.026 0.039 0.048 0.019 0.048
 0.5 0.026 0.006 0.026 0.034 0.020 0.035
RRAB=0.5 0.05 1.972 0.391 2.126 7.379 0.736 7.921
RRCB=0.6 0.1 0.712 0.187 0.747 1.329 0.261 1.397
 0.2 0.140 0.061 0.144 0.254 0.101 0.264
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                   Direct Estimator                  Indirect Estimator Relative 
Risk 
Settings 

Event 
Rate 
P(E|B) 

 
Variance 

 
Bias 

 
MSE  

 
Variance

 
Bias  

 
MSE  

 0.3 0.074 0.027 0.075 0.128 0.066 0.132
 0.4 0.054 0.025 0.055 0.076 0.043 0.078
 0.5 0.039 0.025 0.040 0.058 0.037 0.059
RRAB=0.5 0.05 2.317 0.500 2.567 7.246 0.872 8.007
RRCB=0.5 0.1 1.128 0.292 1.213 1.917 0.404 2.080
 0.2 0.277 0.098 0.287 0.471 0.161 0.497
 0.3 0.143 0.054 0.146 0.212 0.083 0.219
 0.4 0.089 0.047 0.091 0.118 0.063 0.122
 0.5 0.070 0.025 0.071 0.089 0.038 0.091
RRAB=0.5 0.05 3.467 0.659 3.901 19.141 1.216 20.620
RRCB=0.4 0.1 3.334 0.548 3.635 3.668 0.665 4.111
 0.2 0.532 0.164 0.559 1.029 0.239 1.086
 0.3 0.300 0.118 0.314 0.393 0.141 0.412
 0.4 0.162 0.055 0.165 0.238 0.062 0.242
 0.5 0.128 0.041 0.130 0.164 0.075 0.170
RRAB=0.4 0.05 0.451 0.138 0.470 1.269 0.308 1.364
RRCB=0.9 0.1 0.101 0.063 0.105 0.237 0.098 0.246
 0.2 0.040 0.023 0.041 0.057 0.039 0.058
 0.3 0.020 0.011 0.020 0.031 0.021 0.032
 0.4 0.016 0.009 0.016 0.021 0.007 0.021
 0.5 0.009 0.002 0.009 0.015 0.019 0.015
RRAB=0.4 0.05 0.933 0.227 0.984 5.017 0.431 5.203
RRCB=0.8 0.1 0.180 0.049 0.182 0.262 0.123 0.277
 0.2 0.045 0.021 0.045 0.078 0.050 0.081
 0.3 0.029 0.015 0.029 0.042 0.037 0.043
 0.4 0.019 0.008 0.019 0.025 0.015 0.025
 0.5 0.014 0.007 0.014 0.020 0.016 0.020
RRAB=0.4 0.05 1.071 0.284 1.151 1.879 0.403 2.041
RRCB=0.7 0.1 0.235 0.109 0.247 0.469 0.171 0.498
 0.2 0.072 0.049 0.074 0.104 0.043 0.106
 0.3 0.043 0.034 0.044 0.057 0.028 0.057
 0.4 0.027 0.015 0.027 0.039 0.024 0.039
 0.5 0.019 0.008 0.019 0.027 0.012 0.027
RRAB=0.4 0.05 1.226 0.340 1.341 9.732 0.776 10.334
RRCB=0.6 0.1 0.752 0.216 0.799 1.734 0.275 1.809
 0.2 0.109 0.051 0.112 0.142 0.053 0.145
 0.3 0.059 0.036 0.060 0.087 0.053 0.090
 0.4 0.040 0.024 0.041 0.051 0.022 0.052
RRAB=0.4 0.05 0.030 0.009 0.031 0.040 0.024 0.041
RRCB=0.5 0.1 1.594 0.410 1.762 5.997 0.802 6.641
 0.2 0.854 0.261 0.922 1.619 0.357 1.747
 0.3 0.219 0.069 0.224 0.283 0.129 0.299
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                   Direct Estimator                  Indirect Estimator Relative 
Risk 
Settings 

Event 
Rate 
P(E|B) 

 
Variance 

 
Bias 

 
MSE  

 
Variance

 
Bias  

 
MSE  

 0.4 0.108 0.044 0.110 0.149 0.064 0.153
 0.5 0.068 0.048 0.070 0.104 0.041 0.105
RRAB=0.4 0.05 0.049 0.024 0.049 0.064 0.028 0.065
RRCB=0.4 0.1 2.404 0.512 2.667 6.567 0.775 7.166
 0.2 2.313 0.398 2.472 4.269 0.653 4.696
 0.3 0.471 0.162 0.497 0.713 0.178 0.745
 0.4 0.184 0.080 0.190 0.267 0.101 0.277
 0.5 0.126 0.041 0.128 0.151 0.049 0.154
  0.081 0.014 0.081 0.111 0.030 0.112
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Figure B.2.1: Frequency distribution of direct and indirect relative risk (RR) estimators for the parameter settings RRAB=0.6, 
RRCB=0.8, P(E│B)=0.05, 0.3, 0.5 (k=3 treatments) 
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For the parameter settings RRAB=0.6, RRCB=0.8, the direction of the biases over the 1000 
samples are illustrated in Figure B.2.2 for the direct and indirect approaches under the different 
settings of the event rate P(E│B): 0.05, 0.1, 0.2, 0.3, 0.4, 0.5.  For both the direct and indirect 
estimators, generally, as the event rate increases, the percentage of estimators which are not 
associated with any bias decreases. 
 
  
Figure B.2.2: Direction of the bias of the direct and indirect relative risk (RR) estimates for 
the parameter settings RRAB=0.6, RRCB=0.8, P(E│B) =0.05, 0.1, 0.2, 0.3, 0.4, 0.5 (k=3 
treatments) 
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Patterns of bias and MSE for the indirect relative risk (RR) estimates are displayed for different 
settings of RRAB, RRCB, and the event rates (Figure B.2.3 and Figure B.2.4). The patterns are 
shown for the event rate 0.05 to 0.5 and the results are symmetric about 0.5. As such, patterns for 
event rates ranging from 0.5 to 0.95 are not shown. For each of the settings, the figures are 
displayed for event rates that start at 0.05. The figures are also displayed for event rates that start 
at 0.2 in order to improve the resolution of the graphs.  

 

Figure B.2.3: Bias for indirect relative risk (RR) estimates for various parameter settings.  
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c)  

RRCB=0.5
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e)  

RRCB=0.6
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g)  

RRCB=0.7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6

P(event)

B
ia

s 

RR_AB=0.4
RR_AB=0.5
RR_AB=0.6
RR_AB=0.7
RR_AB=0.8
RR_AB=0.9

 
h)  

RRCB=0.7

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6

P(event)

B
ia

s

RR_AB=0.4
RR_AB=0.5
RR_AB=0.6
RR_AB=0.7
RR_AB=0.8
RR_AB=0.9

 



 A-33

i)  

RRCB=0.8
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k)  

RRCB=0.9
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Figure B.2.4: Mean square error (MSE) for indirect relative risk (RR) estimates for 
various parameter settings.  
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c)  

RRCB=0.5
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e)  

RRCB=0.6
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f)  
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g)  

RRCB=0.7
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h)  
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i)  

RRCB=0.8
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j)  

RRCB=0.8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6

P(event)

M
SE

 

RR_AB=0.4
RR_AB=0.5
RR_AB=0.6
RR_AB=0.7
RR_AB=0.8
RR_AB=0.9

 



 A-40

k)  

RRCB=0.9
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B.3 Simulation Results for the Odds Ratio  

 
For each of the three populations (A, B and C) in the Monte Carlo simulation for the odds ratio, 
the outcome risk level for each population was selected according to a specific combination of 
the parameters ORAB, ORCB, and P(E│B)), as follows: 
 
 ORAB: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
 ORCB: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9  
 P(E│B)): 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 
 
For the various combinations of these parameters, the results of the simulation for the bias, 
variance and MSE for the direct and indirect estimators of the OR are provided in Table B.3.1.   
 
As an illustration of the frequency distribution of the estimators, the frequency distributions for 
the parameter settings ORAB=0.6, ORCB=0.8 and P(E│B)=0.05,0.3,0.5 for the direct and indirect 
estimators are presented graphically in Figure B.3.1 on the  logarithmic scale.  It is apparent from 
these figures that both estimators have a mound shape, symmetric distribution (on the 
logarithmic scale). The indirect estimator has a larger variance and bias. 
 

Table B.3.1: Bias, variance and mean square error (MSE) of direct and indirect odds ratio 
(OR) estimators for different settings of the indicated parameters (k=3 treatments) 

                   Direct Estimator                  Indirect Estimator Odds 
Ratio 
Settings 

Event 
Rate 
P(E|B) 

Variance Bias MSE  Variance Bias  MSE  

ORAB=0.9 0.05 0.292 0.100 0.302 4.521 0.370 4.658
ORCB=1.5 0.1 0.098 0.051 0.101 0.309 0.108 0.321
 0.2 0.044 0.026 0.045 0.103 0.058 0.107
 0.3 0.035 0.025 0.035 0.068 0.042 0.070
 0.4 0.032 0.023 0.032 0.077 0.047 0.080
 0.5 0.029 0.025 0.030 0.067 0.034 0.068
ORAB=0.9 0.05 0.687 0.156 0.711 2.458 0.429 2.642
ORCB=1.3 0.1 0.161 0.086 0.168 0.394 0.152 0.417
 0.2 0.065 0.038 0.066 0.173 0.086 0.180
 0.3 0.054 0.035 0.055 0.107 0.056 0.110
 0.4 0.042 0.032 0.043 0.099 0.045 0.101
 0.5 0.037 0.027 0.037 0.096 0.066 0.101
ORAB=0.9 0.05 1.105 0.243 1.164 2.345 0.399 2.504
ORCB=1.1 0.1 0.251 0.111 0.263 0.652 0.214 0.698
 0.2 0.098 0.044 0.100 0.244 0.113 0.257
 0.3 0.070 0.053 0.073 0.136 0.066 0.140
 0.4 0.055 0.018 0.055 0.120 0.054 0.123
 0.5 0.053 0.026 0.053 0.128 0.056 0.131
ORAB=0.8 0.05 0.224 0.092 0.233 1.284 0.255 1.349
ORCB=1.5 0.1 0.076 0.049 0.078 0.199 0.116 0.213
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                   Direct Estimator                  Indirect Estimator Odds 
Ratio 
Settings 

Event 
Rate 
P(E|B) 

Variance Bias MSE  Variance Bias  MSE  

 0.2 0.038 0.028 0.039 0.083 0.059 0.086
 0.3 0.026 0.026 0.027 0.058 0.047 0.061
 0.4 0.025 0.018 0.025 0.055 0.041 0.056
 0.5 0.026 0.019 0.027 0.049 0.036 0.051
ORAB=0.8 0.05 0.742 0.173 0.772 1.628 0.358 1.756
ORCB=1.3 0.1 0.110 0.049 0.112 0.327 0.152 0.350
 0.2 0.053 0.045 0.055 0.127 0.074 0.133
 0.3 0.038 0.027 0.039 0.079 0.060 0.083
 0.4 0.032 0.019 0.032 0.076 0.040 0.078
 0.5 0.031 0.019 0.031 0.072 0.058 0.075
ORAB=0.8 0.05 0.600 0.192 0.637 2.134 0.359 2.263
ORCB=1.1 0.1 0.138 0.073 0.143 0.599 0.214 0.645
 0.2 0.088 0.055 0.091 0.177 0.093 0.186
 0.3 0.057 0.038 0.058 0.120 0.077 0.126
 0.4 0.044 0.019 0.044 0.097 0.057 0.100
 0.5 0.041 0.012 0.041 0.093 0.061 0.097
ORAB=0.7 0.05 0.235 0.112 0.248 2.192 0.295 2.279
ORCB=1.5 0.1 0.061 0.036 0.062 0.166 0.094 0.175
 0.2 0.030 0.017 0.030 0.074 0.062 0.078
 0.3 0.024 0.022 0.025 0.056 0.042 0.058
 0.4 0.020 0.016 0.020 0.047 0.038 0.049
 0.5 0.020 0.016 0.020 0.043 0.039 0.044
ORAB=0.7 0.05 0.279 0.112 0.292 1.947 0.281 2.026
ORCB=1.3 0.1 0.088 0.041 0.090 0.347 0.152 0.370
 0.2 0.043 0.029 0.044 0.114 0.086 0.122
 0.3 0.028 0.013 0.028 0.061 0.036 0.063
 0.4 0.025 0.012 0.025 0.055 0.037 0.056
 0.5 0.025 0.019 0.025 0.055 0.041 0.057
ORAB=0.7 0.05 0.959 0.211 1.004 3.053 0.428 3.237
ORCB=1.1 0.1 0.158 0.062 0.162 0.310 0.119 0.324
 0.2 0.062 0.038 0.063 0.150 0.078 0.156
 0.3 0.039 0.033 0.040 0.095 0.052 0.098
 0.4 0.039 0.025 0.039 0.076 0.057 0.079
 0.5 0.030 0.019 0.031 0.074 0.052 0.077

0.05 1.418 0.302 1.509 12.063 0.836 12.763
0.1 0.514 0.164 0.541 1.321 0.308 1.416
0.2 0.159 0.050 0.161 0.351 0.116 0.364
0.3 0.112 0.050 0.115 0.240 0.096 0.249
0.4 0.087 0.046 0.089 0.200 0.075 0.206

ORAB=0.9 
ORCB=0.9 
 
 
 

0.5 0.088 0.043 0.089 0.212 0.086 0.219
ORAB=0.9 0.05 2.634 0.450 2.836 7.954 0.870 8.711
ORCB=0.8 0.1 0.632 0.196 0.671 1.873 0.382 2.019
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                   Direct Estimator                  Indirect Estimator Odds 
Ratio 
Settings 

Event 
Rate 
P(E|B) 

Variance Bias MSE  Variance Bias  MSE  

 0.2 0.216 0.065 0.220 0.454 0.166 0.482
 0.3 0.135 0.050 0.137 0.331 0.113 0.344
 0.4 0.114 0.039 0.115 0.237 0.066 0.241
 0.5 0.102 0.032 0.103 0.252 0.082 0.259
ORAB=0.9 0.05 2.763 0.432 2.950 18.370 1.202 19.816
ORCB=0.7 0.1 1.022 0.303 1.114 2.039 0.376 2.181
 0.2 0.314 0.111 0.326 0.723 0.224 0.773
 0.3 0.193 0.065 0.197 0.460 0.119 0.474
 0.4 0.142 0.048 0.145 0.405 0.134 0.423
 0.5 0.148 0.051 0.150 0.271 0.097 0.281
ORAB=0.9 0.05 4.862 0.654 5.291 18.896 1.394 20.838
ORCB=0.6 0.1 1.449 0.227 1.500 3.202 0.447 3.402
 0.2 0.677 0.185 0.711 1.368 0.332 1.478
 0.3 0.257 0.058 0.260 0.615 0.087 0.623
 0.4 0.224 0.093 0.233 0.458 0.164 0.485
 0.5 0.183 0.070 0.188 0.402 0.129 0.418
ORAB=0.9 0.05 6.691 0.817 7.359 27.829 1.632 30.493
ORCB=0.5 0.1 2.263 0.489 2.502 8.286 0.801 8.927
 0.2 0.994 0.259 1.062 2.258 0.379 2.402
 0.3 0.444 0.142 0.464 1.045 0.254 1.110
 0.4 0.357 0.100 0.367 0.731 0.187 0.766
 0.5 0.295 0.104 0.305 0.644 0.176 0.675
ORAB=0.9 0.05 9.812 0.921 10.659 35.745 1.784 38.929
ORCB=0.4 0.1 8.698 0.758 9.273 16.537 0.976 17.489
 0.2 1.853 0.323 1.957 3.324 0.470 3.545
 0.3 1.016 0.246 1.076 1.550 0.290 1.634
 0.4 0.542 0.103 0.553 1.150 0.210 1.194
 0.5 0.516 0.146 0.537 1.020 0.212 1.065
ORAB=0.8 0.05 1.871 0.339 1.986 3.014 0.483 3.247
ORCB=0.9 0.1 0.299 0.114 0.312 0.931 0.236 0.986
 0.2 0.122 0.070 0.127 0.304 0.117 0.317
 0.3 0.086 0.042 0.088 0.214 0.088 0.222
 0.4 0.069 0.035 0.070 0.161 0.088 0.169
 0.5 0.061 0.023 0.061 0.132 0.060 0.135
ORAB=0.8 0.05 2.222 0.384 2.370 5.351 0.691 5.828
ORCB=0.8 0.1 0.504 0.178 0.536 0.955 0.232 1.009
 0.2 0.185 0.079 0.191 0.359 0.139 0.378
 0.3 0.112 0.047 0.115 0.250 0.123 0.265
 0.4 0.092 0.051 0.094 0.173 0.076 0.179
 0.5 0.082 0.026 0.082 0.172 0.055 0.175
ORAB=0.8 0.05 3.283 0.519 3.552 8.331 0.880 9.105
ORCB=0.7 0.1 1.863 0.234 1.917 1.790 0.334 1.901
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                   Direct Estimator                  Indirect Estimator Odds 
Ratio 
Settings 

Event 
Rate 
P(E|B) 

Variance Bias MSE  Variance Bias  MSE  

 0.2 0.273 0.113 0.286 0.600 0.198 0.639
 0.3 0.177 0.079 0.183 0.390 0.133 0.408
 0.4 0.126 0.043 0.128 0.242 0.087 0.250
 0.5 0.097 0.025 0.098 0.248 0.098 0.258
ORAB=0.8 0.05 3.879 0.596 4.235 9.488 1.012 10.513
ORCB=0.6 0.1 1.793 0.349 1.915 3.953 0.481 4.184
 0.2 0.407 0.147 0.428 0.772 0.189 0.808
 0.3 0.232 0.074 0.237 0.452 0.125 0.468
 0.4 0.180 0.068 0.185 0.357 0.104 0.368
 0.5 0.153 0.071 0.158 0.336 0.078 0.342
ORAB=0.8 0.05 4.360 0.644 4.774 25.852 1.626 28.496
ORCB=0.5 0.1 3.915 0.469 4.135 5.737 0.718 6.253
 0.2 0.589 0.170 0.618 1.215 0.332 1.326
 0.3 0.356 0.114 0.369 0.696 0.191 0.733
 0.4 0.257 0.071 0.262 0.673 0.187 0.708
 0.5 0.246 0.057 0.249 0.489 0.127 0.505
ORAB=0.8 0.05 7.834 1.017 8.868 27.979 1.679 30.799
ORCB=0.4 0.1 7.550 0.792 8.177 12.854 1.161 14.201
 0.2 1.332 0.256 1.398 3.225 0.580 3.561
 0.3 0.660 0.137 0.678 1.236 0.210 1.280
 0.4 0.531 0.128 0.548 0.999 0.230 1.052
 0.5 0.433 0.136 0.451 0.797 0.097 0.807
ORAB=0.7 0.05 1.146 0.254 1.211 6.419 0.766 7.006
ORCB=0.9 0.1 0.265 0.072 0.270 1.785 0.273 1.860
 0.2 0.095 0.041 0.096 0.272 0.106 0.284
 0.3 0.078 0.042 0.080 0.162 0.070 0.167
 0.4 0.055 0.023 0.056 0.131 0.064 0.135
 0.5 0.052 0.032 0.053 0.129 0.065 0.133
ORAB=0.7 0.05 1.250 0.316 1.350 6.023 0.714 6.533
ORCB=0.8 0.1 0.382 0.124 0.398 1.096 0.296 1.183
 0.2 0.156 0.076 0.162 0.277 0.096 0.286
 0.3 0.086 0.038 0.088 0.231 0.102 0.242
 0.4 0.076 0.043 0.077 0.178 0.087 0.186
 0.5 0.064 0.025 0.064 0.161 0.079 0.167
ORAB=0.7 0.05 2.140 0.421 2.318 10.296 0.841 11.004
ORCB=0.7 0.1 0.654 0.229 0.706 1.767 0.363 1.899
 0.2 0.264 0.091 0.272 0.476 0.156 0.501
 0.3 0.132 0.052 0.135 0.307 0.130 0.324
 0.4 0.094 0.051 0.097 0.224 0.096 0.233
 0.5 0.075 0.029 0.076 0.204 0.081 0.211
ORAB=0.7 0.05 3.180 0.510 3.440 22.883 1.185 24.288
ORCB=0.6 0.1 2.043 0.362 2.174 6.431 0.423 6.611
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                   Direct Estimator                  Indirect Estimator Odds 
Ratio 
Settings 

Event 
Rate 
P(E|B) 

Variance Bias MSE  Variance Bias  MSE  

 0.2 0.276 0.098 0.286 0.717 0.209 0.760
 0.3 0.192 0.062 0.196 0.468 0.132 0.485
 0.4 0.135 0.040 0.136 0.321 0.117 0.335
 0.5 0.124 0.030 0.125 0.295 0.108 0.307
ORAB=0.7 0.05 4.766 0.701 5.257 15.102 1.295 16.778
ORCB=0.5 0.1 2.429 0.383 2.576 4.509 0.607 4.878
 0.2 0.537 0.141 0.557 0.915 0.224 0.965
 0.3 0.270 0.105 0.281 0.646 0.186 0.681
 0.4 0.237 0.076 0.243 0.432 0.121 0.447
 0.5 0.168 0.063 0.172 0.400 0.125 0.416
ORAB=0.7 0.05 5.760 0.830 6.450 45.917 1.923 49.614
ORCB=0.4 0.1 6.011 0.701 6.503 9.214 0.805 9.862
 0.2 1.190 0.253 1.254 1.607 0.326 1.713
 0.3 0.551 0.166 0.579 0.972 0.180 1.004
 0.4 0.431 0.113 0.444 0.632 0.148 0.654
 0.5 0.292 0.100 0.302 0.601 0.131 0.618
ORAB=0.6 0.05 1.002 0.279 1.080 2.456 0.464 2.671
ORCB=0.9 0.1 0.469 0.104 0.480 0.525 0.198 0.564
 0.2 0.089 0.043 0.091 0.182 0.098 0.192
 0.3 0.055 0.042 0.057 0.123 0.073 0.128
 0.4 0.042 0.027 0.043 0.092 0.052 0.095
 0.5 0.038 0.028 0.039 0.080 0.043 0.082
ORAB=0.6 0.05 1.688 0.381 1.833 5.183 0.702 5.676
ORCB=0.8 0.1 0.257 0.097 0.267 0.827 0.218 0.874
 0.2 0.126 0.059 0.130 0.231 0.096 0.240
 0.3 0.078 0.030 0.078 0.154 0.094 0.162
 0.4 0.055 0.024 0.056 0.135 0.068 0.139
 0.5 0.045 0.034 0.046 0.108 0.061 0.112
ORAB=0.6 0.05 2.040 0.375 2.180 8.042 0.851 8.765
ORCB=0.7 0.1 1.022 0.235 1.077 1.680 0.299 1.769
 0.2 0.155 0.067 0.159 0.316 0.119 0.330
 0.3 0.096 0.028 0.097 0.190 0.071 0.195
 0.4 0.074 0.037 0.075 0.135 0.061 0.138
 0.5 0.065 0.033 0.066 0.137 0.074 0.143
ORAB=0.6 0.05 3.463 0.571 3.790 12.877 0.894 13.677
ORCB=0.6 0.1 0.986 0.261 1.054 2.732 0.434 2.921
 0.2 0.240 0.132 0.257 0.462 0.148 0.484
 0.3 0.131 0.031 0.132 0.242 0.109 0.254
 0.4 0.115 0.053 0.118 0.206 0.071 0.211
 0.5 0.092 0.057 0.095 0.182 0.079 0.188
ORAB=0.6 0.05 3.975 0.628 4.370 16.601 1.236 18.129
ORCB=0.5 0.1 2.048 0.337 2.162 3.828 0.572 4.156
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                   Direct Estimator                  Indirect Estimator Odds 
Ratio 
Settings 

Event 
Rate 
P(E|B) 

Variance Bias MSE  Variance Bias  MSE  

 0.2 0.409 0.142 0.430 0.747 0.233 0.801
 0.3 0.244 0.090 0.252 0.508 0.164 0.535
 0.4 0.156 0.066 0.161 0.292 0.111 0.304
 0.5 0.150 0.067 0.155 0.290 0.093 0.299
ORAB=0.6 0.05 5.720 0.817 6.387 24.614 1.600 27.175
ORCB=0.4 0.1 3.976 0.536 4.264 8.805 0.902 9.619
 0.2 0.673 0.149 0.696 1.747 0.293 1.833
 0.3 0.461 0.142 0.481 0.739 0.177 0.770
 0.4 0.302 0.086 0.310 0.542 0.156 0.566
 0.5 0.231 0.062 0.235 0.474 0.130 0.491
ORAB=0.5 0.05 0.745 0.267 0.816 3.311 0.497 3.558
ORCB=0.9 0.1 0.190 0.074 0.195 0.686 0.200 0.727
 0.2 0.066 0.033 0.067 0.126 0.060 0.129
 0.3 0.036 0.021 0.037 0.076 0.036 0.077
 0.4 0.031 0.016 0.032 0.067 0.036 0.069
 0.5 0.027 0.017 0.027 0.062 0.050 0.065
ORAB=0.5 0.05 1.452 0.367 1.587 14.086 0.778 14.691
ORCB=0.8 0.1 0.255 0.126 0.271 0.699 0.220 0.748
 0.2 0.088 0.038 0.089 0.152 0.090 0.160
 0.3 0.049 0.031 0.050 0.109 0.059 0.113
 0.4 0.039 0.019 0.040 0.086 0.050 0.088
 0.5 0.036 0.023 0.036 0.074 0.059 0.077
ORAB=0.5 0.05 1.189 0.290 1.273 3.785 0.623 4.174
ORCB=0.7 0.1 0.318 0.127 0.334 0.950 0.276 1.026
 0.2 0.144 0.065 0.148 0.236 0.114 0.249
 0.3 0.068 0.036 0.069 0.158 0.089 0.165
 0.4 0.054 0.030 0.055 0.110 0.065 0.114
 0.5 0.049 0.032 0.050 0.103 0.059 0.106
ORAB=0.5 0.05 1.779 0.429 1.963 5.379 0.741 5.929
ORCB=0.6 0.1 0.600 0.159 0.625 1.804 0.297 1.892
 0.2 0.182 0.077 0.188 0.378 0.176 0.409
 0.3 0.094 0.027 0.095 0.195 0.076 0.201
 0.4 0.078 0.044 0.080 0.171 0.078 0.177
 0.5 0.063 0.020 0.064 0.133 0.070 0.138
ORAB=0.5 0.05 2.307 0.433 2.494 11.514 0.941 12.399
ORCB=0.5 0.1 1.894 0.301 1.985 3.678 0.576 4.009
 0.2 0.303 0.092 0.311 0.521 0.163 0.548
 0.3 0.163 0.074 0.168 0.283 0.134 0.301
 0.4 0.114 0.037 0.115 0.269 0.086 0.276
 0.5 0.098 0.051 0.100 0.188 0.079 0.195
ORAB=0.5 0.05 4.433 0.757 5.007 25.543 1.410 27.533
ORCB=0.4 0.1 2.816 0.461 3.029 5.591 0.746 6.148
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                   Direct Estimator                  Indirect Estimator Odds 
Ratio 
Settings 

Event 
Rate 
P(E|B) 

Variance Bias MSE  Variance Bias  MSE  

 0.2 0.596 0.164 0.623 1.140 0.283 1.220
 0.3 0.326 0.131 0.343 0.595 0.180 0.628
 0.4 0.196 0.061 0.200 0.337 0.095 0.346
 0.5 0.154 0.059 0.158 0.339 0.139 0.358
ORAB=0.4 0.05 0.474 0.196 0.512 1.529 0.365 1.662
ORCB=0.9 0.1 0.107 0.049 0.109 0.303 0.128 0.319
 0.2 0.042 0.023 0.043 0.093 0.049 0.096
 0.3 0.029 0.018 0.029 0.058 0.041 0.060
 0.4 0.023 0.021 0.023 0.046 0.044 0.048
 0.5 0.019 0.014 0.019 0.040 0.029 0.041
ORAB=0.4 0.05 0.669 0.264 0.739 6.020 0.578 6.354
ORCB=0.8 0.1 0.154 0.055 0.157 0.379 0.163 0.406
 0.2 0.057 0.051 0.060 0.122 0.071 0.127
 0.3 0.036 0.021 0.036 0.071 0.047 0.074
 0.4 0.026 0.017 0.027 0.051 0.040 0.053
 0.5 0.023 0.022 0.023 0.049 0.025 0.050
ORAB=0.4 0.05 0.965 0.268 1.037 7.234 0.693 7.714
ORCB=0.7 0.1 0.336 0.127 0.352 0.721 0.204 0.762
 0.2 0.088 0.057 0.091 0.156 0.094 0.164
 0.3 0.046 0.030 0.047 0.098 0.049 0.101
 0.4 0.034 0.022 0.035 0.066 0.029 0.067
 0.5 0.034 0.030 0.035 0.060 0.044 0.062
ORAB=0.4 0.05 1.664 0.343 1.782 5.203 0.714 5.712
ORCB=0.6 0.1 0.708 0.171 0.737 1.272 0.299 1.361
 0.2 0.132 0.075 0.137 0.227 0.087 0.235
 0.3 0.073 0.038 0.074 0.140 0.079 0.146
 0.4 0.053 0.027 0.054 0.096 0.045 0.098
 0.5 0.047 0.040 0.048 0.087 0.049 0.090
ORAB=0.4 0.05 2.013 0.430 2.198 11.629 0.873 12.391
ORCB=0.5 0.1 0.866 0.204 0.908 2.271 0.365 2.404
 0.2 0.196 0.084 0.203 0.342 0.132 0.360
 0.3 0.110 0.041 0.111 0.223 0.114 0.236
 0.4 0.080 0.043 0.082 0.158 0.089 0.166
 0.5 0.066 0.040 0.068 0.125 0.065 0.129
ORAB=0.4 0.05 2.841 0.586 3.185 9.868 1.096 11.070
ORCB=0.4 0.1 1.622 0.337 1.736 7.154 0.628 7.549
 0.2 0.370 0.118 0.384 0.569 0.178 0.600
 0.3 0.170 0.075 0.175 0.484 0.165 0.511
 0.4 0.129 0.073 0.134 0.299 0.113 0.312
 0.5 0.116 0.049 0.118 0.195 0.073 0.200
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Figure B.3.1: Frequency distribution of direct and indirect odds ratio (OR) estimators for the parameter settings ORAB=0.6, 
ORCB=0.8, P(E│B)=0.05, 0.3, 0.5 (k=3 treatments) 
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For the parameter settings ORAB=0.6, ORCB=0.8, the direction of the biases over the 1000 
samples are illustrated in Figure B.3.2 for the direct and indirect approaches under the different 
settings of the event rate P(E│B)): 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. 
 

 

Figure B.3.2: Direction of the bias of the direct and indirect odds ratio (OR) estimates for 
the parameter settings RRAB=0.6, RRCB=0.8, P(E│B) =0.05, 0.1, 0.2, 0.3, 0.4, 0.5 (k=3 
treatments) 
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Patterns of bias and MSE for the indirect odds ratio (OR) estimates are displayed for different 
settings of ORAB, ORCB, and the event rates (Figure B.3.3 and Figure B.3.4). The patterns are 
shown for the event rate 0.05 to 0.5 and the results are symmetric about 0.5. As such, patterns for 
event rates ranging from 0.5 to 0.95 are not shown. For each of the settings, the figures are 
displayed for event rates that start at 0.05. The figures are also displayed for event rates that start 
at 0.2 in order to improve the resolution of the graphs. 
 

Figure B.3.3: Bias for indirect odds ratio (OR) estimates for various parameter settings 
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c)  
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e)  

ORCB=0.6
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g)  
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i)  
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k)  

ORCB=0.9
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Figure B.3.4: Mean square error (MSE) for indirect odds ratio (OR) estimates for various 
parameter settings 
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b)  
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d)  
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f)  
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h)  

ORCB=0.7
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j)  

ORCB=0.8
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l)  
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B.4 Simulation Results for the Risk Difference 

 
For each of the three populations (A, B and C) in the Monte Carlo simulation for the risk 
difference, the outcome risk level for each population was selected according to a specific 
combination of the parameters RDAB, RDCB, and P(E│B)), as follows: 
 
 ORAB: -0.1, -0.2, -0.3, -0.4, -0.5, -0.6 
 ORCB: -0.1, -0.2, -0.3, -0.4, -0.5, -0.6 
 P(E│B)): 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9  
 
For the various combinations of these parameters, the results of the simulation for the bias, 
variance and MSE for the direct and indirect estimators of the OR are provided in Table B.4.1.   
 
As an illustration of the frequency distribution of the estimators, the frequency distributions for 
the parameter settings ORAB=0.6, ORCB=0.8 and P(E│B)=0.05,0.3,0.5 for the direct and indirect 
estimators are presented graphically in Figure B.3.1 on the  logarithmic scale.  It is apparent from 
these figures that both estimators have a mound shape, symmetric distribution (on the 
logarithmic scale). The indirect estimator has a larger variance and bias. 
 
Table B.4.1: Bias, variance and mean square error (MSE) of direct and indirect risk 
difference (RD) estimators for different settings of the indicated parameters (k=3 
treatments) 
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                   Direct Estimator                  Indirect Estimator Risk 
difference 
Settings 

Event  
Rate 
P(E│B) 

Variance Bias MSE  Variance Bias  MSE  

RDAB=-0.6 0.2 - - - - - - 
RDCB=-0.6 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0015 0.0019 0.0015 0.0055 -0.0035 0.0055 
 0.8 0.0024 0.0001 0.0024 0.0052 -0.0019 0.0052 
 0.9 0.0032 -0.0013 0.0032 0.0051 0.0023 0.0051 
RDAB=-0.6 0.2 - - - - - - 
RDCB=-0.5 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0019 -0.0024 0.0019 0.0055 -0.0007 0.0055 
 0.8 0.0033 -0.0003 0.0033 0.0056 -0.0024 0.0056 
 0.9 0.0036 0.0012 0.0036 0.0050 0.0016 0.0050 
RDAB=-0.6 0.2 - - - - - - 
RDCB=-0.4 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0023 -0.0008 0.0023 0.0062 -0.0005 0.0062 
 0.8 0.0033 0.0013 0.0033 0.0063 -0.0032 0.0064 
 0.9 0.0040 0.0018 0.0040 0.0052 0.0014 0.0052 
RDAB=-0.6 0.2 - - - - - - 
RDCB=-0.3 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0028 0.0022 0.0028 0.0059 -0.0028 0.0059 
 0.8 0.0034 0.0001 0.0034 0.0063 -0.0002 0.0063 
 0.9 0.0039 -0.0011 0.0039 0.0054 -0.0046 0.0054 
RDAB=-0.6 0.2 - - - - - - 
RDCB=-0.2 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0030 -0.0008 0.0030 0.0058 0.0031 0.0058 
 0.8 0.0032 -0.0030 0.0032 0.0056 0.0025 0.0056 
 0.9 0.0038 -0.0019 0.0038 0.0044 0.0006 0.0044 
RDAB=-0.6 0.2 - - - - - - 
RDCB=-0.1 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0028 0.0015 0.0028 0.0057 0.0010 0.0057 
 0.8 0.0031 -0.0007 0.0031 0.0060 0.0022 0.0060 
 0.9 0.0030 -0.0022 0.0030 0.0043 -0.0013 0.0043 
RDAB=-0.5 0.2 - - - - - - 
RDCB=-0.6 0.3 - - - - - - 
 0.4 - - - - - - 
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                   Direct Estimator                  Indirect Estimator Risk 
difference 
Settings 

Event  
Rate 
P(E│B) 

Variance Bias MSE  Variance Bias  MSE  

 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0020 -0.0003 0.0020 0.0056 -0.0043 0.0056 
 0.8 0.0025 0.0016 0.0025 0.0058 0.0004 0.0058 
 0.9 0.0034 0.0011 0.0034 0.0054 -0.0004 0.0054 
RDAB=-0.5 0.2 - - - - - - 
RDCB=-0.5 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 0.0011 -0.0003 0.0011 0.0056 -0.0010 0.0056 
 0.7 0.0020 0.0019 0.0020 0.0061 0.0029 0.0061 
 0.8 0.0028 0.0021 0.0028 0.0063 -0.0024 0.0063 
 0.9 0.0031 -0.0010 0.0031 0.0057 -0.0022 0.0057 
RDAB=-0.5 0.2 - - - - - - 
RDCB=-0.4 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 0.0018 0.0037 0.0018 0.0058 -0.0051 0.0059 
 0.7 0.0025 0.0003 0.0025 0.0057 0.0013 0.0057 
 0.8 0.0033 -0.0004 0.0033 0.0064 -0.0027 0.0064 
 0.9 0.0034 0.0023 0.0034 0.0055 -0.0029 0.0056 
RDAB=-0.5 0.2 - - - - - - 
RDCB=-0.3 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 0.0025 -0.0024 0.0025 0.0057 0.0006 0.0057 
 0.7 0.0029 -0.0002 0.0029 0.0060 -0.0015 0.0060 
 0.8 0.0034 -0.0020 0.0034 0.0062 -0.0034 0.0062 
 0.9 0.0034 0.0004 0.0034 0.0054 0.0006 0.0054 
RDAB=-0.5 0.2 - - - - - - 
RDCB=-0.2 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 0.0025 0.0013 0.0025 0.0067 -0.0017 0.0067 
 0.7 0.0032 -0.0002 0.0032 0.0063 -0.0053 0.0063 
 0.8 0.0034 -0.0010 0.0034 0.0056 0.0051 0.0056 
 0.9 0.0032 -0.0006 0.0032 0.0049 -0.0007 0.0049 
RDAB=-0.5 0.2 - - - - - - 
RDCB=-0.1 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 0.0025 0.0021 0.0025 0.0057 0.0042 0.0057 
 0.7 0.0031 -0.0001 0.0031 0.0058 0.0022 0.0058 
 0.8 0.0031 0.0007 0.0031 0.0048 -0.0030 0.0048 
 0.9 0.0031 -0.0005 0.0031 0.0044 0.0010 0.0044 
RDAB=-0.4 0.2 - - - - - - 
RDCB=-0.6 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0022 0.0022 0.0022 0.0055 -0.0010 0.0055 
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                   Direct Estimator                  Indirect Estimator Risk 
difference 
Settings 

Event  
Rate 
P(E│B) 

Variance Bias MSE  Variance Bias  MSE  

 0.8 0.0029 -0.0004 0.0029 0.0055 -0.0014 0.0055 
 0.9 0.0031 -0.0005 0.0031 0.0056 0.0003 0.0056 
RDAB=-0.4 0.2 - - - - - - 
RDCB=-0.5 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 0.0016 -0.0008 0.0016 0.0058 0.0000 0.0058 
 0.7 0.0022 -0.0013 0.0022 0.0062 0.0024 0.0062 
 0.8 0.0029 -0.0009 0.0029 0.0063 -0.0048 0.0063 
 0.9 0.0030 -0.0027 0.0030 0.0056 -0.0009 0.0056 
RDAB=-0.4 0.2 - - - - - - 
RDCB=-0.4 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 0.0009 0.0012 0.0009 0.0052 -0.0020 0.0052 
 0.6 0.0015 -0.0006 0.0015 0.0058 0.0006 0.0058 
 0.7 0.0021 -0.0014 0.0021 0.0060 -0.0011 0.0060 
 0.8 0.0027 -0.0027 0.0027 0.0062 -0.0010 0.0062 
 0.9 0.0027 -0.0006 0.0027 0.0048 -0.0031 0.0049 
RDAB=-0.4 0.2 - - - - - - 
RDCB=-0.3 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 0.0016 -0.0021 0.0016 0.0056 -0.0004 0.0056 
 0.6 0.0023 0.0029 0.0024 0.0056 0.0024 0.0056 
 0.7 0.0026 -0.0025 0.0026 0.0058 0.0032 0.0058 
 0.8 0.0027 -0.0007 0.0027 0.0054 0.0006 0.0054 
 0.9 0.0027 -0.0026 0.0027 0.0053 0.0031 0.0053 
RDAB=-0.4 0.2 - - - - - - 
RDCB=-0.2 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 0.0022 -0.0014 0.0022 0.0053 -0.0026 0.0053 
 0.6 0.0024 0.0013 0.0024 0.0059 -0.0012 0.0059 
 0.7 0.0030 -0.0021 0.0030 0.0055 -0.0014 0.0055 
 0.8 0.0032 0.0011 0.0032 0.0056 0.0008 0.0056 
 0.9 0.0027 0.0010 0.0027 0.0046 0.0000 0.0046 
RDAB=-0.4 0.2 - - - - - - 
RDCB=-0.1 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 0.0025 0.0011 0.0025 0.0053 -0.0013 0.0053 
 0.6 0.0029 -0.0027 0.0030 0.0054 0.0021 0.0054 
 0.7 0.0029 -0.0020 0.0030 0.0053 0.0009 0.0053 
 0.8 0.0031 -0.0006 0.0031 0.0048 -0.0028 0.0048 
 0.9 0.0030 -0.0043 0.0030 0.0041 -0.0012 0.0041 
RDAB=-0.3 0.2 - - - - - - 
RDCB=-0.6 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0024 0.0009 0.0024 0.0055 0.0038 0.0055 
 0.8 0.0028 -0.0022 0.0028 0.0050 -0.0017 0.0050 
 0.9 0.0028 0.0011 0.0028 0.0047 -0.0009 0.0047 
RDAB=-0.3 0.2 - - - - - - 
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                   Direct Estimator                  Indirect Estimator Risk 
difference 
Settings 

Event  
Rate 
P(E│B) 

Variance Bias MSE  Variance Bias  MSE  

RDCB=-0.5 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 0.0021 0.0004 0.0021 0.0053 0.0027 0.0053 
 0.7 0.0027 -0.0019 0.0027 0.0054 0.0049 0.0054 
 0.8 0.0028 -0.0015 0.0028 0.0056 0.0015 0.0056 
 0.9 0.0026 -0.0020 0.0026 0.0050 -0.0003 0.0050 
RDAB=-0.3 0.2 - - - - - - 
RDCB=-0.4 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 0.0016 0.0005 0.0016 0.0053 -0.0024 0.0053 
 0.6 0.0021 -0.0022 0.0021 0.0057 -0.0017 0.0057 
 0.7 0.0023 -0.0014 0.0023 0.0058 0.0046 0.0059 
 0.8 0.0025 0.0034 0.0025 0.0055 0.0009 0.0055 
 0.9 0.0024 -0.0007 0.0024 0.0053 -0.0003 0.0053 
RDAB=-0.3 0.2 - - - - - - 
RDCB=-0.3 0.3 - - - - - - 
 0.4 0.0007 0.0002 0.0007 0.0049 -0.0020 0.0049 
 0.5 0.0013 -0.0006 0.0013 0.0051 0.0009 0.0051 
 0.6 0.0019 -0.0018 0.0019 0.0057 0.0054 0.0058 
 0.7 0.0022 0.0006 0.0022 0.0057 -0.0003 0.0057 
 0.8 0.0019 -0.0012 0.0019 0.0053 0.0033 0.0054 
 0.9 0.0018 0.0010 0.0018 0.0047 0.0051 0.0047 
RDAB=-0.3 0.2 - - - - - - 
RDCB=-0.2 0.3 - - - - - - 
 0.4 0.0016 0.0003 0.0016 0.0045 0.0008 0.0045 
 0.5 0.0020 0.0006 0.0020 0.0054 -0.0016 0.0054 
 0.6 0.0026 0.0004 0.0026 0.0056 0.0027 0.0056 
 0.7 0.0023 0.0027 0.0023 0.0052 0.0012 0.0052 
 0.8 0.0026 0.0017 0.0026 0.0049 0.0002 0.0049 
 0.9 0.0027 -0.0022 0.0027 0.0046 -0.0014 0.0046 
RDAB=-0.3 0.2 - - - - - - 
RDCB=-0.1 0.3 - - - - - - 
 0.4 0.0020 0.0014 0.0020 0.0043 -0.0002 0.0043 
 0.5 0.0025 0.0015 0.0025 0.0050 -0.0001 0.0050 
 0.6 0.0028 0.0009 0.0028 0.0052 -0.0036 0.0052 
 0.7 0.0027 -0.0008 0.0027 0.0047 -0.0015 0.0047 
 0.8 0.0026 0.0044 0.0026 0.0043 -0.0025 0.0043 
 0.9 0.0025 -0.0011 0.0025 0.0039 -0.0004 0.0039 
RDAB=-0.2 0.2 - - - - - - 
RDCB=-0.6 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0026 -0.0003 0.0026 0.0048 0.0015 0.0048 
 0.8 0.0027 -0.0003 0.0027 0.0045 0.0007 0.0045 
 0.9 0.0027 0.0017 0.0027 0.0042 0.0009 0.0042 
RDAB=-0.2 0.2 - - - - - - 
RDCB=-0.5 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
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                   Direct Estimator                  Indirect Estimator Risk 
difference 
Settings 

Event  
Rate 
P(E│B) 

Variance Bias MSE  Variance Bias  MSE  

 0.6 0.0020 -0.0002 0.0020 0.0053 0.0019 0.0053 
 0.7 0.0027 0.0038 0.0027 0.0051 0.0009 0.0051 
 0.8 0.0027 0.0033 0.0027 0.0051 0.0006 0.0051 
 0.9 0.0027 0.0022 0.0027 0.0044 -0.0018 0.0044 
RDAB=-0.2 0.2 - - - - - - 
RDCB=-0.4 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 0.0019 0.0001 0.0019 0.0049 0.0005 0.0049 
 0.6 0.0025 0.0010 0.0025 0.0052 -0.0035 0.0052 
 0.7 0.0026 0.0019 0.0026 0.0056 -0.0009 0.0056 
 0.8 0.0024 -0.0013 0.0024 0.0050 -0.0001 0.0050 
 0.9 0.0024 0.0013 0.0024 0.0044 0.0005 0.0044 
RDAB=-0.2 0.2 - - - - - - 
RDCB=-0.3 0.3 - - - - - - 
 0.4 0.0013 0.0000 0.0013 0.0039 -0.0013 0.0039 
 0.5 0.0019 0.0009 0.0019 0.0052 0.0021 0.0052 
 0.6 0.0019 -0.0017 0.0019 0.0048 -0.0020 0.0048 
 0.7 0.0025 0.0015 0.0025 0.0054 -0.0006 0.0054 
 0.8 0.0025 -0.0008 0.0025 0.0050 0.0028 0.0050 
 0.9 0.0019 -0.0022 0.0019 0.0040 -0.0068 0.0040 
RDAB=-0.2 0.2 - - - - - - 
RDCB=-0.2 0.3 0.0006 -0.0001 0.0006 0.0038 -0.0010 0.0038 
 0.4 0.0012 0.0007 0.0012 0.0044 -0.0021 0.0044 
 0.5 0.0014 0.0010 0.0014 0.0050 -0.0015 0.0050 
 0.6 0.0016 0.0013 0.0016 0.0052 -0.0031 0.0052 
 0.7 0.0016 -0.0009 0.0016 0.0047 -0.0012 0.0047 
 0.8 0.0018 -0.0030 0.0018 0.0043 -0.0034 0.0043 
 0.9 0.0015 -0.0027 0.0015 0.0040 -0.0006 0.0040 
RDAB=-0.2 0.2 - - - - - - 
RDCB=-0.1 0.3 0.0013 -0.0010 0.0013 0.0036 0.0019 0.0036 
 0.4 0.0016 0.0006 0.0016 0.0040 0.0020 0.0040 
 0.5 0.0020 -0.0025 0.0020 0.0044 -0.0002 0.0044 
 0.6 0.0021 0.0017 0.0021 0.0043 0.0029 0.0044 
 0.7 0.0020 -0.0014 0.0020 0.0045 0.0010 0.0045 
 0.8 0.0021 0.0003 0.0021 0.0040 0.0007 0.0040 
 0.9 0.0016 0.0005 0.0016 0.0031 0.0029 0.0031 
RDAB=-0.1 0.2 - - - - - - 
RDCB=-0.6 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 - - - - - - 
 0.7 0.0026 -0.0024 0.0026 0.0040 0.0003 0.0040 
 0.8 0.0025 -0.0010 0.0025 0.0041 0.0013 0.0041 
 0.9 0.0025 0.0002 0.0025 0.0038 -0.0003 0.0038 
RDAB=-0.1 0.2 - - - - - - 
RDCB=-0.5 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 - - - - - - 
 0.6 0.0025 0.0001 0.0025 0.0044 0.0003 0.0044 
 0.7 0.0028 -0.0009 0.0028 0.0047 0.0023 0.0047 
 0.8 0.0028 0.0002 0.0028 0.0047 -0.0006 0.0047 
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                   Direct Estimator                  Indirect Estimator Risk 
difference 
Settings 

Event  
Rate 
P(E│B) 

Variance Bias MSE  Variance Bias  MSE  

 0.9 0.0027 0.0031 0.0027 0.0038 -0.0032 0.0038 
RDAB=-0.1 0.2 - - - - - - 
RDCB=-0.4 0.3 - - - - - - 
 0.4 - - - - - - 
 0.5 0.0022 0.0028 0.0023 0.0048 0.0002 0.0048 
 0.6 0.0024 -0.0005 0.0024 0.0048 -0.0007 0.0048 
 0.7 0.0025 0.0004 0.0025 0.0045 0.0005 0.0045 
 0.8 0.0027 0.0004 0.0027 0.0043 -0.0045 0.0043 
 0.9 0.0026 -0.0020 0.0026 0.0037 -0.0017 0.0037 
RDAB=-0.1 0.2 - - - - - - 
RDCB=-0.3 0.3 - - - - - - 
 0.4 0.0018 0.0007 0.0018 0.0043 0.0011 0.0043 
 0.5 0.0021 -0.0033 0.0021 0.0048 -0.0024 0.0048 
 0.6 0.0025 -0.0009 0.0025 0.0043 -0.0027 0.0043 
 0.7 0.0025 -0.0006 0.0025 0.0048 -0.0018 0.0048 
 0.8 0.0024 0.0000 0.0024 0.0042 0.0012 0.0042 
 0.9 0.0021 -0.0020 0.0022 0.0041 -0.0014 0.0041 
RDAB=-0.1 0.2 - - - - - - 
RDCB=-0.2 0.3 0.0013 0.0021 0.0013 0.0035 -0.0010 0.0035 
 0.4 0.0017 0.0010 0.0017 0.0042 -0.0004 0.0042 
 0.5 0.0019 0.0003 0.0019 0.0049 0.0031 0.0050 
 0.6 0.0020 -0.0006 0.0020 0.0045 -0.0026 0.0045 
 0.7 0.0020 -0.0005 0.0020 0.0038 0.0011 0.0038 
 0.8 0.0020 -0.0013 0.0020 0.0035 0.0033 0.0035 
 0.9 0.0016 0.0023 0.0016 0.0028 -0.0001 0.0028 
RDAB=-0.1 0.2 0.0005 0.0007 0.0005 0.0028 0.0007 0.0028 
RDCB=-0.1 0.3 0.0009 0.0001 0.0009 0.0031 0.0009 0.0031 
 0.4 0.0013 0.0009 0.0013 0.0038 0.0016 0.0038 
 0.5 0.0014 0.0007 0.0014 0.0040 0.0026 0.0040 
 0.6 0.0016 -0.0004 0.0016 0.0039 -0.0025 0.0039 
 0.7 0.0015 -0.0005 0.0015 0.0035 0.0018 0.0035 
 0.8 0.0012 -0.0021 0.0012 0.0033 -0.0013 0.0033 
 0.9 0.0010 -0.0012 0.0010 0.0023 -0.0001 0.0023 
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Figure B.4.1: Frequency distribution of direct and indirect risk difference (RD) estimators for the parameter settings RDAB=-
0.2, RDCB=-0.4, P(E│B)=0.5, 0.7, 0.9 (k=3 treatments) 
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For the parameter settings RDAB=-0.1, RDCB=-0.2, the direction of the biases over the 1000 
samples are illustrated in Figure B.4.2 for the direct and indirect approaches under the different 
settings of the event rate P(E│B)): 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.  As noted, in most instances 
the direct and indirect estimators equally overestimate and underestimate the bias.  

 

Figure B.4.2: Direction of the bias of the direct and indirect risk difference (RD) estimates 
for the parameter settings RDAB=-0.1, RDCB=-0.2, P(E│B) =0.3, 0.4, 0.5, 0.6, 0.7, 0.8 (k=3 
treatments) 
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Patterns of bias and MSE for the indirect risk difference (RD) estimates are displayed for 
different settings of RDAB, RDCB, and the event rates (Figure B.4.3 and Figure B.4.4). The 
patterns are shown for the event rate 0.2 to 0.9. For the graphs displaying the patterns of bias for 
the indirect RD estimates, the upper and lower bound for the y-axis scale was selected by 
determining the value that corresponds to 1/10th of the largest RDAB. 
 
Figure B.4.3: Bias for indirect risk difference (RD) estimates for various parameter 
settings.  
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c)  
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e)  
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Figure B.4.4: Mean square error (MSE) for indirect risk difference (RD) estimates for 
various parameter settings.  
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For each of the three populations (A, B and C) in the Monte Carlo simulation for the mean 
difference, the level of the outcome of interest for each population was selected according to a 
specific combination of the parameters ESAB, ESCB, MB (where MB is the mean of the outcome 
of interest in population B) and CVB, as follows:  
 
ESAB: .2, .5, .8 
ESCB: .2, .5, .8  
MB: 10, 20, 30  
CVB=0.1, 0.3, 0.5 
 
 
For the various combinations of these parameters, the results of the simulation for the bias, 
variance and MSE for the direct and indirect estimators of the ES are provided in Table B.5.1.   
 
As an illustration of the frequency distribution of the estimators, the frequency distributions for 
the parameter settings ESAB=0.2, ESCB=0.5, CVB=0.3 and MeanB =10, 20, 30 for the direct and 
indirect estimators are presented graphically in Figure B.5.1.  It is apparent from these figures 
that both estimators have a mound shape and symmetric distribution. The indirect estimator has a 
larger variance and bias. 
 
 
Table B.5.1: Bias, variance and mean square error (MSE) of direct and indirect mean 
difference (MD) estimators for different settings of the indicated parameters (k=3 
treatments) 

CV_B                    Direct Estimator                  Indirect Estimator Mean 
difference 
Settings 

 
Mean_B 

Variance Bias MSE  Variance Bias  MSE  

ESCB=0.8 0.5 10 0.467 -0.304 0.559 0.990 -0.348 1.111 
HRAB=0.8  20 1.606 -0.634 2.008 3.874 -0.659 4.309 
  30 4.064 -0.930 4.929 8.427 -0.922 9.276 
ESCB=0.8  10 0.441 -0.319 0.542 0.992 -0.320 1.095 
ESAB=0.5  20 1.857 -0.611 2.231 3.733 -0.678 4.193 
  30 3.786 -1.018 4.822 8.281 -1.017 9.314 
ESCB=0.8  10 0.455 -0.300 0.545 0.916 -0.304 1.008 
ESAB=0.2  20 1.737 -0.603 2.100 3.884 -0.596 4.240 
  30 4.055 -0.898 4.861 8.178 -0.846 8.894 
ESCB=0.8 0.3 10 0.150 -0.177 0.182 0.320 -0.165 0.348 
HRAB=0.8  20 0.606 -0.369 0.742 1.357 -0.343 1.475 
  30 1.527 -0.611 1.899 3.067 -0.513 3.330 
ESCB=0.8  10 0.157 -0.176 0.188 0.325 -0.182 0.358 
ESAB=0.5  20 0.671 -0.443 0.868 1.227 -0.399 1.386 
  30 1.422 -0.605 1.788 3.058 -0.599 3.417 
ESCB=0.8  10 0.159 -0.189 0.195 0.325 -0.175 0.355 
ESAB=0.2  20 0.630 -0.414 0.802 1.349 -0.370 1.486 
  30 1.416 -0.558 1.727 2.805 -0.559 3.117 
ESCB=0.8 0.1 10 0.017 -0.062 0.021 0.037 -0.052 0.039 
HRAB=0.8  20 0.069 -0.118 0.083 0.143 -0.135 0.161 
  30 0.154 -0.194 0.191 0.334 -0.168 0.362 
ESCB=0.8  10 0.016 -0.060 0.020 0.039 -0.076 0.045 
ESAB=0.5  20 0.070 -0.132 0.088 0.146 -0.112 0.158 
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CV_B                    Direct Estimator                  Indirect Estimator Mean 
difference 
Settings 

 
Mean_B 

Variance Bias MSE  Variance Bias  MSE  

  30 0.153 -0.183 0.187 0.353 -0.216 0.399 
ESCB=0.8  10 0.019 -0.063 0.023 0.033 -0.071 0.038 
ESAB=0.2  20 0.073 -0.120 0.087 0.142 -0.112 0.155 
  30 0.157 -0.209 0.201 0.333 -0.208 0.376 
ESCB=0.5 0.5 10 0.437 -0.317 0.537 0.946 -0.349 1.068 
HRAB=0.8  20 1.686 -0.534 1.971 3.506 -0.658 3.939 
  30 4.115 -1.066 5.252 8.261 -0.959 9.182 
ESCB=0.5  10 0.433 -0.322 0.537 0.866 -0.282 0.946 
ESAB=0.5  20 1.704 -0.611 2.077 3.638 -0.657 4.070 
  30 3.937 -1.066 5.073 8.155 -0.933 9.025 
ESCB=0.5  10 0.421 -0.291 0.505 0.862 -0.263 0.932 
ESAB=0.2  20 1.859 -0.677 2.318 3.431 -0.577 3.764 
  30 4.097 -0.892 4.892 8.077 -0.944 8.969 
ESCB=0.5 0.3 10 0.162 -0.212 0.208 0.335 -0.187 0.369 
HRAB=0.8  20 0.671 -0.381 0.817 1.375 -0.399 1.533 
  30 1.504 -0.489 1.742 3.079 -0.520 3.349 
ESCB=0.5  10 0.150 -0.202 0.191 0.308 -0.197 0.347 
ESAB=0.5  20 0.653 -0.360 0.782 1.249 -0.331 1.358 
  30 1.413 -0.515 1.678 2.986 -0.663 3.426 
ESCB=0.5  10 0.150 -0.194 0.188 0.333 -0.165 0.360 
ESAB=0.2  20 0.701 -0.390 0.853 1.346 -0.389 1.498 
  30 1.461 -0.536 1.748 3.077 -0.574 3.406 
ESCB=0.5 0.1 10 0.017 -0.063 0.021 0.038 -0.060 0.041 
HRAB=0.8  20 0.073 -0.122 0.088 0.151 -0.138 0.170 
  30 0.150 -0.205 0.192 0.345 -0.206 0.388 
ESCB=0.5  10 0.017 -0.062 0.021 0.037 -0.064 0.041 
ESAB=0.5  20 0.072 -0.129 0.089 0.144 -0.121 0.159 
  30 0.168 -0.203 0.209 0.333 -0.179 0.365 
ESCB=0.5  10 0.018 -0.059 0.022 0.037 -0.062 0.040 
ESAB=0.2  20 0.071 -0.132 0.088 0.146 -0.136 0.164 
  30 0.160 -0.188 0.196 0.312 -0.187 0.347 
ESCB=0.2 0.5 10 0.472 -0.323 0.576 0.903 -0.282 0.983 
HRAB=0.8  20 1.682 -0.673 2.134 3.564 -0.590 3.913 
  30 3.768 -1.021 4.811 8.338 -0.881 9.114 
ESCB=0.2  10 0.413 -0.296 0.501 0.879 -0.317 0.980 
ESAB=0.5  20 1.814 -0.614 2.191 3.501 -0.674 3.956 
  30 3.951 -0.879 4.723 8.262 -0.933 9.133 
ESCB=0.2  10 0.457 -0.311 0.554 0.967 -0.366 1.101 
ESAB=0.2  20 1.833 -0.610 2.206 3.700 -0.632 4.100 
  30 4.022 -0.969 4.961 8.593 -1.068 9.734 
ESCB=0.2 0.3 10 0.171 -0.191 0.208 0.303 -0.166 0.330 
HRAB=0.8  20 0.657 -0.312 0.754 1.327 -0.394 1.482 
  30 1.493 -0.540 1.785 2.909 -0.602 3.272 
ESCB=0.2  10 0.165 -0.193 0.202 0.362 -0.173 0.392 
ESAB=0.5  20 0.611 -0.368 0.747 1.406 -0.397 1.564 
  30 1.462 -0.547 1.760 2.924 -0.655 3.353 
ESCB=0.2  10 0.167 -0.182 0.200 0.317 -0.159 0.342 
ESAB=0.2  20 0.598 -0.369 0.734 1.304 -0.387 1.454 
  30 1.453 -0.633 1.853 2.914 -0.593 3.265 
ESCB=0.2 0.1 10 0.017 -0.068 0.022 0.036 -0.070 0.041 
HRAB=0.8  20 0.066 -0.136 0.085 0.145 -0.122 0.160 
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CV_B                    Direct Estimator                  Indirect Estimator Mean 
difference 
Settings 

 
Mean_B 

Variance Bias MSE  Variance Bias  MSE  

  30 0.153 -0.201 0.193 0.334 -0.204 0.375 
ESCB=0.2  10 0.018 -0.063 0.022 0.037 -0.067 0.042 
ESAB=0.5  20 0.071 -0.125 0.087 0.139 -0.141 0.159 
  30 0.164 -0.185 0.198 0.341 -0.191 0.378 
ESCB=0.2  10 0.018 -0.069 0.023 0.035 -0.066 0.039 
ESAB=0.2  20 0.067 -0.129 0.083 0.142 -0.127 0.158 
  30 0.143 -0.204 0.185 0.319 -0.196 0.358 
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Figure B.5.1: Frequency distribution of direct and indirect mean difference (MD) estimators for the parameter 
settings ESAB=0.2, ESCB=0.5, CVB=0.3 and MeanB =10, 20, 30 (k=3 treatments) 
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Indirect MD, MeanB=10
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For the parameter settings ESAB=0.2, HRCB=0.5 and CVB=0.1, 0.3, 0.5, the direction of the 
biases over the 1000 samples are illustrated in Figure B.5.2 for the direct and indirect approaches 
under the different settings of MeanB: 10, 20, 30. As noted, although the bias is small, in most 
instances the direct and indirect estimates underestimate the parameter. 
 

Figure B.5.2: Direction of the bias of the direct and indirect mean difference (MD) 
estimates for the parameter settings ESAB=0.2, ESCB=0.5, CVB=0.1, 0.3, 0.5 (k=3 
treatments) 
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Patterns of bias and MSE for the indirect effect size (ES) estimates are displayed for different 
settings of ESAB, ESCB, and the mean in population B (Figure B.5.3 and Figure B.5.4).  

 

Figure B.5.3: Bias for indirect mean difference (MD) estimates for various parameter 
settings.  
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c) 
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Figure B.5.4: MSE for indirect indirect mean difference (MD) estimates for various 
parameter settings.  
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c)  
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B.6 Simulation Results for the Hazard Ratio  

 
For each of the three populations (A, B and C) in the Monte Carlo simulation for the hazard 
ratio, the outcome risk level for each population was selected according to a specific 
combination of the parameters HRAB, HRCB, and the hazard rate in population B, as follows: 
 
 HRAB: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
 HRCB: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9  

Hazard rate in population B: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 
 
For the various combinations of these parameters, the results of the simulation for the bias, 
variance and MSE for the direct and indirect estimators of the OR are provided in Table B.6.1.   
 
As an illustration of the frequency distribution of the estimators, the frequency distributions for 
the parameter settings HRAB=0.6, HRCB=0.8 and hazard rate in population B=0.05, 0.3, 0.5, for 
the direct and indirect estimators are presented graphically in Figure B.6.1 on the logarithmic 
scale.  It is apparent from these figures that both estimators have a mound shape, symmetric 
distribution (on the logarithmic scale). The indirect estimator has a larger variance and bias. 
 

 

Table B.6.1: Bias, variance and mean square error (MSE) of direct and indirect hazard 
ratio (HR) estimators for different settings of the indicated parameters (k=3 treatments)  

                   Direct Estimator                  Indirect Estimator Hazard 
Ratio 
Settings 

Hazard 
rate Variance Bias MSE  Variance Bias  MSE  

HRAB=1.5 0.05 0.004 -0.001 0.004 0.007 0.015 0.007
HRCB=1.5 0.1 0.003 0.003 0.003 0.008 0.003 0.008
 0.2 0.004 0.002 0.004 0.008 0.007 0.008
 0.3 0.004 0.000 0.004 0.008 0.024 0.008
 0.4 0.003 0.003 0.003 0.008 0.006 0.008
 0.5 0.003 0.000 0.003 0.008 0.005 0.008
HRAB=1.5 0.05 0.005 0.002 0.005 0.009 -0.037 0.010
HRCB=1.3 0.1 0.005 0.004 0.005 0.010 -0.007 0.010
 0.2 0.004 0.005 0.004 0.010 -0.001 0.010
 0.3 0.005 0.001 0.005 0.009 -0.045 0.011
 0.4 0.005 0.001 0.005 0.010 -0.016 0.010
 0.5 0.005 0.001 0.005 0.011 0.011 0.011
HRAB=1.5 0.05 0.006 0.005 0.006 0.013 0.028 0.014
HRCB=1.1 0.1 0.007 -0.006 0.007 0.014 -0.024 0.015
 0.2 0.006 -0.002 0.006 0.011 -0.025 0.012
 0.3 0.007 0.003 0.007 0.014 -0.065 0.018
 0.4 0.007 0.008 0.008 0.016 0.042 0.018
 0.5 0.007 0.005 0.007 0.014 -0.017 0.014
HRAB=1.3 0.05 0.002 -0.001 0.002 0.006 0.006 0.006
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                   Direct Estimator                  Indirect Estimator Hazard 
Ratio 
Settings 

Hazard 
rate Variance Bias MSE  Variance Bias  MSE  

HRCB=1.5 0.1 0.003 0.001 0.003 0.005 0.007 0.005
 0.2 0.003 0.003 0.003 0.006 0.005 0.006
 0.3 0.003 0.001 0.003 0.006 0.007 0.006
 0.4 0.003 0.002 0.003 0.005 -0.001 0.005
 0.5 0.003 0.000 0.003 0.006 -0.004 0.006
HRAB=1.3 0.05 0.003 0.000 0.003 0.008 0.002 0.008
HRCB=1.3 0.1 0.004 0.002 0.004 0.008 -0.003 0.008
 0.2 0.003 -0.002 0.003 0.007 0.003 0.007
 0.3 0.003 0.004 0.003 0.008 0.014 0.008
 0.4 0.004 0.001 0.004 0.007 0.011 0.007
 0.5 0.004 0.003 0.004 0.007 -0.007 0.007
HRAB=1.3 0.05 0.005 0.003 0.005 0.010 0.030 0.011
HRCB=1.1 0.1 0.005 0.000 0.005 0.009 -0.014 0.009
 0.2 0.005 0.000 0.005 0.012 0.047 0.014
 0.3 0.005 0.007 0.005 0.010 -0.049 0.012
 0.4 0.005 -0.001 0.005 0.009 0.012 0.010
 0.5 0.005 0.003 0.005 0.011 0.017 0.012
HRAB=1.1 0.05 0.002 0.002 0.002 0.004 -0.005 0.004
HRCB=1.5 0.1 0.002 0.000 0.002 0.004 0.013 0.004
 0.2 0.002 0.003 0.002 0.004 -0.019 0.004
 0.3 0.002 0.002 0.002 0.004 0.011 0.004
 0.4 0.002 0.001 0.002 0.004 -0.015 0.004
 0.5 0.002 0.000 0.002 0.004 -0.025 0.004
HRAB=1.1 0.05 0.003 0.003 0.003 0.006 -0.025 0.006
HRCB=1.3 0.1 0.003 0.001 0.003 0.005 0.002 0.005
 0.2 0.002 0.003 0.002 0.006 0.008 0.006
 0.3 0.003 0.001 0.003 0.006 0.040 0.007
 0.4 0.003 0.001 0.003 0.006 0.012 0.006
 0.5 0.003 0.002 0.003 0.004 -0.035 0.006
HRAB=1.1 0.05 0.004 0.000 0.004 0.007 -0.010 0.007
HRCB=1.1 0.1 0.003 -0.001 0.003 0.007 -0.015 0.007
 0.2 0.004 0.004 0.004 0.007 -0.024 0.007
 0.3 0.004 -0.002 0.004 0.007 -0.027 0.008
 0.4 0.004 0.003 0.004 0.008 0.010 0.008
 0.5 0.004 -0.002 0.004 0.008 0.017 0.008

0.05 0.004 0.003 0.004 0.008 0.003 0.008
0.1 0.004 0.003 0.004 0.007 0.005 0.007
0.2 0.004 0.001 0.004 0.008 0.015 0.008
0.3 0.004 0.005 0.004 0.007 0.015 0.007
0.4 0.004 0.000 0.004 0.007 -0.006 0.007

HRAB=0.9 
HRCB=0.9 
 
 
 

0.5 0.004 -0.002 0.004 0.008 0.007 0.008
HRAB=0.9 0.05 0.005 0.000 0.005 0.010 -0.016 0.011
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                   Direct Estimator                  Indirect Estimator Hazard 
Ratio 
Settings 

Hazard 
rate Variance Bias MSE  Variance Bias  MSE  

HRCB=0.8 0.1 0.004 0.001 0.004 0.009 0.048 0.011
 0.2 0.005 0.005 0.005 0.009 -0.001 0.009
 0.3 0.005 0.002 0.005 0.010 0.001 0.010
 0.4 0.005 -0.001 0.005 0.010 0.011 0.011
 0.5 0.005 0.004 0.005 0.010 -0.018 0.011
HRAB=0.9 0.05 0.006 0.005 0.006 0.012 -0.001 0.012
HRCB=0.7 0.1 0.006 0.005 0.006 0.015 0.038 0.016
 0.2 0.006 0.007 0.006 0.011 0.008 0.011
 0.3 0.006 0.007 0.006 0.012 -0.011 0.012
 0.4 0.006 -0.001 0.006 0.012 -0.013 0.012
 0.5 0.006 0.000 0.006 0.011 -0.001 0.011
HRAB=0.9 0.05 0.009 0.004 0.009 0.016 0.027 0.017
HRCB=0.6 0.1 0.010 0.009 0.010 0.019 0.005 0.019
 0.2 0.008 0.001 0.008 0.015 -0.006 0.015
 0.3 0.009 0.010 0.009 0.020 0.123 0.036
 0.4 0.008 0.004 0.008 0.016 -0.034 0.017
 0.5 0.009 0.006 0.009 0.019 0.009 0.019
HRAB=0.9 0.05 0.013 0.001 0.013 0.024 -0.042 0.026
HRCB=0.5 0.1 0.013 0.007 0.013 0.025 -0.053 0.027
 0.2 0.013 -0.004 0.013 0.026 0.041 0.028
 0.3 0.014 0.008 0.014 0.023 -0.042 0.025
 0.4 0.011 0.001 0.011 0.023 0.019 0.023
 0.5 0.013 0.013 0.014 0.029 0.011 0.029
HRAB=0.9 0.05 0.022 0.001 0.022 0.038 -0.013 0.039
HRCB=0.4 0.1 0.022 0.000 0.022 0.042 -0.059 0.046
 0.2 0.021 -0.001 0.021 0.044 0.061 0.047
 0.3 0.023 0.001 0.023 0.041 0.009 0.041
 0.4 0.022 0.004 0.022 0.046 -0.007 0.046
 0.5 0.019 0.006 0.019 0.038 -0.015 0.038
HRAB=0.8 0.05 0.003 0.002 0.003 0.006 0.015 0.006
HRCB=0.9 0.1 0.003 0.003 0.003 0.006 0.002 0.006
 0.2 0.003 0.002 0.003 0.006 0.016 0.006
 0.3 0.003 0.003 0.003 0.006 -0.027 0.006
 0.4 0.003 -0.002 0.003 0.006 0.022 0.006
 0.5 0.003 0.002 0.003 0.006 0.022 0.006
HRAB=0.8 0.05 0.004 0.003 0.004 0.007 0.020 0.008
HRCB=0.8 0.1 0.004 0.001 0.004 0.009 0.023 0.009
 0.2 0.004 0.003 0.004 0.008 0.031 0.009
 0.3 0.004 0.001 0.004 0.008 0.029 0.009
 0.4 0.004 0.003 0.004 0.008 0.004 0.008
 0.5 0.003 -0.001 0.003 0.008 0.000 0.008
HRAB=0.8 0.05 0.005 -0.003 0.005 0.010 -0.010 0.010
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                   Direct Estimator                  Indirect Estimator Hazard 
Ratio 
Settings 

Hazard 
rate Variance Bias MSE  Variance Bias  MSE  

HRCB=0.7 0.1 0.005 0.003 0.005 0.010 -0.010 0.010
 0.2 0.005 0.005 0.005 0.010 -0.006 0.010
 0.3 0.005 0.004 0.005 0.010 0.050 0.013
 0.4 0.005 -0.001 0.005 0.009 0.020 0.010
 0.5 0.005 0.004 0.005 0.011 0.011 0.011
HRAB=0.8 0.05 0.007 0.004 0.007 0.013 0.016 0.014
HRCB=0.6 0.1 0.007 0.002 0.007 0.015 0.000 0.015
 0.2 0.007 0.000 0.007 0.014 0.031 0.015
 0.3 0.007 0.004 0.007 0.015 0.030 0.015
 0.4 0.006 0.006 0.006 0.012 0.011 0.012
 0.5 0.007 0.004 0.007 0.012 -0.004 0.012
HRAB=0.8 0.05 0.010 0.009 0.010 0.021 -0.012 0.021
HRCB=0.5 0.1 0.010 0.004 0.010 0.020 0.050 0.022
 0.2 0.010 -0.006 0.010 0.024 0.053 0.027
 0.3 0.010 0.007 0.010 0.019 -0.024 0.019
 0.4 0.009 0.007 0.009 0.019 0.042 0.021
 0.5 0.011 0.003 0.011 0.019 -0.039 0.021
HRAB=0.8 0.05 0.018 0.014 0.018 0.029 -0.021 0.030
HRCB=0.4 0.1 0.016 -0.001 0.016 0.034 0.050 0.036
 0.2 0.017 0.008 0.017 0.029 -0.084 0.036
 0.3 0.017 0.003 0.017 0.035 0.107 0.047
 0.4 0.015 0.007 0.015 0.027 -0.077 0.033
 0.5 0.015 0.010 0.015 0.030 -0.024 0.030
HRAB=0.7 0.05 0.002 0.002 0.002 0.006 0.026 0.006
HRCB=0.9 0.1 0.002 0.002 0.002 0.004 -0.014 0.005
 0.2 0.002 0.001 0.002 0.004 -0.010 0.004
 0.3 0.002 0.002 0.002 0.005 0.001 0.005
 0.4 0.002 0.001 0.002 0.004 -0.014 0.005
 0.5 0.002 0.001 0.002 0.004 -0.003 0.004
HRAB=0.7 0.05 0.003 0.001 0.003 0.006 0.011 0.006
HRCB=0.8 0.1 0.003 -0.001 0.003 0.006 -0.010 0.006
 0.2 0.003 0.003 0.003 0.006 -0.006 0.006
 0.3 0.003 0.003 0.003 0.006 0.003 0.006
 0.4 0.003 0.003 0.003 0.005 -0.025 0.006
 0.5 0.003 0.001 0.003 0.006 0.036 0.007
HRAB=0.7 0.05 0.004 -0.001 0.004 0.007 -0.017 0.008
HRCB=0.7 0.1 0.004 0.002 0.004 0.007 0.009 0.007
 0.2 0.003 0.003 0.003 0.006 -0.002 0.006
 0.3 0.004 0.004 0.004 0.007 0.005 0.007
 0.4 0.004 -0.001 0.004 0.008 0.004 0.008
 0.5 0.004 0.004 0.004 0.007 -0.014 0.007
HRAB=0.7 0.05 0.005 0.002 0.005 0.010 0.021 0.011
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                   Direct Estimator                  Indirect Estimator Hazard 
Ratio 
Settings 

Hazard 
rate Variance Bias MSE  Variance Bias  MSE  

HRCB=0.6 0.1 0.005 0.004 0.005 0.010 -0.014 0.011
 0.2 0.005 0.003 0.005 0.010 0.025 0.010
 0.3 0.005 0.003 0.005 0.010 0.018 0.010
 0.4 0.005 0.001 0.005 0.011 -0.001 0.011
 0.5 0.005 0.004 0.005 0.010 0.011 0.010
HRAB=0.7 0.05 0.008 0.004 0.008 0.014 -0.081 0.020
HRCB=0.5 0.1 0.007 0.003 0.007 0.017 0.050 0.019
 0.2 0.007 0.001 0.007 0.016 0.007 0.016
 0.3 0.007 0.002 0.007 0.017 0.032 0.018
 0.4 0.008 0.008 0.008 0.016 -0.012 0.016
 0.5 0.007 -0.004 0.007 0.014 -0.035 0.015
HRAB=0.7 0.05 0.012 0.003 0.012 0.024 0.018 0.025
HRCB=0.4 0.1 0.014 0.012 0.014 0.026 -0.012 0.026
 0.2 0.011 0.004 0.011 0.026 0.064 0.030
 0.3 0.013 0.004 0.013 0.027 0.036 0.028
 0.4 0.013 0.009 0.014 0.025 0.025 0.026
 0.5 0.010 0.004 0.010 0.021 -0.029 0.022
HRAB=0.6 0.05 0.002 0.001 0.002 0.004 0.004 0.004
HRCB=0.9 0.1 0.002 0.001 0.002 0.003 0.007 0.003
 0.2 0.002 -0.002 0.002 0.004 0.003 0.004
 0.3 0.002 0.002 0.002 0.004 0.018 0.004
 0.4 0.002 0.003 0.002 0.004 0.010 0.004
 0.5 0.002 0.001 0.002 0.003 -0.012 0.004
HRAB=0.6 0.05 0.002 0.001 0.002 0.004 -0.022 0.004
HRCB=0.8 0.1 0.002 0.000 0.002 0.004 0.015 0.004
 0.2 0.002 -0.002 0.002 0.004 -0.028 0.005
 0.3 0.002 0.000 0.002 0.005 0.048 0.007
 0.4 0.002 0.001 0.002 0.004 -0.016 0.005
 0.5 0.002 -0.001 0.002 0.004 0.012 0.005
HRAB=0.6 0.05 0.003 0.001 0.003 0.005 0.023 0.006
HRCB=0.7 0.1 0.003 0.005 0.003 0.006 0.000 0.006
 0.2 0.003 0.003 0.003 0.005 0.006 0.005
 0.3 0.003 0.001 0.003 0.006 -0.009 0.006
 0.4 0.003 0.000 0.003 0.005 -0.003 0.005
 0.5 0.003 0.003 0.003 0.006 0.000 0.006
HRAB=0.6 0.05 0.004 0.000 0.004 0.008 0.014 0.008
HRCB=0.6 0.1 0.003 0.002 0.003 0.007 -0.006 0.007
 0.2 0.004 0.002 0.004 0.008 0.000 0.008
 0.3 0.004 0.002 0.004 0.007 -0.006 0.007
 0.4 0.004 0.003 0.004 0.008 0.007 0.008
 0.5 0.004 0.004 0.004 0.007 -0.028 0.008
HRAB=0.6 0.05 0.006 0.003 0.006 0.011 -0.008 0.011
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                   Direct Estimator                  Indirect Estimator Hazard 
Ratio 
Settings 

Hazard 
rate Variance Bias MSE  Variance Bias  MSE  

HRCB=0.5 0.1 0.005 0.006 0.005 0.009 -0.042 0.011
 0.2 0.005 0.002 0.005 0.012 0.031 0.013
 0.3 0.006 0.002 0.006 0.012 0.035 0.013
 0.4 0.005 0.004 0.005 0.010 -0.042 0.012
 0.5 0.005 0.003 0.005 0.011 0.023 0.011
HRAB=0.6 0.05 0.009 -0.001 0.009 0.020 0.066 0.024
HRCB=0.4 0.1 0.010 0.008 0.010 0.020 -0.020 0.021
 0.2 0.008 0.004 0.008 0.016 -0.013 0.017
 0.3 0.009 0.006 0.010 0.021 0.062 0.025
 0.4 0.008 0.004 0.008 0.020 0.026 0.021
 0.5 0.008 0.007 0.008 0.018 -0.035 0.019
HRAB=0.5 0.05 0.001 0.001 0.001 0.002 -0.009 0.002
HRCB=0.9 0.1 0.001 0.001 0.001 0.002 0.002 0.002
 0.2 0.001 0.003 0.001 0.002 0.007 0.002
 0.3 0.001 0.001 0.001 0.003 -0.001 0.003
 0.4 0.001 0.000 0.001 0.002 0.000 0.002
 0.5 0.001 0.001 0.001 0.002 -0.007 0.002
HRAB=0.5 0.05 0.002 -0.001 0.002 0.004 0.030 0.005
HRCB=0.8 0.1 0.002 0.000 0.002 0.003 0.006 0.003
 0.2 0.002 0.002 0.002 0.003 0.003 0.003
 0.3 0.002 -0.001 0.002 0.003 -0.002 0.003
 0.4 0.002 0.000 0.002 0.003 0.022 0.004
 0.5 0.002 0.002 0.002 0.003 -0.001 0.003
HRAB=0.5 0.05 0.002 0.000 0.002 0.005 0.007 0.005
HRCB=0.7 0.1 0.002 0.002 0.002 0.004 0.009 0.004
 0.2 0.002 0.004 0.002 0.004 0.006 0.004
 0.3 0.002 0.003 0.002 0.004 -0.005 0.004
 0.4 0.002 0.000 0.002 0.004 0.025 0.005
 0.5 0.002 0.000 0.002 0.004 0.005 0.004
HRAB=0.5 0.05 0.003 0.000 0.003 0.006 0.009 0.006
HRCB=0.6 0.1 0.002 -0.001 0.002 0.005 0.004 0.005
 0.2 0.002 0.001 0.002 0.006 -0.012 0.006
 0.3 0.002 0.001 0.002 0.005 -0.015 0.005
 0.4 0.002 0.002 0.002 0.005 -0.038 0.006
 0.5 0.003 0.002 0.003 0.006 0.018 0.006
HRAB=0.5 0.05 0.004 0.000 0.004 0.009 -0.007 0.009
HRCB=0.5 0.1 0.004 0.002 0.004 0.008 0.003 0.008
 0.2 0.004 0.005 0.004 0.007 0.003 0.007
 0.3 0.004 0.008 0.004 0.009 0.002 0.009
 0.4 0.004 0.005 0.004 0.008 0.026 0.009
 0.5 0.004 -0.002 0.004 0.008 0.005 0.008
HRAB=0.5 0.05 0.005 0.001 0.005 0.013 0.012 0.013
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                   Direct Estimator                  Indirect Estimator Hazard 
Ratio 
Settings 

Hazard 
rate Variance Bias MSE  Variance Bias  MSE  

HRCB=0.4 0.1 0.006 0.007 0.006 0.013 0.012 0.013
 0.2 0.006 0.001 0.006 0.013 0.004 0.013
 0.3 0.006 0.001 0.006 0.013 0.032 0.014
 0.4 0.006 0.002 0.006 0.014 -0.002 0.014
 0.5 0.006 0.004 0.006 0.013 0.010 0.013
HRAB=0.4 0.05 0.001 0.000 0.001 0.001 -0.012 0.002
HRCB=0.9 0.1 0.001 0.000 0.001 0.002 0.005 0.002
 0.2 0.001 0.000 0.001 0.001 0.002 0.001
 0.3 0.001 0.000 0.001 0.002 0.001 0.002
 0.4 0.001 0.000 0.001 0.002 0.006 0.002
 0.5 0.001 -0.001 0.001 0.001 -0.001 0.001
HRAB=0.4 0.05 0.001 0.000 0.001 0.002 0.017 0.003
HRCB=0.8 0.1 0.001 0.002 0.001 0.002 0.005 0.002
 0.2 0.001 0.000 0.001 0.002 -0.008 0.002
 0.3 0.001 0.001 0.001 0.002 -0.028 0.003
 0.4 0.001 0.000 0.001 0.002 -0.003 0.002
 0.5 0.001 -0.001 0.001 0.002 0.004 0.002
HRAB=0.4 0.05 0.001 0.001 0.001 0.003 0.002 0.003
HRCB=0.7 0.1 0.001 0.003 0.001 0.003 -0.008 0.003
 0.2 0.001 0.003 0.001 0.003 -0.005 0.003
 0.3 0.001 0.001 0.001 0.003 -0.027 0.003
 0.4 0.001 0.000 0.001 0.003 0.029 0.004
 0.5 0.001 0.000 0.001 0.003 0.010 0.003
HRAB=0.4 0.05 0.002 0.001 0.002 0.004 0.014 0.004
HRCB=0.6 0.1 0.002 0.001 0.002 0.004 0.013 0.004
 0.2 0.002 -0.001 0.002 0.004 0.012 0.004
 0.3 0.002 0.002 0.002 0.004 -0.007 0.004
 0.4 0.002 0.002 0.002 0.004 -0.002 0.004
 0.5 0.002 0.001 0.002 0.004 -0.013 0.004
HRAB=0.4 0.05 0.003 0.001 0.003 0.006 0.023 0.007
HRCB=0.5 0.1 0.002 0.004 0.002 0.005 -0.023 0.005
 0.2 0.003 0.001 0.003 0.005 -0.035 0.006
 0.3 0.002 0.006 0.002 0.005 -0.025 0.005
 0.4 0.002 -0.001 0.002 0.005 0.000 0.005
 0.5 0.002 0.000 0.002 0.006 0.022 0.006
HRAB=0.4 0.05 0.004 0.003 0.004 0.008 -0.011 0.008
HRCB=0.4 0.1 0.003 0.002 0.003 0.009 0.011 0.009
 0.2 0.004 0.001 0.004 0.010 0.009 0.010
 0.3 0.004 0.000 0.004 0.008 -0.028 0.009
 0.4 0.004 0.002 0.004 0.009 -0.006 0.009
 0.5 0.004 0.005 0.004 0.008 0.004 0.008
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Figure B.6.1: Frequency distribution of direct and indirect hazard ratio (HR) estimators for the parameter settings HRAB=0.6, 
HRCB=0.8, hazard rate in population B=0.05, 0.3, 0.5 (k=3 treatments) 
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For the parameter settings HRAB=0.6, HRCB=0.8, the direction of the biases over the 1000 
samples are illustrated in Figure B.6.2 for the direct and indirect approaches under the different 
settings of the hazard rate in population B: 0.05, 0.1, 0.2, 0.3, 0.4, 0.5.  As noted, although the 
bias is small, for the direct estimates, the parameter is overestimated and underestimated 
approximately the same number of times.  For the indirect estimates, the parameter is 
overestimated when the hazard rate in population B is 0.0.5, 0.2, and 0.4, but is underestimated 
when the hazard rate in population B is 0.1, 0.3 and 0.5.    

 

Figure B.6.2: Direction of the bias of the direct and indirect hazard ratio (HR) estimates 
for the parameter settings HRAB=0.6, HRCB=0.8, hazard rate in population B =0.05, 0.1, 0.2, 
0.3, 0.4, 0.5 (k=3 treatments) 
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Patterns of bias and MSE for the indirect hazard ratio (HR) estimates are displayed for different 
settings of HRAB, HRCB, and the hazard rates (Figure B.6.3 and Figure B.6.4). The patterns are 
shown for the event rate 0.05 to 0.5 and the results are symmetric about 0.5. As such, patterns for 
event rates ranging from 0.5 to 0.95 are not shown. For each of the settings, the figures are 
displayed for event rates that start at 0.05. The figures are also displayed for event rates that start 
at 0.2 in order to improve the resolution of the graphs.  

 

Figure B.6.3: Bias for indirect hazard ratio (HR) estimates for various parameter settings.  
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c)  

HRCB=0.6
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e)  

HRCB=0.8
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f)  
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Figure B.6.4: Mean square error (MSE) for indirect hazard ratio (HR) estimates for 
various parameter settings 
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c)  

HRCB=0.6
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d)  
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e)  

HRCB=0.8
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f)  
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