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a b s t r a c t

This paper presents an economical-technical-environmental dispatch (ETED) model for an adapted IEEE
30-bus system incorporated with thermal and a mix of renewable energy sources (RESs). Total fuel costs,
active power losses, and emissions level minimization is the main aim. Different equality and inequality
limits involving prohibited operating zones (POZs) are considered as system restrictions. Metaheuristic
optimization techniques – moth-flame optimization, salp swarm algorithm, improved grey wolf opti-
mizer, and multi-verse optimizer – are employed to find the best solution for the generation cost, losses,
and emissions. Various scenarios are examined to approve the ability of the formulated optimization
model in solving the problem. A weighted sum strategy using the analytic hierarchy process (AHP) is used
to convert the multi-objective problem into a normalized single-objective one. The AHP-ETED model pre-
sented in this work can significantly minimize fuel costs to 902.4951 $/h, lower emission levels as
0.09785 t/h, and achieve a lower power loss of 2.4110 MW. The results attained validate that the
IGWO outperforms the other considered algorithms in finding the best solution to the ETED problem.

� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

The stochastic nature of renewable energy sources (RESs) has
formed a challenge to incorporate them into the traditional power
grids. The expansion in RESs units’ use has revealed the techno-
economic problems of traditional thermal generation plants [1].
In order to face the uncertainty challenges in renewable generation
planning and help support smooth renewable penetration into
power grids, it is of great importance to involve the stochastic nat-
ure of photovoltaic, wind, and hydropower plants [2]. Concerning
these challenges, it is crucial that the power grid is operating eco-
nomically with a high degree of reliability in order to provide the
stakeholders in the related power market with a fair, competitive
situation [3]. Environmentally speaking, thermal power plants
hydro-
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produce multi-pollutant gas emissions as nitrogen oxide, carbon
oxides (carbon monoxide and carbon dioxide), sulfur dioxide, and
others [4]. The reliance on renewables reduces the need for fossil
fuels, thus reducing the associated emission levels of the tradi-
tional plants using these fuels. Furthermore, the power system
operation can be enhanced by lowering network power losses,
increasing energy efficiency, supporting voltage, and deferring
investments to upgrade power systems. This problem can be
solved by formulating an economical-technical-environmental dis-
patch (ETED) model. The prime goal line of the ETED is to decrease
the fuel cost of generating units, reduce power losses in power
grids, and minimize the emission levels of the thermal units in
order to optimize the system performance and reduce costs [5].

A variety of conventional approaches used in solving optimiza-
tion problems (OPs), such as based-point and participation coeffi-
cients, linear and quadratic iterative methods [6], lambda
iteration-based methods [7], and gradient approaches [8], were
presented in the literature for solving the traditional economical-
environmental dispatch (EED) problem. Due to the EED problem’s
complexity, most of these approaches have faced difficulties find-
ing global solutions at an appropriate computation time [9]. Conse-
quently, researchers sought to apply the updated formulations of
powerful mathematical-based optimization techniques to solve
the EED problem like mixed-integer programming, linear type
(MILP) and quadratic type (MIQP), non-linear programming
(NLP), and dynamic programming (DP) [10,11]. For instance, in
[12], the NLP approach (a fractional type of Dinkelbach’s algo-
rithm) was used to solve the problem, in which that approach
aimed to minimize the generation cost and pollutant emissions
formed from the use of traditional generators. However, different
operational constraints were not addressed in this work. Pan
et al. [13] presented a combination between MILP and the interior
point approach (IPA) to solve the same problem while considering
the transmission line losses and valve points. However, that
approach did not have prohibited operational zones (POZs) restric-
tions. It was mentioned that difficulty is noticed in calculating
transmission losses precisely because of numerous generating
units. Most of the conventional mathematical-based optimization
approaches face significant difficulties in coping with large-scale
generation-mixed power systems. They are often getting tapped
into local minima because of the tendency to oscillate their deci-
sion parameters during the optimization runs, and this signifi-
cantly increases the calculation time.

Recently, numerous metaheuristic optimization techniques for
single-objective (SO) and multi-objective (MO) functions have
been introduced in the literature with and without the incorpora-
tion of RESs to overcome the previously-mentioned shortcomings
[14,15]. Various evolutionary and metaheuristic optimization tech-
niques were efficiently employed to solve the optimal power flow
problem, like improved MO moth-flame optimization (IMOFO)
[16], enhanced whale optimization algorithm (EWOA) [17], parti-
cle swarm optimization (PSO) with time-varying acceleration coef-
ficient, so-called TVAC-PSO [18], accelerated PSO (APSO) [19], the
interior search algorithm (ISA) [20], a combination of PSO and salp
swarm algorithm (SSA) [21], dynamic population-based artificial
bee colony (ABC), so-called ABC-DP [22], ABC [23], MO cross-
entropy algorithm based on decomposition (MOCE/D) [24], MO
population extremal optimization (MOPEO) [25], summation-
based MO differential evolution (SMODE) [26], and a MO algorithm
based on decomposition (MOEA/D) [27]. Some took into account
the presence of RESs, and some did not take them into account
when solving their optimization issue. For instance, Wang et al.
[24] proposed the MOCE/D to solve the problem while considering
a hybrid wind- hydropower-photovoltaic plants in the model,
while complying with the operational limitations, POZs restric-
tions, and the RESs’ intermittences. The impact of valve points on
2

the system performance was not involved. Chen et al. [25] used
the MOPEO approach to reduce costs and emissions in a modified
IEEE 30-bus system with RESs. In [28], a non-dominant sorting
genetic algorithm (NSGA-II) integrated with a reinforcement learn-
ing approach, named NSGA-RL, was employed by Bora et al. to
reduce fuel costs emissions of six thermal generators and added
wind turbines. The obtained results solved the EED problem with
the NSGA-RL method. Likewise, in [26], MOEA/D and SMODE were
efficiently used for costs and emissions minimization in the 30-bus
system, with limited thermal plants and stochastic RESs. Yin et al.
[29] proposed a complex day-ahead scheme with mixed stochastic
RESs in the model to minimize the fuel costs. In [30], the authors
introduced a MOMFO strategy to solve the complex EED with
hybrid RESs based on tradeable green certificates without consid-
ering the power flow’s nonlinear limits in the problem. In [31],
the improved shuffled frog leaping algorithm (ISFLA) for solving
the EED problem was used in the optimal power flow problem for-
mulation with combined heat and power (CHP) for lowering fuel
costs and emissions. One can see that the multiple works in this
area have demonstrated the importance of solving this issue in
modern power systems with renewables [32,33].

However, many articles have been interested in showing mod-
ern optimization algorithms at the expense of the presence of RESs
in their systems. For instance, Medani et al. [17] suggested EWOA
for real power loss minimization, but no RESs were included in this
approach. The results verified that EWOA was stable and effective
in achieving the optimum solution and quickly reducing power
loss. Modiri et al. [34] used a backtracking search algorithm
(BSA) to solve the EED of fuel costs and emissions problems.
Diverse optimization algorithms have been introduced to analyze
the performance of the systems being studied, but the effect of
valve points and POZs was not considered when presented. Also,
Mason et al. [19] addressed PSO variants in which two objective
functions of costs and emission levels have been modeled while
taking into account the hourly power demand intermittency. The
obtained results have been compared to other optimization algo-
rithms to demonstrate PSO variants’ efficiency. In [18], the authors
suggested using TVAC-PSO to solve the EED problem with 48 CHP
units as a case study. The results obtained revealed the methodol-
ogy’s ability to solve the problem. The IMFO algorithmwas used by
Elsakaan et al. in [16]. However, different limitations, like POZs and
system security, were not considered in the methodology used. In
[21], the authors have proposed a combined SSA and PSO optimiza-
tion method in solving the EED problem. The method presented
has been applied to solve SO and MO strategies with multiple
objectives, like minimizing the cost of generation, pollution, power
loss, and enhancing the system voltage’s stability. In [27], the
authors introduced the MOEA/D technique in the IEEE 30- and
57-bus systems to solve the EED with a small number of limita-
tions to minimize the emission, cost, and power loss and deviations
of voltage. Yet, no method has been proved to be the best optimizer
in solving the EED problem with renewables to date. The usual
main objective of energy utilities is to meet consumer require-
ments but to lessen the cost of fuel and decrease power losses
without taking into account pollutant emissions [35]. But it is
worth noting that the various countries have begun today to help
protect the atmosphere from carbon emissions using many new
methods and approaches for reducing pollutants to meet national
and international environmental protection requirements; other-
wise, they would be globally penalized. The reduction of fuel costs
of production units in electrical networks also plays an essential
role in fulfilling the loads’ demands in the ETED problem. Dimin-
ishing carbon emissions is seen as one of the most critical factors
for overcoming climate change and environmental degradation.
The objective function is interpreted and formulated as a SO-OP
in the simple ETED formulation. However, to lower greenhouse
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gas emissions, the ETED problem is tackled by matching different
targets simultaneously. The optimal key is incorporating RESs in
electrical networks to reduce such pollution while cost-
effectively achieving the technical merits.

In this article, the IEEE 30-bus scheme is amended to incorpo-
rate photovoltaic (PV) units, a wind generator (WG), and a hydro-
power (HP) plant with a restricted number of thermal generators.
The uncertainties of PVs, HP, and WGs are analyzed in detail, using
appropriate probability density functions (PDFs) – lognormal,
Gumbel, andWeibull, respectively [36]. Both underestimation pen-
alty cost (UPC) and overestimation reserve cost (ORC) are included
in the cost model presented in this work to handle the uncertainty
and intermittency of the RESs. Moth-flame optimization (MFO),
salp swarm algorithm (SSA), improved grey wolf optimizer
(IGWO), and multi-verse optimizer (MVO) are employed as SO
optimization techniques to find the generation cost, losses, and
emissions. Different scenarios are investigated to evidence the pro-
posed mode’s ability to solve the problem. After that, a weighted
sum strategy using the analytic hierarchy process (AHP) is
employed to convert the MO-ETED problem into a normalized
SO-ETED one.

The rest of the paper is structured as follows. The system’s for-
mation is presented in Section 2. The mathematical formulation of
the ETED problem integrating RESs, formulation of the objective
functions, and design of linear and non-linear constraints are pre-
sented in Section 3. The proposed optimization methods are pre-
sented in Section 4. Results got are explored and discussed in
Section 5. Finally, conclusions and future works are given in
Section 6.
2. The system under study

The IEEE 30-bus adoption is addressed in this work, which
involves both conventional thermal generators and modern RESs
[37]. As illustrated in Fig. 1, three separate RESs of wind, PV, and
hybrid PV and hydropower (PVHP) systems are connected to buses
Fig. 1. The system
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5, 11, and 13, respectively. This model also includes three thermal
generators (TGs) connected to buses 1, 2, and 8 [2]. The essential
system’s parameters are given in Table 1.

First, individual scenarios are examined to understand the min-
imization of the fuel costs-power losses-emissions alone. In the
scenarios, we commonly have utilized three RESs – WG (bus 5),
PV (bus 11), and PVHP plant (bus 13). They have formulated as a
SO-OP: Scenario I using the fuel costs as the objective function,
Scenario II using the power losses, and Scenario III using the emis-
sion levels as the objective function. Second, the weighted sum
approach, one of the most widely used methods due to its simplic-
ity, was used to convert the MO problem into a scalar normalized
one by constructing a weighted sum of all the objectives.

In this regard, an important issue is choosing the weighting
coefficients; hence, an equal weighting coefficients scenario (de-
noted as Scenario IV) was applied to have a general picture of
the preference function’s performance. Further, a weighted sum
strategy using AHP (designated as Scenario V) was used to assign
a preference order to the MOs with weights that reflect the prefer-
ence of the decision-maker.

Besides, four optimization approaches – SSA, MFO, MVO, and
IGWO are implemented to solve the problem under study. The pro-
cedure of the scenarios and the optimization methods is illustrated
in Fig. 2.
3. Formulation of the objective function

The ETED problem is carried on by simultaneously minimizing
three computing fitness functions – fuel cost, losses, and emissions,
with different equality and inequality restrictions. Generally, the
ETED problem is interpreted and framed as follows:

Minimize ETEDð Þ ¼ minðJ1; J2; J3Þ ð1Þ

where, J1, J2, and J3 represent the objective functions of total fuel
costs, power losses, and emissions to be minimized, respectively.
under study.



Table 1
Parameters of the system [27].

Elements Quantity Parameters

Generators 6 3 TGs and 3 RESs
TGs 3 Buses 1*, 2, and 8
WG 25 Bus 5, 75 MW
PV 1 Bus 11, 50 MW
PVHP 1 Bus 13, 45 + 5 MW
Load demand (P and Q) – 283.40 MW and 126.20

MVAr
Number of PQ buses 24 24 buses
Permissible load voltage range

(pu)
– 0.95–1.10

* Bus 1 is the slack bus.

Fig. 2. The procedure of the presented methods.

Fig. 3. Discontinuous cost curve because of the operation of the point valves.
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The triple-objective ETED problematic model is transformed into
the simple SO-OP by introducing weighting factors as follows:

Minimize ETEDð Þ ¼ min w1 � Ftot

J1

����
����þw2 � PLosstot

J2

����
����þw3 � Etot

J3

����
����

� �
ð2Þ

where, w1, w2, and w3 represent the weighting factors of the total
fuel costs (Ftot), power losses (PLosstot) and emissions (Etot),
respectively.

3.1. Objective 1

The summation of costs of the TGs and RESs expresses the total
cost, as given in (3).

Min J1ð Þ ¼ minðFtotÞ ¼ Ftot PTGsð Þ þ Ftot PRESsð Þ ð3Þ
where, Ftot PTGsð Þ and Ftot PRESsð Þ denote the total TGs cost and the
total RESs cost, respectively.

TGs’s fuel cost: The TGs cost, in $/MWh, mainly depends on the
steam flow to the blades and the unexpected changes in the posi-
tion of the valves. A set of valves drives steam in these plants for
turbine operation via a dispersed group of nozzles used at full pro-
duction to get good performance [38]. These valves are opened in
4

sequence for the obligatory operation, which causes a cut-out in
the cost curve (discontinuous cost curve), as shown in Fig. 3.
Ftot PTGsð Þ is expressed in (4) [39], thus:

Ftot PTGð Þ ¼
XNTG

i¼1

aTGi
þ bTGi

PTGi
þ cTGi

P2
TGi

þ di � sin ei � Pmin
TGi

� PTGi

� �� ���� ��� ð4Þ

where aTGi , bTGi
and cTGi

denote the cost factors of the ith TGs (PTGi
Þ. di

and ei denote the effect of valve point.Pmin
TGi

denotes the minimum
power of PTGi

throughout the operation.
RESs’ cost: The RESs cost ($/MWh) is the summation of the total

costs of PVs Ftot PPVð Þð Þ, WGs Ftot PWGð Þð Þ and PVHP Ftot PPVHPð Þð Þ as
expressed in (5).

Ftot PVRESð Þ ¼ Ftot PPVð Þ þ Ftot PWGð Þ þ Ftot PPVHPð Þ ð5Þ
Each RES has a definite function to express its cost. The amount

of under-or over-delivered power can be estimated using the RES’s
PDF.

To handle the intermittence nature of these RESs, standby gen-
erators (SGs) could be connected whenever the scheduled power
exceeds the produced one. Storage batteries can be connected to
reserve the additional energy produced [40].

Cost estimation of WGs (CtotWG ): CtotWG is expressed by combin-
ing the direct investment costs CdWG

PWGschð Þ� �
in addition to the

SGs and storage units costs. CdWG
PWGschð Þ represents the initial,

operational, and maintenance costs as given in (6).

CdWG
PWGschð Þ ¼ KdWG

� PWGsch ð6Þ
where KdWG

denotes the direct cost factor and PWGsch represents the
WGs’ scheduled power. The system also may include likely standby
units to preserve the demand needs (i.e., reserve capacity potential
to safeguard the needs of the demand), and this reserve cost capac-
ity cost CrWG

� �
is formulated as follows:

CrWG PWGsch � PWGact

� � ¼ KrWG PWGsch � PWGact

� �
¼ KrWG

�
Z PWGact

0
PWGsch � pwTð Þf wT pWGð ÞdpwT ð7Þ

KrWG denotes the cost factor of the standby units and PWGact

denotes the actual WGs’ delivered power. Likewise, If PWGsch <

PWGact ; then the storage units cost, expressed in (8), will be added
to the total WG cost. The cost coefficients of WGs are presented
in Appendix A.

CsWG PWGact � PWGschð Þ ¼ KsWG PWGact � PWGschð Þ

¼ KsWG

Z PWGr

PWGsch

pWG � PWGschð Þf w pWGð ÞdpwT ð8Þ
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where PWGr ; f w pwTð Þ denote the rated wind power and the wind
speed (v)’s PDF, respectively. The storage units and standby powers
rely on f w pwTð Þ. Weibull distribution (WD) is commonly used to fit
the random frequency of each v measure [41,42]. Fig. 4(a) shows
the WD-based PDF of v data spreading over 8000 Monte-Carlo runs.
The scale (a) and the shape (b) coefficients of the WD-based PDF are
considered as 9 and 2, respectively. The probability f v vð Þð Þof v is
shown in (9):

f v vð Þ ¼ b
a

� �
v
a

� � b�1ð Þ
e� v=að Þb for0 < v < 1 ð9Þ

The WGs’ provided power that relies on v is expressed by
(10):

pwT ¼
0vout � v � v in

PWGr
v�v in
vr�v in

� �
v in � v � v r

PWGrv r � v � vout

8><
>: ð10Þ

where, v in; vout ; v r represent the WGs’ cut-in, cut-out, and rated
speeds, respectively. The probability of wind power f w pwGð Þ is given
in (11).

f w pwGð Þ ¼ b v r � v inð Þ
ab � PWr

v in þ pwG

PWGr
v r � v inð Þ

	 
b�1

� exp �
v in þ pwG

PWGr
v r � v inð Þ

a

 !b
2
4

3
5 ð11Þ

To sum up, CtotWG is expressed in (12).

CtotWG ¼ CdWG
PWGschð Þ þ CrWG PWGsch � PWGact

� �
þ CsWG PWGact � PWGschð Þ ð12Þ

Cost estimation of the PV (CtotPV ): Likewise, the solar plant’s
total cost function has been constructed based on the same atti-
tude utilized to estimate the WGs’ cost function. The direct cost
CdPV PPV schð Þ of PVs denotes the initial, operational, and mainte-
nance costs, and is given in (13).

CdPV PPV schð Þ ¼ KdPV � PPV sch ð13Þ
where KdPV denotes the direct cost coefficient and PPV sch denotes the
scheduled PV system power.

When PPV schis greater than the PV system’s actual power (PPVactÞ,
it is essential to carry out SGs, as explained earlier. The PV’s reserve
capacity CrPV

� �
cost is given in (14).

CrPV PPV sch � PPVact

� � ¼ KrPV PPV sch � PPVact

� �
¼ KrPV PPV sch � pPVð Þ � f PV pPVð Þ ð14Þ

KrPV denotes the cost parameter of the SGs. Also, the storage
units CsPV

� �
cost may appear if PPV sch < PPVact , and this is expressed

in (15).

CsPV PPVact � PPV schð Þ ¼ KsPV PPVact � PPV schð Þ
¼ KsPV pPV � PPV schð Þ � f PV pPVð Þ ð15Þ

The cost coefficients of PV units are also presented in Appendix
A. The delivered power from the standby and storage units relies
on the solar irradiance (G) PDF, denoted as f PV Gð Þ. Lognormal distri-
bution (LD) [43,44] is commonly used to get f PV Gð Þ, as shown in
Fig. 4(b) for 8000 Monte-Carlo runs at lognormal fit factors:
l ¼ 5:6 and r ¼ 0:6. Hence, f PV Gð Þ is given as:

f PV Gð Þ ¼ 1
Gr

ffiffiffiffiffiffiffi
2p

p exp
� lnG� l2
� �

2r2

� 
;8G > 0 ð16Þ

The obtainable PV’s power can be estimated as given in (17):
5

pPV Gð Þ ¼
PPVr

G2

Gstd

� �
;0 < G < Rc

PPVr
G

Gstd

� �
;G � Rc

8><
>: ð17Þ

where Gstd denotes the standard solar irradiance and Rc denote the
operation irradiance, in which Gstd ¼ 1000 W/m2, and Rc ¼ 120 W/
m2. PPVr denotes the PV units’ rated output power. To sum up,
CtotPV is expressed in (18).

CtotPV ¼ CdPV PPV schð Þ þ CsPV PPVact � PPV schð Þ
þ CrPV PPV sch � PPVact

� � ð18Þ
Cost estimation of the PVHP plant (CtotPVHP ): Gumbel distribu-

tion (GD) [45] is used in the fitting of the river flow (Qw) data, as
shown in Fig. 4(c), in which f Q Qwð Þ tracks the GD with parameters
k and c as follows:

f Q Qwð Þ ¼ 1
c
exp

Qw � k
c

� �
exp �exp

Qw � k
c

� �	 

ð19Þ

The yield power from the hydropower plant PH Qwð Þ mainly
relies on Qw as expressed in (20):

PH Qwð Þ ¼ gwqwgwQwHw ð20Þ

where gw; gw;qw;and Hw denote the hydro turbine’s efficiency, the
acceleration due to gravity, the density of water, and the effective
pressure head, respectively [46], in which gW ¼ 0:86;
qW ¼ 1000kg=m3; gW ¼ 9:81m=s2; and Hw ¼ 26m. At this bus, the
HP plant is integrated with a PV plant to improve the HP plant per-
formance. To sum up, CtotPVHP is expressed in (21).

CtotPVHP ¼ CdPVHP PPVHPschð Þ
þ CrPVHP PPVHPsch � PPVHPact

� �þ CsPVHP
PPVHPact�PPVHPschð Þ ð21Þ

where PPVHPsch and PPVHPact denote the hybrid PVHP’s scheduled and
actual powers, respectively. CdPVSH PPVHPð Þ denotes the direct cost of
the PVHP. CrPVHP and CSPVHP denote the SG and storage units costs,
respectively. The cost coefficients of PVHP are presented in Appen-
dix A.

Further, to compile all the cost functions, Ftot of the overall sys-
tem is expressed as given in (22).

Ftot ¼
XNTPGU

i¼1

aTGi
þ bTGi

PTGi
þ cTGi

P2
TGi

þ di � sin ei � Pmin
TGi

� PTGi

� �� ���� ���þ CdWG
PWGschð Þ

þ CrWG PWGsch � PWGact

� �þ CsWG PWGact � PWGschð Þ
þ CdPV PPV schð Þ þ CrPV PPV sch � PPVact

� �
þ CsPV PPVact � PPV schð Þ þ CdPVHP PPVHPschð Þ
þ CrPVHP PPVHPsch � PPVHPact

� �þ CsPVHP
PPVHPact�PPVHPschð Þ ð22Þ
3.2. Objective 2

The active power loss (Ploss) of the electric network can be
expressed as given in (23):

Min J2ð Þ ¼ minðPlossÞ ¼
Xnl
x¼1

GxðijÞ Vi
2 þ Vj

2 � 2ViVj cos dij
� �h i

ð23Þ

where Vi and Vj represent the voltages at buses i and j, respectively.
dij= di � dj denotes the voltage angle difference between buses i
and j.



Fig. 4. Considered PDFs of wind speed, solar irradiance, and river flow rate: (a) WD, (b) LD, and (c) GD.
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3.3. Objective 3

Only the emissions of TGs (Etot) are considered because the RESs
have few to no emissions, as given in (24):

Min J3ð Þ ¼ minðEtotÞ ¼
XNTG

i¼1

ETGi ð24Þ

where ETGi denotes the total emissions of the ith TG. The total emis-
sions EtotðTGÞ is the sum of harmful gas emissions that negatively
affects the atmosphere. Emissions (t/h) can be estimated as given
in (25).

EtotðTGÞ ¼
XNTG

i¼1

uTGi
þ ðw TGi

�PTGi
Þ þ ðxTGi

� PTGi

2Þ þ sTGi
� enTGiPTGi

h i
ð25Þ

where uTGi
, wTGi

, xTGi
,sTGi

and nTGi
are the coefficients of pollu-

tant emissions related to the ith TGs, and are tabulated in
Table 2.

3.4. Constraints

The restrictions and limitations considered while solving the OP
are briefed as follows:

3.4.1. Power balance
The limitations to balance the real and reactive powers with the

total load power consumed and the system network’s power losses
are given as follows:

PTG ¼ PLi þ PLossi ð26Þ

QTG ¼ QLi þ QLossi ð27Þ
3.4.2. Bounds of the active and reactive powers
The operation bounds of the TGs, WGs, PVs, and PVHP active

and reactive powers are given as follows:

Pmin
TGi

� PTGi
� Pmax

TGi
8i 2 NTG ð28Þ

Pmin
WG � PWG � Pmax

WG ð29Þ

Pmin
PV � PPV � Pmax

PV ð30Þ

Pmin
PVHP � PPVHP � Pmax

PVHP ð31Þ

Qmin
TGi

� QTGi
� Qmax

TGi
8i 2 NTG ð32Þ

Qmin
WG � QWG � Qmax

WG ð33Þ

Qmin
PV � QPV � Qmax

PV ð34Þ
Table 2
Cost and emission factors of the TGs [39].

Emission factors Generators Bus uTG

(t/h)

TG1 1 0.04091
TG2 2 0.02543
TG3 8 0.05326

Cost factors Generators Bus aTG

($/h)

TG1 1 30
TG2 2 25
TG3 8 20

7

Qmin
PVHP � QPVHP � Qmax

PVHP ð35Þ
3.4.3. Limits of POZs
POZs, a reason for discontinuity in the operation of the TGs, are

expressed in (36):

PminPOZ;j
TGi

� POZj
TGi

� PmaxPOZ;j
TGi

ð36Þ

where PminPOZ;j
TGi

and PmaxPOZ;j
TGi

denote the minimal and maximal limits
(MW) of the jth POZ of the ith TG.

3.4.4. Security limitations
The generators and load buses’ permissible voltage limits are

expressed in (37) and (38), respectively. Also, the thermal capacity
limits are taken into account, as described in (39).

Vmin
Gi

� VGi
� Vmax

Gi
8i 2 NG ð37Þ

Vmin
Lj

� VLj � Vmax
Lj

8j 2 NL ð38Þ

SLj � Smax
Lj

8j 2 nl ð39Þ

whereVGi
; VLj denote the ith’s generator bus voltage and the jth’s

load bus voltage, respectively. NG, NL, and nl denote the numbers
of generator buses, load buses, and branches, respectively. Another
factor that quantifies the voltage quality, known as voltage devia-
tion (VD) metric, is also considered and can be calculated as given
in (40) [47].

VD ¼
XNL

p¼1

VLj � 1
��� ���

 !
ð40Þ
4. Optimization and decision-making techniques

4.1. IGWO

An optimization technique, that imitates the grey wolves
(GWs)’ social hierarchy and predatory attitude, was presented by
Mirjalili in 2014 [48], and it was called the GWO technique. The
GWO. The GWs are well-thought-out as the food chain’s top preda-
tors. The GWO technique offers reduced parameter adjustment,
easy-to-understand principles, and simplicity. In wolves’ hunting
policy, three significant phases are: approach, surround, and attack
prey. Each gray wolf is a possible alternative in the population. The
wolves in the GWO technique were split into 4 levels – level 1,
denoted as a, level 2 denoted as b, level 3 denoted as d, and level
4 denoted as x. a is the present best individual that represents
the best alternative. b andd reflect the suboptimal second-best
and third-best alternatives. Finally, x corresponds to the ordinary
alternative, so that a > b > d > x. A complete explanation of this
method can be found in [48]. Though, the GWO has the problem
wTG xTG sTG nTG
(t/pu. MWh) (t/pu. MW2h) (t/h) (pu. MW�1)

�0.05554 0.0649 0.0002 6.667
�0.06047 0.05638 0.0005 3.333
�0.0355 0.0338 0.002 2
bTG cTG dTG eTG
($/MWh) ($/MW2h) ($/h) (MW�1)

2 0.00375 18 0.037
1.75 0.0175 16 0.038
3.25 0.00834 12 0.045
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in realizing the global solution similar to the intelligent random-
based population approaches [49–51]. To solve this problem, the
improved GWO (IGWO) technique is used as follows [52]:

Surrounding: The GWs surround the prey, as expressed in (41)
and (42).

D
!¼ C

!� X
!

pðtÞ � X
!ðtÞ

��� ��� ð41Þ

X
!ðt þ 1Þ ¼ X

!
p tð Þ � A

!� D
! ð42Þ

where X
!ðtÞ, X

!
pðtÞ, and t represent the GW’s position vector, the

prey position, and the tth iteration, respectively. A
!

and C
!

represent
the vectors evaluated in (43).

A
!¼ 2 a!r1

!� a!; C
!¼ 2r2

! ð43Þ
r1, r2 are random vectors ranges between 0 and 1. The elements

of a! are declined from 2 to 0 linearly during continual iterations as
formulated in (44).

a!¼ 2� 2� t
tmax

ð44Þ

Hunting: It is supposed that a, b, and d have a better view of the
prey’s position. Consequently, the other wolves x are forced to
track a, b, and d. Eq. (45) models this hunting action.

Da
�! ¼ C

!
1 � X

!
a � X

!ðtÞ
��� ���; Db

�! ¼ C
!

2 � X
!

b � X
!ðtÞ

��� ���; and
Dd
�! ¼ C

!
3 � X

!
d � X

!ðtÞ
��� ��� ð45Þ

where the coefficients C
!

1, C
!

2, and C
!

3 can be determined as given
in (43). The first three best solutions at the tth iteration are denoted

as X
!

a, X
!

b, and X
!

d. Besides, the vectors A1
�!

, A2
�!

, and A3
�!

are deter-
mined in the same way as shown in (43).

Xi1
�! ¼ X

!
a � A1�

��!
Da
�!� �

; Xi2
�! ¼ X

!
b � A2�

��!
Db
�!� �

; and

Xi3
�! ¼ X

!
d � A3�

��!
Dd
�!� �

ð46Þ

X
!

t þ 1ð Þ ¼ Xi1
�!ðtÞ þ Xi2

�!ðtÞ þ Xi3
�!ðtÞ

3
ð47Þ

Attacking: The hunt is ended when the prey stopovers and the
wolves start attacking them. Mathematically, this can be repre-
sented by the linear decrease over the iteration’s procedure con-
trolling the diversification and intensification. Although the GWO
is applicable and simple for numerous applications, the lack of
population diversity, the disproportion between diversification
and intensification, diversification problems (e.g., not adequate in
finding a viable solution), and premature convergence [53,54] are
considerable disadvantages.

Hence, to solve the ETED problem efficiently, the IGWO tech-
nique has been used in this work. Generally, there are three
phases: initialization, movement, and the selection and update,
which are described as follows:

Initialize the population: In this phase, N wolves are dis-
tributed randomly among the space of the search, with dimensions
D, within a specified range [li, uj] as given in (48). In (48), tmax rep-
resents the maximum number of iterations.

X
!

ij ¼ lj þ randj 0;1½ � � uj � lj
� �

; i 2 1;N½ �; j 2 ½1;D� ð48Þ
Then random initialization of the GWs’ population between the

boundaries of different power grid variables is performed. The ith
wolf’s position in the tth iteration is signified as

Xi
!

tð Þ ¼ Xi1
�!

; Xi2
�!

; � � � � � � ; XiD
�!n o

. The wolves’ entire population is kept

in the Pop matrix (N � D).
8

Movement phase: The IGWO has a motion technique called the
learning-based hunting dimension (LHD) search technique. In LHD,
every wolf is taught by the surrounding wolves (neighbors) to act
as another candidate for Xi(t)’s new position. The GWO and LHD
techniques produce two diverse candidates. In the LHD technique,

the dimension of the location of the wolf Xi
!ðtÞ is evaluated where

each wolf can learn by its various neighbors, in addition to another

wolf from Pop selected randomly. Besides X
!

i-GWO (t + 1), the LHD

technique creates another candidate, named X
!

i�LHD(t + 1), for the

new position. To do so, a radius R
!

i tð Þ is evaluated by calculating

the Euclidean distance from Xi
!ðtÞ to the position candidate’s X

!
i-

GWO (t + 1), as shown in (49).

R
!

i tð Þ ¼ kXi
!

tð Þ � X
!

i�GWOðt þ 1Þk ð49Þ

At that point, the surrounding neighbors of Xi
!

tð Þ, represented by

N
!

i tð Þ, can be made by (50) concerning radius R
!

i tð Þ, where Di
!

rep-

resents the Euclidean distance between X
!

i tð Þ and X
!

j tð Þ. Further,
multi neighbors learning is represented by (51) whenever the

neighborhood of X
!

i tð Þ is built.

N
!

i tð Þ ¼ X
!

j tð Þ
���Di
!

X
!

i tð Þ; X!j tð Þ
� �

� R
!

i tð Þ; X!j tð Þ 2 Pop
n o

ð50Þ

The dth dimension of X
!

i�LHD;d t þ 1ð Þ can be determined by uti-

lizing the dth dimension of a random neighbor X
!

n;d tð Þ chosen from

N
!

i tð Þand any randomly selected wolf X
!

r;d tð Þ from Pop.

X
!

i�LHD;d t þ 1ð Þ ¼ X
!

i;d tð Þ þ rand� X
!

n;d tð Þ � X
!

r;d tð Þ
� �

ð51Þ

Select and update the GWs’ locations: This phase indicates sur-
rounding and attacking the prey. The candidate who scored the
best fitness is nominated through comparisons of the fitness values

of the candidates X
!

i-GWO (t + 1) and X
!

i�LHD;d(t + 1), as shown in (52).
Once the prey has been surrounded, the GWs a; b; and d better
understood the possible prey’s location.

Xi
!

t þ 1ð Þ ¼ X
!

i�GWO t þ 1ð Þ; iff ðX!i�GWOÞ < f ðX!i�LHDÞ
X
!

i�LHD t þ 1ð Þotherwise

(
ð52Þ

Then, to upgrade the process to the new location named

Xi
!

t þ 1ð Þ, we have two conditions – if the fitness value of the cho-

sen candidate is less than Xi
!

tð Þ then Xi
!

tð Þ is upgraded by the chosen

candidate, or Xi
!

tð Þ keeps as it is in the Pop matrix. Finally, the iter-
ations’ counter (iter) is increased until tmax is reached. The flow-
chart of the IGWO technique is shown in Fig. 5.

4.2. Analytic hierarchy process (AHP)

When the multiplicity of engineering issues increases, the SO
investigation is no longer an outstanding alternative because of
the objectives’ trade-off. i.e., enhancing the objective value of a
design may reduce other objectives’ performance, especially when
many options are available [55,56]. Indeed, MO problems and
methods can be used. However, they are not enough to provide
many optimal points on the Pareto curve that satisfy the
decision-makers’ needs, especially with tri-or quad-objectives.
This means that we can sometimes allow the decision-maker to
arrive at one of the Pareto issues that are the most natural to look
at all matters of interest repeatedly. Among the numerous proce-
dures with several parameters and several characteristics, AHP is
one of the most used methods in decision-making, and it is provid-
ing several benefits: simplicity, adaptability, and clarity that allow
for comparing and assessing different alternatives. In most



Fig. 5. The flowchart of the IGWO technique.

Fig. 6. The flowchart for the AHP implementation procedure.
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instances, it is the primary way to find the most viable approach to
implement a prioritizing scheme. It also has some drawbacks, such
as the interdependence between priorities and choices and the
need to assign weights (pairwise comparisons), based on data
available, to determine which preference should be favored by
designers [57,58].

To create a decision matrix (judgment), the AHP method relies
on pairwise comparison of the various attributes. At that point, this
matrix’s maximum eigenvalue is utilized for weighing the attri-
butes [59,60]. AHP has been recently used in numerous applica-
tions of the power grid. Wang et al. [61] have utilized this to
obtain the best locations of solar power plants for seeking of
energy planning aspects. Dehghanian et al. [62] have proposed a
fuzzy-based AHP framework to determine the optimal priori-
tized maintenance of reliable power system components. Abdel
Aleem et al. [63] have used AHP for choosing multiple credits of
energy in green energy standard codes to realize the optimal
energy credits that meet the Egyptian standard needs. Elbasuony
et al. [64] presented AHP for weighing different power quality
indices for numerous interface buses in the distributed generation
schemes. In accordance, AHP is exploited to quantify the weights of
fuel costs, losses, and emission levels. The typical AHP method is
summarized as [57] – build a model of hierarchy; form the matrix
of judgment; evaluate the maximum eigenvalue (kmax) and the
respective eigenvector of the judgment, in which the eigenvector
elements should reflect the relative weights of the relative factor,
so-called ‘‘hierarchical ranking”; and finally, verify the accuracy
of the AHP by the consistency index (CI), as follows:
9

CI ¼ kmax � Nj

Nj � 1
ð53Þ

Besides, estimate the consistency ratio (CR), as follows:

CR ¼ CI
RI

ð54Þ

Nj and RI represent the dimension of the judgment matrix and
the average stochastic CI that relies on this matrix.

The pairwise comparison relies on a fundamental scale ranges
from 1 to 9, in which Scale 1: demonstrates the equality criterion,
Scale 3 demonstrates a marginally higher significant measure com-
pared to the other one, Scale 5 indicates that one measure is more
significant than the other, Scale 7 suggests that one measure is
much significant than the other, and finally Scale 9 means that
one criterion is highly significant than the other one. Fig. 6 shows
an illustrative flowchart for the AHP implementation procedure.
More information about AHP can be found in [65].
5. Simulation results

Five scenarios are addressed. In Scenario I, only fuel costs are
minimized. In Scenario II, only power losses are considered to be
minimized. Besides, in Scenario III, only emissions levels are con-
sidered to be minimized. The first three scenarios represent a SO
optimization formulation. The results obtained from the first three
scenarios are used in the rest of the weighted sum-based scenarios
as the base values to have comparable goals, not to realize a biased



Table 3
Results obtained for fuel costs minimization (the value given in bold indicates the best result got).

Variables and parameters Min Max MFO SSA IGWO MVO

Active power (MW) PTG1 50 140 152.05429 151.24668 150.04408 152.31199
PTG2 20 80 42.57366 42.84803 43.48963 42.04944
PTG3 10 35 10.00000 10.08840 10.02458 10.07894

Reactive power (MVAr) Q1 �50 140 �11.36590 �11.94310 �11.03505 �14.77419
Q2 �20 60 21.86743 14.35066 21.40220 14.80141
Q5 �15 40 25.95090 35.00000 25.86958 35.00000
Q8 �30 35 40.00000 40.00000 40.00000 40.00000
Q11 �20 25 20.85680 20.19068 21.00448 19.18328
Q13 �20 25 22.28300 21.33422 22.27803 25.00000

Bus voltage (pu) V1 0.96 1.10 1.07637 1.07738 1.07664 1.07869
V2 0.96 1.10 1.07011 1.07137 1.07044 1.07306
V5 0.96 1.10 1.06356 1.06459 1.06367 1.06652
V8 0.96 1.10 1.04268 1.04297 1.04278 1.04903
V11 0.96 1.10 1.03992 1.04070 1.04018 1.04444
V13 0.96 1.10 1.02590 1.02659 1.02614 1.03090

Ploss (MW) Not applicable 6.6551 6.5942 6.5258 6.6816
VD (pu) 0.94580 0.97531 0.95113 1.05693
Wgencost 126.9591 137.2552 125.8858 127.1258
Sgencost 114.9636 109.5690 123.5391 110.6119
Shgencost 39.9283 39.4895 39.5998 39.6447
Total cost ($/MWh) 812.4878 812.5615 811.8384 812.5497
Emission (t/h) 5.22541 5.32013 4.58865 5.31307
Fuelvlvcost 553.1386 547.9629 543.8264 558.3788
Computation time (s) 333.063019 548.202445 320.798879 415.978702

Fig. 7. Convergence curve of total fuel costs.
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solution. The weighted sum approach, one of the most widely used
methods due to its simplicity, was used to convert the problem
into a scalar normalized one by constructing a weighted sum of
all the objectives in Scenarios IV and V. In Scenario IV, all the objec-
tive functions are considered to be minimized with equal weight-
ing factors. Afterward, in Scenario V, all the objectives are
minimized while using the weighting factors obtained from the
10
AHP. The three RESs considered in this work are kept connected
to buses 5, 11, and 13 in all the schemes under investigation.

5.1. Scenario I

The total fuel cost is minimized as the primary target in the
ETED problem. The variables obtained via the proposed IGWO are



Table 4
Results obtained for power losses minimization (the value given in bold indicates the best result got).

Variables and parameters Min Max MFO SSA IGWO MVO

Active power (MW) PTG1 50 140 34.65845 34.77954 34.65974 34.84796
PTG2 20 80 80.00000 79.97559 79.99980 79.98132
PTG3 10 35 35.00000 34.99488 34.99922 34.99599

Reactive power (MVAr) Q1 �50 140 �5.84144 �5.83250 �5.88264 �6.59519
Q2 �20 60 12.85196 12.79827 12.98597 11.94761
Q5 �15 40 22.89116 22.89046 22.83186 23.75420
Q8 �30 35 40.00000 40.00000 40.00000 40.00000
Q11 �20 25 18.34947 18.33382 18.36013 17.94969
Q13 �20 25 18.73407 18.79553 18.69136 19.86471

Bus voltage (pu) V1 0.96 1.10 1.08695 1.08695 1.08694 1.08752
V2 0.96 1.10 1.08320 1.08320 1.08319 1.08391
V5 0.96 1.10 1.07133 1.07133 1.07131 1.07208
V8 0.96 1.10 1.04873 1.04880 1.04866 1.05080
V11 0.96 1.10 1.04897 1.04900 1.04893 1.05031
V13 0.96 1.10 1.03458 1.03462 1.03453 1.03610

Ploss (MW) Not applicable 2.3584 2.3607 2.3584 2.3599
VD (pu) 1.19990 1.20042 1.19901 1.23027
Wgencost 258.7630 258.5885 258.7629 258.7630
Sgencost 180.7632 182.4142 181.2130 181.1290
Shgencost 40.0073 39.9858 39.9416 39.9742
Total cost ($/MWh) 929.3213 930.9195 929.7045 929.3172
Emission (t/h) 0.10081 0.10080 0.10081 0.10072
Fuelvlvcost 482.4348 482.5182 482.4329 482.0177
Computation time (s) 505.153871 282.945590 218.322438 320.935911

Fig. 8. Convergence curve of power losses for the proposed system.
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compared to the three optimizers under consideration, as pre-
sented in Table 3. Notably, a minimum cost of 811.8384 $/MWh
is obtained via the proposed IGWO with a minimum power loss
of 6.5258 MW. The convergence curve of the fitness value using
the proposed IGWO and the other optimization algorithms is
explored in Fig. 7. Besides, the IGWO obtained the solution quickly
(computational time is around 320.798879 s) compared to the
others, followed by the MFO algorithm (computational time is
around 333.063019 s).
11
5.2. Scenario II

The power loss is minimized as the secondary target in the
ETED problem. Also, the results obtained via IGWO compared to
the three optimizers under consideration, as shown in Table 4. It
is clear that a minimum power loss of 2.3584 MW is obtained
via the proposed IGWO. The convergence curve of power losses
using the proposed IGWO and the three other optimization algo-
rithms is displayed in Fig. 8. Notably, the IGWO obtained the solu-



Table 5
Results obtained for emissions level minimization (the value given in bold indicates the best result got).

Variables and parameters Min Max MFO SSA IGWO MVO

Active power (MW) PTG1 50 140 46.09349 46.63642 46.10721 46.07680
PTG2 20 80 68.62327 68.08430 68.60972 68.58460
PTG3 10 35 35.00000 34.99999 35.00000 35.00000

Reactive power (MVAr) Q1 �50 140 �5.80643 �5.05471 �5.80472 �6.25551
Q2 �20 60 12.79751 12.64142 13.11927 18.19664
Q5 �15 40 22.82677 22.95064 22.87455 19.93807
Q8 �30 35 40.00000 40.00000 40.00000 40.00000
Q11 �20 25 18.71174 19.02737 18.81927 19.52001
Q13 �20 25 18.75256 17.78522 18.28744 16.03859

Bus voltage (pu) V1 0.96 1.10 1.08615 1.08568 1.08602 1.08515
V2 0.96 1.10 1.08219 1.08161 1.08204 1.08097
V5 0.96 1.10 1.07065 1.07005 1.07044 1.06912
V8 0.96 1.10 1.04784 1.04610 1.04712 1.04324
V11 0.96 1.10 1.04813 1.04704 1.04771 1.04527
V13 0.96 1.10 1.03371 1.03246 1.03322 1.03042

Ploss (MW) Not applicable 2.4168 2.4207 2.4169 2.4221
VD (pu) 1.17750 1.15302 1.16851 1.11358
Wgencost 258.7630 258.7629 258.7629 258.7279
Sgencost 180.9240 181.3282 181.2447 182.2155
Shgencost 39.9797 39.9969 39.9316 39.9815
Total cost ($/MWh) 906.2883 905.7517 906.5368 907.7137
Emission (t/h) 0.09783 0.097838 0.09783 0.097832
Fuelvlvcost 455.4321 454.2022 455.4013 455.5634
Computation time (s) 541.508718 312.305162 209.162713 283.680463

Fig. 9. Convergence curve of emission levels for the proposed system.
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tion quickly (computational time is around 218.322438 s) than the
others, followed by the SSA technique (computational time is
around 282.945590 s).
5.3. Scenario III

The pollutant emissions level is minimized as the third target
applied to the system. The obtained results via the proposed IGWO
compared to the three optimizers under consideration, as shown in
Table 5. It is clear that a minimum emissions level of 0.09783 t/h is
obtained via the proposed IGWO with a power loss of 2.4169 MW
12
within 209.163 s. The convergence curve of emissions level using
the proposed IGWO and the other optimizations is shown in Fig. 9.
5.4. Scenario IV

The three objectives are minimized simultaneously with equal
weighting factors (i.e., w1, w2, and w3 ¼ 0:333). The three best
results, given in bold in Tables 3–5, are used to normalize the
objective functions. Then, the proposed IGWO technique is applied
to minimize the three objectives of the system. The variables
obtained via IGWO are also compared to the other optimizers, as



Table 6
Results obtained for equal weights MO optimization.

Variables and parameters Min Max MFO SSA IGWO MVO

Active power (MW) PTG1 50 140 45.18172 40.04290 45.20047 44.09031
PTG2 20 80 69.52915 74.67228 69.51062 70.64390
PTG3 10 35 35.00000 34.99321 35.00000 35.00000

Reactive power (MVAr) Q1 �50 140 �5.80929 �5.80569 �5.83193 �2.98461
Q2 �20 60 12.79842 12.77381 12.82590 11.21679
Q5 �15 40 22.83176 22.85632 22.83534 21.96548
Q8 �30 35 40.00000 40.00000 40.00000 40.00000
Q11 �20 25 18.68309 18.51650 18.68305 19.05723
Q13 �20 25 18.75073 18.77337 18.74239 18.10271

Bus voltage (pu) V1 0.96 1.10 1.08621 1.08657 1.08621 1.08532
V2 0.96 1.10 1.08227 1.08272 1.08227 1.08117
V5 0.96 1.10 1.07070 1.07101 1.07070 1.06965
V8 0.96 1.10 1.04791 1.04834 1.04790 1.04600
V11 0.96 1.10 1.04820 1.04859 1.04820 1.04674
V13 0.96 1.10 1.03378 1.03419 1.03378 1.03220

Ploss (MW) Not applicable 2.4109 2.3824 2.4110 2.4068
VD (pu) 1.17927 1.18952 1.17923 1.14439
Wgencost 258.7630 258.7315 258.7629 258.7193
Sgencost 179.6436 180.8166 181.5155 182.0602
Shgencost 39.9320 39.9835 39.9389 39.9088
Total cost ($/MWh) 906.6000 917.8263 908.4451 911.0870
Emission (t/h) 0.09785 0.09870 0.09785 0.09794
Total objective 1.0453 1.0488 1.0461 1.0467
Fuelvlvcost 457.5116 469.5920 457.4691 460.1401
Computation time (s) 159.874675 217.963439 385.008094 223.746449

Table 7
Judgment matrix of Scenario V.

Objectives Fuel costs Losses Emissions
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presented in Table 6. The convergence curve is displayed in Fig. 10.
Notably, a minimum objective of 1.0461 pu is obtained via the
IGWO within a computational time of 385.008094 s.
Fuel costs 1/1 2/1 3/1
Losses 1/2 1/1 2/1
Emissions 1/3 1/2 1/1
5.5. Scenario V

In this scenario, the objectives were arranged according to their
importance to the decision-maker. Based on the perspective of
power utilities in Egypt, the voltage’s quality is the priority, and
it should comply with the national standards. Reducing fuel costs
comes as the first priority of network operators in the current
phase. Then, active power loss reduction comes as the secondary
goal. Despite the importance of lowering the emission levels, they
are classified as the third-priority. However, the pair-wise compar-
ison used to formulate the AHP can be modified to meet other per-
Fig. 10. Convergence curve for equal weights MO optimization of the proposed
system.
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spectives. In sequence, the judgment matrix of this scenario is
specified, as shown in Table 7. Clearly, the suggested assessment
maintains its consistency, in which: kmax= 3.0111, RI = 0.58, and
CR = 1% <10% (which indicates acceptable CR percent). The calcu-
lated weights of fuel costs, power losses, and emission levels using
the AHP are 0.5393, 0.2974, and 0.1633, respectively.

Four optimization techniques are applied to minimize the AHP-
based objective. The variables obtained via IGWO are also com-
pared to the other optimizers, as shown in Table 8. The conver-
gence curve is displayed in Fig. 11. A minimum objective of
1.0699 pu is obtained via the proposed IGWO within a computa-
tional time of 169.8182 s.

Table 9 shows a comparative analysis of different optimization
techniques in the literature and the proposed IGWO with AHP.
Remarkably, the results obtained using the proposed IGWO-AHP
are compared to the corresponding results obtained using SMODE
[39], MOEA/D [27], MODA [66], MOFA-CPA [67], PSO-SSO [21], and
MVO [68]. The AHP-ETED model presented in this work can signifi-
cantlyminimize fuel costs to 902.4951 $/h, lower emission levels as
0.09785 t/h, and achieve a lower power loss of 2.4110 MW. The
results attained validate that the IGWO outperforms the other con-
sidered algorithms in finding the best solution to the ETED problem.

Fig. 12 shows a comparison of the considered optimizers’ values
for fuel cost, power loss, and emissions, respectively. It can be seen
that the AHP-based approach (Scenario V) achieved the best fuel
cost value compared to the equal weight-based approach (Scenario
IV); however, both scenarios almost realized the same power
losses and emissions values. In comparison with the other
addressed optimization techniques, it can be seen that the pro-
posed scenarios (Scenarios IV and V) achieve better power losses
and emissions values. But with relatively higher fuel costs.



Table 8
Results obtained via IGWO for AHP-based objective minimization.

Variables and parameters Min Max MFO SSA IGWO MVO

Active power (MW) PTG1 50 140 48.55312 38.67082 48.51921 48.54658
PTG2 20 80 66.18098 77.15253 66.21427 66.39000
PTG3 10 35 35.00000 33.92502 35.00000 35.00000

Reactive power (MVAr) Q1 �50 140 �5.89415 �5.85001 �5.79898 �8.40780
Q2 �20 60 12.61675 12.97551 12.79831 14.70985
Q5 �15 40 23.06820 22.88073 22.81347 23.72562
Q8 �30 35 40.00000 40.00000 40.00000 40.00000
Q11 �20 25 18.74765 18.55917 18.78776 18.44905
Q13 �20 25 18.81138 18.60636 18.75773 18.85749

Bus voltage (pu) V1 0.96 1.10 1.08604 1.08653 1.08598 1.08634
V2 0.96 1.10 1.08206 1.08268 1.08198 1.08251
V5 0.96 1.10 1.07058 1.07092 1.07050 1.07081
V8 0.96 1.10 1.04780 1.04808 1.04765 1.04821
V11 0.96 1.10 1.04807 1.04843 1.04796 1.04843
V13 0.96 1.10 1.03365 1.03400 1.03353 1.03403

Ploss (MW) Not applicable 2.4338 2.3986 2.4335 2.4411
VD (pu) 1.17556 1.18605 1.17280 1.18611
Wgencost 258.7628 258.6994 258.7630 258.6838
Sgencost 181.4209 182.3227 181.2091 182.0296
Shgencost 39.9266 39.9132 40.0895 39.7836
Total cost ($/MWh) 902.4886 922.9256 902.4951 903.7106
Emission (t/h) 0.09798 0.09970 0.09798 0.09804
Total objective 1.07 1.082 1.0699 1.0715
Fuelvlvcost 449.8984 473.0772 449.9725 450.7142
Computation time (s) 390.239344 237.966138 169.818209 228.678605
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Fig. 11. Convergence curve of total objective for the proposed system using AHP.
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6. Conclusions

This paper presents a MO-ETED problem for obtaining the best
compromise solutions, total costs, losses, and emissions of a mod-
ified IEEE 30-bus comprised thermal and RESs such as wind, PV,
and PVHP. The main goal is to minimize the total fuel costs, active
power losses, and emission levels. Different equality and inequality
limits involving POZs were considered as system restrictions.
Metaheuristic optimization techniques – MFO, SSA, IGWO, and
MVO – were employed to find the best solutions. Various scenarios
are examined to verify the potential of the suggested model in
solving the OP. AHP was effectively utilized in quantifying the
weights of the ETED problem. Finally, the results obtained validate
that the IGWO outperforms the other considered algorithms in
solving the ETED problem. The ETED formulation may be widely
studied further by using other optimization algorithms, particu-
larly the hybrid algorithms. Besides, the non-convex ETED issue
and uncertainty in load demands over a time-period incorporated
with uncertainties of all RESs remain a challenge to be investigated
in possible future work.
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Fig. 12. Comparison of the values obtained using the considered optimizers: (a)
Fuel cost, (b) Power loss, and (c) Emissions.

Table 9
The comparative analysis by using different optimization techniques.

Objectives SMODE MOEA/D MODA MOFA-CPA PSO-SSO MVO Proposed IGWO

[39] [27] [66] [67] [21] [68] Equal weights AHP- weights

Fuel cost ($/h) 927.049 919.040 867.9070 878.13 865.18 867.034 908.4451 902.4951
Power loss (MW) 5.3148 5.5429 4.5342 3.9232 4.093 4.148 2.4110 2.4335
Emissions (t/h) 0.4721 0.6221 0.2640 0.2165 0.224 0.223 0.09785 0.09798
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Table A1
Direct, reserve, and standby cost coefficients.

Cost coefficients ($/MW) WG (bus 5) PV (bus 11) PVHP (bus 13)

Direct KdWG
= 1.7 KdPV = 1.6 KdPVHP = 1.5

Reserve KrWG = 3.0 KrPV = 3.0 KrPVHP = 3.0
Penalty KsWG = 1.4 KsPV = 1.4 KsPVHP = 1.4
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Appendix A

Table A1 shows the values of the cost coefficients of the
stochastic RESs.
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