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1 INTRODUCTION AND PRELIMINARIES

Throughout rings will have unity and modules will be unitary. Let M denote a
right module over a ring R. Recall that M is called co-Hopfian if every injective R-
endomorphism of M is surjective. Co-Hopfian modules are generalized in the following
ways. In [8], a weakly co-Hopfian (wcH) module is defined by the property that all injec-
tive R-endomorphisms of the module are essential. While in [2], the module M is called
quasi co-Hopfian (qcH) if M/f(M) is singular whenever f is an injective R-endomorphism
of M . These concepts are vastly investigated in [2], [3] and [8]. Clearly

co-Hopfian ⇒ weakly co-Hopfian ⇒ quasi co-Hopfian

and none of these implications can be reversed. In this paper we introduce and study a
notion for modules called densely co-Hopfian (dcH). We say MR is densely co-Hopfian if
for all injective R-endomorphisms f of M , f(M) is a dense submodule of M in the Goldie
torsion theory on Mod-R, that is, M/f(M) is Z2-torsion. We show that Goldie torsion
modules (i.e., Z2-torsion modules), as well as quasi co-Hopfian modules, are densely co-
Hopfian but not conversely. The dcH property is investigated for direct sums and in
Theorem 2.13 we determine the dcH property for a certain module that has an indecom-
posable decomposition complementing direct summands. We then discuss when the dcH
property transfers between a module and its injective envelope. We also consider mod-
ules with the property that all their submodules are dcH. Such modules will be called
completely co-Hopfian (ccH), and they are characterized in Proposition 3.1. Finally in
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Theorem 3.4 for three types of rings R, including rings with dense right socles, we prove
that MR is ccH if and only if the injective hull E(MR) of MR is dcH.

We now fix our notation and state a few well known preliminary results that will be
needed. Let M be a right R-module, A an R-submodule. Then A ≤e M will mean that A
is an essential submodule of M . The singular submodule of M is denoted by Z(M), and
Z2(M) is defined by Z(M/Z(M)) = Z2(M)/Z(M). The uniform dimension of M/Z2(M)
is called the reduced rank of M , and we denote this by r(M). Recall that M is called
singular if M = Z(M), and nonsingular if Z(M) = 0. The module M is called Goldie
torsion (or Z2-torsion) if Z2(M) = M . If M/A is Goldie torsion, then A is said to be a
dense submodule of M , and this fact is denoted by A ≤d M . Thus, for any module MR,
Z2(M) = {x ∈ M : ann(x) ≤d RR}. As a hereditary torsion class, the class of Z2-torsion
modules is closed under submodules, factor modules, direct sums and extensions. These
facts imply that A ≤d B and B ≤d C if and only if A ≤d C. Moreover, the Goldie torsion
theory is stable, that is, the Z2-torsion class is closed under taking injective envelopes.
Let us now write Z(M/A) = A∗/A and Z(M/A∗) = A∗∗/A, and put on record several
properties each of which is equivalent to A being dense in M . We omit the proofs.

Proposition 1.1 Let A ≤ M . The following are equivalent statements.
(1) A ≤d M .
(2) M/A∗ is singular.
(3) A∗ ≤e M .
(4) A∗∗ = M .
(5) A + Z(M) ≤e M .
(6) A + Z2(M) ≤e M .
(7) (A + Z2(M))/Z2(M) ≤e M/Z2(M).
(8) A⊕B ≤e M , for some Z2-torsion submodule B of M .
(9) A ∩B 6= 0 for every non-zero nonsingular submodule B of M .
(10) For every submodule B of M , A ∩B ≤ Z2(M) implies that B ≤ Z2(M).
(11) For all m ∈ M\Z2(M), there exists r ∈ R such that mr ∈ A\Z2(A).

A notable property of dense submodules is that their inverse images under homomor-
phisms are again dense submodules. We shall also make use of the following well known
facts, proofs of which are given for reader’s convenience.

Proposition 1.2 (1) The intersection of all dense submodules of M is the sum S(M) of
all nonsingular simple submodules of M . Consequently Z2(M)S(RR) = 0.
(2) The product of two dense right ideals is a dense right ideal.

Proof. (1). Let D(M) denote the intersection of all dense submodules of M . If D is a
dense submodule and S is a nonsingular simple submodule of M , then S ∩D 6= 0. Hence
S ≤ D and so S(M) ≤ D(M). On the other hand, if L is a complement to Z2(M) then
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L ≤d M . Thus D(M) is nonsingular. However, D(M) ≤ Soc(M) since every essential
submodule is dense. Thus D(M) ≤ S(M).

Now if m ∈ Z2(M) then ann(m) ≤d RR. However, S(RR) is the intersection of all
dense right ideals of R, hence S(RR) ≤ ann(m). Thus Z2(M)S(RR) = 0.

(2) Let I and J be dense right ideals of the ring R. Then R/I and I/IJ are Z2-
torsion. Therefore from the isomorphism [R/IJ ]/[I/IJ ] ∼= R/I we conclude that R/IJ is
Z2-torsion, hence IJ is dense. 2

2 DENSELY CO-HOPFIAN MODULES

Recall from §1 that MR is called densely co-Hopfian (abbreviated dcH) if the image of
any injective R-endomorphism of M is a dense submodule. The following result describes
several equivalent conditions to dcH property. It reduces to some parts of [2, Theorem
4.1] when the base ring is right nonsingular.

Theorem 2.1 The following statements are equivalent for an R-module M .
(1) M is dcH.
(2) M contains a dense submodule K which is dcH as an R-module and f(K) ≤ K for

any injective endomorphism f of M .
(3) There exists a dense submodule K of M such that f(K) ∩K ≤d K whenever f is an

injective endomorphism of M .
(4) If there exists an R-monomorphism M ⊕N → M , then N is Z2-torsion.
(5) For every dense submodule K of M and every injective endomorphism f of M ,

f(K) ≤d M .
(6) For every non-Z2-torsion submodule K of M and every injective endomorphism f of

M , f−1(K) is non-Z2-torsion.
(7) There exists a submodule K of M such that K and M/K are dcH and f−1(K) = K

for any injective endomorphism f of M .

Proof. Clearly (1) ⇒ (2) ⇒ (3) ⇒ (1).
(1) ⇒ (4). Let f : M ⊕ N → M be a monomorphism and ı : M → M ⊕ N be the

canonical injection. Then fı is an injective endomorphism of M . Thus f(M ⊕ 0) ≤d M ,
hence f(0⊕N) is Z2-torsion by Proposition 1.1-(10), and so N is Z2-torsion.

(4) ⇒ (1). Let f be an injective endomorphism of M . There exists a submodule
N ≤ M such that f(M) ⊕ N ≤e M . By (4), N must be Z2-torsion and consequently
f(M) ≤d M by Proposition 1.1.

(1) ⇒ (5). Let f be an injective endomorphism of M . Then f(M) ≤d M . On the
other hand, K ≤d M implies that f(K) ≤d f(M). Thus f(K) ≤d M .

(5) ⇒ (1). Apply (5) for K = M .
(1) ⇒ (6). Let f be an injective endomorphism of M and K be a non-Z2-torsion

submodule of M . By Proposition 1.1-(10), f(M)∩K is non-Z2-torsion. Thus there exists
m ∈ M \ Z2(M) such that f(m) ∈ K. Consequently m ∈ f−1(K) and m 6∈ Z2(M). Thus
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f−1(K) is non-Z2-torsion.
(6) ⇒ (1). Let g be an injective endomorphism of M such that g(M) 6≤d M . There

exists a non-Z2-torsion submodule N such that g(M)⊕N ≤e M . Thus by (6), g−1(N) is
non-Z2-torsion. However, g−1(N) = g−1(g(M) ∩N) = g−1(0) = 0, a contradiction.

For (1) ⇒ (7), set K = M , and finally for (7) ⇒ (1), define f̄ : M/K → M/K
by f̄(m + K) = f(m) + K. By hypothesis f(M) + K ≤d M . On the other hand,
[f(M) + K]/f(M) ∼= K/(f(M) ∩K) = K/f(K). By the assumption that K is dcH, the
module K/f(K) is Z2-torsion and so f(M) ≤d f(M)+K. It follows that f(M) ≤d M . 2

Corollary 2.2 Let M be an R-module.
(1) If M is dcH then so is every direct summand of M .
(2) If M/Z2(M) is dcH then so is M . In particular, every module of finite reduced rank

is dcH.
(3) Assume that I is a dense right ideal of R. If MI is dcH then so is M .

Proof. (1). This follows from Theorem 2.1-(4).
(2). Apply Theorem 2.1-(7) for K = Z2(M).
(3). Clearly MI is a fully invariant submodule and MI ≤d M . Thus (3) follows from

Theorem 2.1-(2) for K = MI.

Remark 2.3 A module M is quasi co-Hopfian if f(M)∗ = M for every injective endo-
morphism f of M , and by Proposition 1.1, M is densely co-Hopfian if f(M)∗∗ = M for
every injective endomorphism f of M .

Proposition 2.4 Let M be a module.
(1) An infinite direct sum of copies of M is dcH if and only if M is Z2-torsion.
(2) If M =

∑
i∈I Mi such that f(Mi) ∩ Mi ≤d Mi for any injective endomorphism f of

M , then M is dcH.

Proof. (1). Let M (Λ) be dcH. By Corollary 2.2-(1) we can assume that Λ is countable.
Then M/f(M) is Z2-torsion where f : M (Λ) → M (Λ) is the shift map. However M is
isomorphic to M/f(M), hence M is Z2-torsion. The converse is clear since every direct
sum of Z2-torsion modules is Z2-torsion.

(2). Let f be an injective endomorphism of M and Ni = f(Mi) ∩Mi for each i ∈ I.
Define ϕ :

⊕
i∈I(Mi/Ni) → M/f(M) by (mi + Ni)i∈I 7→ (Σj∈J mj) + f(M), where J is

the largest subset of I such that mj /∈ Nj for any j ∈ J . Then ϕ is an epimorphism and⊕
i∈I(Mi/Ni) is Z2-torsion. Thus M/f(M) is Z2-torsion and so M is dcH. 2

Corollary 2.5 Let M be semisimple. Then M is dcH if and only if every nonsingular
homogenous component of M is finitely generated.
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Proof. Let M be a semisimple dcH module and H = S(Λ) be a nonsingular homogenous
component of M . By Corollary 2.2-(1), H is dcH and hence by Proposition 2.4-(1), H
is finitely generated. The converse follows from Proposition 2.4-(2) as every homogenous
component Mi of M is fully invariant and dcH. 2

Proposition 2.6 The following statements are equivalent for a module M .
(1) M is wcH.
(2) M is qcH and for any injective endomorphism f of M , f(Z(M)) ≤e Z(M).
(3) M is dcH and for any injective endomorphism f of M , f(Z(M)) ≤e Z(M).
(4) M is qcH and for any injective endomorphism f of M , f(Z2(M)) ≤e Z2(M).
(5) M is dcH and for any injective endomorphism f of M , f(Z2(M)) ≤e Z2(M).

Proof. Clearly (1) ⇒ (2) ⇒ (3). For (3) ⇒ (1), by Proposition 1.1-(5), it is enough
to show that f(M) ≤e f(M) + Z(M) for any injective endomorphism f of M . Let
K ≤ f(M) + Z(M) and K ∩ f(M) = 0. By hypothesis K ∩ Z(M) = 0. Now let x ∈ K.
There exist y ∈ f(M) and z ∈ Z(M) such that x = y + z, hence xI = yI ≤ K ∩ f(M) = 0
for some I ≤e RR. Thus x ∈ K ∩ Z(M) = 0.

Similarly, (1) ⇒ (4) ⇒ (5) ⇒ (1). 2

Corollary 2.7 Let M be a module such that Z(M) or Z2(M) is wcH. Then M is dcH if
and only if M is qcH if and only if M is wcH.

Proposition 2.8 Let R be a ring.
(1) The class of dcH R-modules coincides with the class of (weakly) co-Hopfian R-modules

if and only if R is semisimple.
(2) The class of dcH R-modules coincides with the class of qcH R-modules if and only if

R is right nonsingular.

Proof. (1) follows from [2, Proposition 2.12].
(2) (⇒). Let M be an R-module. Then Z2(M)(N) is Z2-torsion and so it is dcH. Thus

by hypothesis Z2(M)(N) is qcH, hence Z2(M) is singular by [2, Lemma 3.3]. Consequently
Z2(M) = Z(M), in particular, Z2(E) = Z(E) where E = E(RR). However E is extending
and so Z(E) is a direct summand of E. This implies that Z(E) = 0, hence Z(RR) = 0.

(⇐). Since the notions of Z2-torsion and singular are the same for a module over a
right nonsingular ring, the properties dcH and qcH are equivalent. 2

Example 2.9 We now construct examples of dcH modules which are neither Z2-torsion
nor qcH. Let R be a right Noetherian ring such that Z(RR) 6= 0 and Z2(RR) 6= R. Then
Z2(E) 6= Z(E) where E = E(RR) since Z(RR) 6= 0; see the proof of Proposition 2.8-(2).
Now by Corollary 2.2-(2) and [2, Proposition 2.2-(i) and Lemma 3.3], R/Z2(RR)⊕Z2(E)(N)

is dcH which is neither Z2-torsion nor qcH.
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Theorem 2.10 The following statements are equivalent for a ring R.
(1) Every (projective, free) R-module M is dcH.
(2) For every (projective, free) R-module M , M/Z(M) is dcH.
(3) For every (projective, free) R-module M , M/Z2(M) is dcH.
(4) For every (projective, free) R-module M , M/Z(M) is qcH.
(5) For every (projective, free) R-module M , M/Z(M) is singular.
(6) Every (projective, free) R-module is Z2-torsion.
(7) There exists a nilpotent dense right ideal in R.
(8) Rad(R) ≤d RR and Soc(RR) ≤d RR.
(9) Z(RR) ≤e RR.
(10) RR is Z2-torsion.

Proof. For (1) ⇒ (6), let M be an R-module and Λ be an infinite set. By hypothesis M (Λ)

is dcH, hence M is Z2-torsion by Propositions 2.4-(1). The implication (6) ⇒ (5) is clear
since Z(M/Z(M)) = Z2(M)/Z(M). Clearly (5) ⇒ (4) ⇒ (2). Now let (2) hold. Then
L = (R/Z(RR))(N) ∼= R(N)/Z(RR)(N) is dcH. Since L ⊕ (R/Z(RR)) ∼= L, Theorem 2.1-(4)
implies that R/Z(RR) is Z2-torsion, thus Z(RR) ≤d RR and so by Proposition 1.1-(5),
Z(RR) ≤e RR. This shows that (2) ⇒ (9). Obviously (9) ⇒ (10). If (10) holds then every
R-module M is Z2-torsion as MZ2(RR) ≤ Z2(M), hence M is dcH. Thus (10) ⇒ (1).

Clearly (6) ⇒ (3) and (3) ⇒ (10) by setting Z2(M) instead of Z(M) in the proof of
(2) ⇒ (9). In addition, if (6) holds the zero ideal is nilpotent and dense and so (6) ⇒ (7).
Now assume that (7) holds and let K be a nilpotent dense right ideal of R, say Kn = 0.
If n = 1 then K = 0 is Z2-torsion. If n > 1 then by Proposition 1.2-(2), Kn−1 is a
dense right ideal and so KKn−1 = 0 implies that K is Z2-torsion. Therefore R contains a
Z2-torsion dense right ideal, hence RR is Z2-torsion. Thus every right ideal of R is dense
and so (7) ⇒ (8). Now let (8) hold and M be an R-module. Since Rad(RR) ≤d RR

and MRad(R) ≤ Rad(M) we conclude that Rad(M) ≤d M . Thus 0 = Rad(S) ≤d S
for every simple R-module S and so every simple R-module is Z2-torsion (in fact it is
singular), hence Soc(RR) ≤ Z2(RR). Since by hypothesis Soc(RR) ≤d RR we conclude
that Z2(RR) ≤d RR and so Z2(RR) = RR. Thus (8) ⇒ (10). 2

Let R be a right Artinian local ring that is not a division ring. Then Rad(R) ≤e RR

and Soc(RR) ≤e RR and so R satisfies all the conditions of Theorem 2.10. Moreover,

T =

(
R Rad(R)
0 R

)
is right Artinian and clearly Rad(T ) =

(
Rad(R) Rad(R)

0 Rad(R)

)
≤e

TT . Thus T also satisfies the conditions of Theorem 2.10 although T is not local. The
next result, in particular, shows that for a right Artinian ring each of the statements of
Theorem 2.10 holds if and only if Rad(R) ≤e RR.

Proposition 2.11 For a ring R, if Soc(RR) ≤e RR then each of the statements in The-
orem 2.10 is equivalent to any one of the following conditions.
(i) Rad(R) ≤e RR.
(ii) For every R-module M , M/Rad(M) is singular.
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(iii) For every R-module M , M/Rad(M) is qcH.
(iv) Every simple R-module is singular.
(v) Soc(RR)2 = 0.
(vi) S(RR)2 = 0.

Proof. By condition (6) of Theorem 2.10, every simple R-module is singular and so ev-
ery maximal right ideal is essential. Thus Soc(RR) ≤ Rad(R), and then the hypothesis
Soc(RR) ≤e RR implies that Rad(R) ≤e RR. This shows that (6) ⇒ (i). By [2, Proposi-
tion 2.13], (i) ⇔ (ii) ⇔ (iii). Clearly (ii) ⇒ (iv). The equality Z(RR)Soc(RR) = 0 implies
that (iv) ⇒ (v). Obviously (v) ⇒ (vi). Now let S(RR)2 = 0. Since Soc(RR) ≤e RR and
S(RR) ≤d Soc(RR), we conclude that S(RR) ≤d RR and so S(RR) is a nilpotent dense
right ideal of R. Thus (vi) ⇒ (7) of Theorem 2.10. 2

A module M is called CS or extending if every closed submodule of M is a direct
summand of M . A ring for which every free module is CS is called Σ-extending [5, 12.21
and Corollary 11.4]. Over such rings, a dcH module is exactly a direct sum of a wcH
module and a Z2-torsion module, as the next result shows.

Proposition 2.12 Let M be a homomorphic image of a CS module. M is dcH if and
only if M is isomorphic to a direct sum of a nonsingular dcH module and a Z2-torsion
module.

Proof. Assume that M ∼= L/K where L is a CS module and K ≤ L. First we show
that Z2(L/K) is a direct summand of L/K. Assume that Z2(L/K) = K ′/K. Then
K ′ is a closed submodule of L; in fact, if K ′ ≤e N ≤ L then N/K is Z2-torsion since
(N/K)/(K ′/K) and K ′/K are Z2-torsion. Thus N/K ≤ Z2(L/K) and so N = K ′. There-
fore K ′ is a direct summand of L, say L = K ′ ⊕K ′′. Hence L/K = K ′/K ⊕ (K ′′ + K)/K
as desired. Now proposition is clear by Corollary 2.2-(1) and (2). 2

Let M have an indecomposable decomposition that complements direct summands
(see [1, § 12]). We call the direct sum of all isomorphic direct summands of such a decom-
position, a homogeneous component of that decomposition.

Theorem 2.13 Let M be a module such that f(M) is a direct summand of M for ev-
ery injective endomorphism f of M . Suppose M has an indecomposable decomposition
that complements direct summands. Then M is dcH if and only if every non-Z2-torsion
homogeneous component of such a decomposition of M is a finite direct sum.

Proof. (⇒). A non-Z2-torsion homogenous component of an indecomposable decompo-
sition of M is isomorphic to N (Λ), for some non-Z2-torsion indecomposable submodule N
of M . Since M is dcH so is N (Λ), thus by Proposition 2.4-(1), Λ is finite.

(⇐). Let f be an injective endomorphism of M . By hypothesis M = f(M)
⊕

K for
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some submodule K. Assume that K is non-Z2-torsion. By hypothesis there exists an
indecomposable decomposition M =

⊕
α∈A Mα that complements direct summands and

so there exists such a decomposition for K by [1, Lemma 12.3], say K =
⊕

β∈B Kβ. Then

M =
⊕
α∈A

Mα (∗) ; M =
⊕
α∈A

f(Mα)
⊕

(
⊕
β∈B

Kβ) (∗∗)

By [1, Theorem 12.4], (∗) and (∗∗) are equivalent. Now, for a β1 ∈ B such that Kβ1 is
non-Z2-torsion, Kβ1

∼= Mα1 for some α1 ∈ A. By hypothesis the homogenous component
of M corresponding to Mα1 has finitely many direct summands, say Mα1 ,Mα2 , . . . ,Mαn .
Then in (∗∗) there is a homogenous component with at least n + 1 direct summands, i.e.
f(Mα1), f(Mα2), . . . , f(Mαn),Kβ1 which are all isomorphic to Mα1 . This contradicts the
equivalence of (∗) and (∗∗). Therefore K is Z2-torsion and so f(M) ≤d M . 2

An extending module M is called continuous if every submodule N of M which is
isomorphic to a direct summand of M , is a direct summand of M . Every nonsingular
injective module over a ring of finite reduced rank is a direct sum of indecomposable mod-
ules by [10, Theorem 1.2] and [11, Theorem 2.1]. Hence by [9, Exercise 37 of §6] and the
well known fact that the endomorphism ring of an indecomposable continuous module is a
local ring, a nonsingular continuous module over a ring of finite reduced rank has a decom-
position into indecomposable continuous submodules such that the endomorphism ring of
each direct summand is local. Since a continuous module has the finite exchange property,
such a decomposition complements direct summands by [4, Theorem 14.22]. Moreover, a
module M is called Σ-quasi-injective if every direct sum of copies of M is quasi-injective.
By [6, Corollary 2.4], every Σ-CS module, hence every Σ-quasi-injective module has an
indecomposable decomposition which complements direct summands. Bearing these facts
in mind the following corollary easily follows from Theorem 2.13.

Corollary 2.14 Let R be a ring.
(1) If R is of finite reduced rank and M is a continuous R-module, then M is dcH if

and only if every nonsingular homogeneous component of a decomposition of M into
indecomposable continuous submodules is a finite direct sum.

(2) If M is Σ-quasi-injective, then M is dcH if and only if every nonsingular homoge-
neous component of a decomposition of M into indecomposable Σ-quasi-injective sub-
modules is a finite direct sum.

Corollary 2.15 A divisible abelian group M is dcH if and only if r(M) < ∞.

Proof. This is an immediate consequence of Corollary 2.14-(1) since a divisible abelian
group is a direct sum of isomorphic copies of Q and of arbitrary Prüfer groups. 2



9

3 COMPLETE CO-HOPFICITY AND INJECTIVE ENVELOPES

A natural question is whether the dense co-Hopficity passes to injective envelope. As
the notions of dcH and qcH are the same for a nonsingular module, [2, Example 4.8]
shows that in general the answer to this question is negative. By the additive property
of reduced rank if M is of finite reduced rank, then so is E(M) and hence by Corollary
2.2-(2), E(M) is dcH. However, every submodule of a finite reduced rank module is dcH.
Let us call a module all of whose submodules are dcH, a completely co-Hopfian module
(ccH). Now it is natural to ask whether E(M) is dcH if M is ccH. In the following we
show that a quasi-injective dcH module is ccH. Moreover for some classes of rings we show
that the answer to the latter question is affirmative.

Proposition 3.1 The following statements are equivalent for a module M .
(1) M is ccH.
(2) Every dense submodule of M is dcH.
(3) Every non-dense submodule of M is dcH.
(4) X(N) cannot be embedded in M , for any non-Z2-torsion module X.

Proof. Clearly (1) ⇒ (2) and (1) ⇒ (3).
(2) ⇒ (1). This follows by Corollary 2.2-(1), since every submodule is a direct sum-

mand of an essential submodule.
(3) ⇒ (1). Let K be a submodule of M which is not dcH. There exists an injective

endomorphism f of K such that f(K) 6≤d K. Thus f(K) 6≤d M , however f(K) ∼= K
implies that f(K) is not dcH which contradicts (3).

(1) ⇒ (4). This follows by Proposition 2.4-(1).
(4) ⇒ (1). Let K be a submodule of M . If K is not dcH then by Theorem 2.1-(4),

there exists a non-Z2-torsion module X such that K
⊕

X can be embedded in K. This
implies that XN can be embedded in M which contradicts (4). 2

Proposition 3.2 The following statements are equivalent if M is quasi-injective.
(1) M is dcH.
(2) M is ccH.
(3) E(M) is dcH.

Proof. (1) ⇒ (2). It suffices to show that every essential submodule of M is dcH. Let
K be an essential submodule of M and g be an injective endomorphism of K. As M is
quasi-injective, there exists an endomorphism f of M such that f |K= g. The essentiality
of K implies that f is an injective endomorphism of M , hence f(M) ≤d M . Clearly
f(K) ≤d f(M), thus f(K) ≤d M and so f(K) ≤d K.

(2) ⇒ (3). This follows from Theorem 2.1-(2) for K = M .
(3) ⇒ (1). By applying (1) ⇒ (2) to the module E(M) we conclude that E(M) is

ccH, hence M is dcH. 2
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The following lemma is useful. Recall that a module M is called compressible (resp.
retractable) if there exists a monomorphism (resp. non-zero homomorphism) f : M → N
for any non-zero submodule N of M .

Lemma 3.3 Let R be a ring of finite reduced rank which is semiprime or has ACC on
two-sided ideals. Then every non-zero nonsingular right R-module M contains an essential
submodule L =

⊕
i∈I Ui where each Ui is a uniform compressible right R-module.

Proof. First we show that every non-zero submodule N of M has a uniform compressible
submodule. Since R has finite reduced rank, the additive property of reduced rank implies
that the reduced rank of every cyclic submodule of N is finite. However N is nonsingular,
hence the uniform dimension of every cyclic submodule of N is finite. This implies that
N contains a cyclic uniform submodule U . By [7, Exercise 3W], there exists a non-zero
right ideal I of R such that I can be embedded in U . As any non-zero right ideal of a
semiprime ring is retractable, if R is semiprime, I is a retractable nonsingular uniform
R-module. Thus I is compressible and so N contains a uniform compressible submodule
isomorphic to I. Now if R has ACC on two-sided ideals, there exists an associated prime
P of U . Then P = annR(V ) for a non-zero submodule V in U . Clearly Z(VR) = 0 implies
that Z(VR/P ) = 0, hence there exists a non-zero right ideal A of R/P such that A can
be embedded in VR/P . Therefore A is a retractable nonsingular uniform R/P -module.
Hence A is compressible as an R/P -module and so A is also compressible as an R-module.
Consequently, N contains a uniform compressible submodule isomorphic to A. Now let
L =

⊕
i∈I Ui be a maximal direct sum of uniform compressible submodules of M . By

what we have shown above, L must be essential in M. 2

Theorem 3.4 Let R be a ring for which Soc(RR) ≤d RR or let R be a ring of finite
reduced rank which is either semiprime or has ACC on two-sided ideals. Then M is a ccH
R-module if and only if E(M) is dcH.

Proof. By Proposition 3.2, it suffices to show that if M is ccH then E(M) is dcH. Assume
that Soc(RR) ≤d RR. Clearly E(M)Soc(RR) ≤ Soc(E(M)) = Soc(M). Since M is ccH,
E(M)Soc(RR) is dcH. Thus by Corollary 2.2-(3) we conclude that E(M) is dcH.

Now assume that R is a ring of finite reduced rank which is semiprime or has ACC on
two-sided ideals. Since E(M) is extending, E(M) = Z2(E(M))⊕ E′ for some submodule
E′. Hence by Corollary 2.2-(2), it is enough to show that E′ is dcH. Clearly, we can
assume that E′ 6= 0. By Lemma 3.3, E′∩M contains an essential submodule L =

⊕
i∈I Ui

where each Ui is a uniform compressible right R-module. However E′ ∩M is essential in
E′, hence E′ = E(

⊕
i∈I Ui). Because R is of finite reduced rank, E′ =

⊕
i∈I E(Ui) by [11,

Theorem 2.1-(5)]. Since E(Ui) is indecomposable injective, if we show that every homoge-
nous component of this decomposition is a finite direct sum, then by Corollary 2.14-(1),
E′ is dcH. Assume that Ui and Uj are uniform compressible right modules with E(Ui)
and E(Uj) two direct summands of a homogenous component of E′ (i.e. E(Ui) ∼= E(Uj)),
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hence there exist monomorphisms f(i,j) : Ui → Uj and f(j,i) : Uj → Ui. On the other hand,
every direct summand of L is a dcH R-module by our assumption, especially so is

⊕
k∈K Uk

which corresponds to a homogenous component of E′. However by monomorphisms f(i,j)

there is a shift map on
⊕

k∈K Uk which is a monomorphism if K is infinite. Moreover its
image is not dense, which is a contradiction. Hence every homogeneous component of E′

is a finite direct sum, as desired. 2

Corollary 3.5 Let R be a ring.
(1) If Soc(RR) ≤d RR, then M is ccH if and only if Soc(M) is dcH.
(2) If R is right Artinian, then an R-module M is ccH if and only if r(M) < ∞.

Proof. (1). By Theorem 3.4, it is enough to show that if Soc(M) is dcH then E(M) is
dcH. However, similar to the proof of Theorem 3.4, from E(M)Soc(RR) ≤ Soc(E(M)) =
Soc(M) the result follows.

(2). It is enough to show that if an R-module M is ccH then r(M) < ∞. Since R
is right Artinian, Soc(M) ≤e M and so Soc(M) ≤d M . Thus by the additive property
of reduced rank r(M) = r(Soc(M)). Moreover, there are only finitely many simple right
R-modules up to isomorphism. Thus the result follows by (1) and Corollary 2.5. 2

Corollary 3.6 Let R be a ring for which Soc(RR) ≤d RR or let R be a ring of finite
reduced rank which is either semiprime or has ACC on two-sided ideals. The following
statements are equivalent.
(1) In Mod-R, { ccH modules } = { modules of finite reduced rank }.
(2) Up to isomorphisms, there are only finitely many nonsingular indecomposable in-

jective R-modules.

Proof. Assume that Soc(RR) ≤d RR. First note that there is a one to one corre-
spondence between non-isomorphic nonsingular indecomposable injective R-modules and
non-isomorphic nonsingular simple R-modules. For (1) ⇒ (2), let {Sλ : λ ∈ Λ} be any
nonempty set of non-isomorphic nonsingular simple R-modules. Then by Corollary 2.5,⊕

λ∈Λ Sλ is ccH, hence it is of finite reduced rank by (1). Thus Λ must be finite and so
(2) holds. The implication (2) ⇒ (1) follows by Corollaries 2.5 and 3.5-(1).

Now assume that R is a ring of finite reduced rank which is semiprime or has ACC on
two-sided ideals. For (1) ⇒ (2), let {Mλ : λ ∈ Λ} be any set of non-isomorphic nonsingular
indecomposable injective right R-modules. Then

⊕
λ∈Λ Mλ is injective and by Corollary

2.14-(1), it is dcH and so by (1) it is of finite reduced rank. Thus Λ must be finite and so
(2) holds. The implication (2) ⇒ (1) follows by Theorem 3.4 and Corollary 2.14-(1). 2
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[6] J. L. Gómez Pardo and P.A. Guil Asensio, Every Σ-CS module has an indecomposable
decomposition, Proc. Amer. Math. Soc. 129 (2001) 947-954.

[7] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noethe-
rian Rings (London Math. Soc. Student Texts, Vol.16, Cambridge University Press,
1989).

[8] A. Haghany and M. R. Vedadi, Modules whose injective endomorphisms are essential,
J. Algebra 243 (2001) 765-779.

[9] T. Y. Lam, Lectures on Modules and Rings (Graduate Texts in Mathematics, Vol.
189, Springer-Verlag, New York/Berlin, 1998).

[10] M. L. Teply, Torsionfree injective modules, Pacific J. Math. 28 (1969) 441-453.

[11] M. L. Teply, Some aspects of Goldie’s torsion theory, Pacific J. Math. 29 (1969)
447-459.


