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Abstract
Background and Objective: Epidermal growth factor receptor (EGFR) is the biomarker for lung cancer in which the protein has the most
active mutated genes in lung cancer patients. Peptides have pharmacological potential as drugs because of their bioactivity and
accessibility. The research objective was to obtain peptide compounds drug candidates with good interaction and pharmacological
properties that can act as an inhibitor for EGFR for lung cancer treatment by using  in  silico  method. Materials and Methods: EGFR
protein structure was obtained from Protein Data Bank and the peptide compounds were retrieved from PubChem. Optimization and
energy minimization process were done to prepare the peptides for the simulation. Protein-Ligand Interaction Fingerprint (PLIF) was used
to determine the pharmacophore features in the EGFR binding site. Both proteins and ligands underwent a virtual screening through rigid
and flexible molecular docking simulation and the best ligands were subjected to a computational ADME-Tox properties prediction.
Results: After screening through molecular docking simulation, nine best compounds were identified to have a good interaction with
EGFR protein according to its binding energy and RMSD value. The compounds were identified to form hydrogen bond interactions with
the macromolecule. Conclusion: Two peptide compounds (PubChem ID: 20832941 and 9805315) have been predicted as the best ligands
with desired pharmacological properties for the inhibition of EGFR tyrosine kinase. 
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INTRODUCTION

Cancer is an urgent global challenge because of the
increased number of patients for the past few years. One type
of cancer with the highest mortality rate around the world is
lung cancer1. Lung cancer patients with non-small cell lung
cancer (NSCLC) subtype is more common (around 85%)
compared to small cell lung cancer  (SCLC). NSCLC differed
into several histological subtypes such as adenocarcinoma,
large-cell carcinoma and squamous cell carcinoma. Epidermal
growth  factor  receptor (EGFR) is the biomarker for lung
cancer in which the protein has the most active mutated
genes in patients with NSCLC2. EGFR is a transmembrane
receptor tyrosine kinase protein that is expressed in some
normal neurogenic mesenchymal and epithelial tissue. EGFR
plays an essential role in the process of controlling cell growth,
cell resistance and cell apoptosis3. 

Gefitinib,    an    EGFR   receptor   tyrosine   kinase
inhibitors (TKIs) is an oral-administrated small molecule
inhibitor that already approved by Food and Drug
Administration (FDA), plays as a first or second-line treatment
for advanced adenocarcinoma3,4. EGFR mutation genes are
divided into two groups, namely EGFR mayor gene mutations
(insertion/deletion exon 19 and L858R) and minor EGFR
mutation genes (G719X and L861Q). Intracellular mutations
occur and may impact a drug efficacy because it confers an
increased affinity for these drugs in EGFR protein. This has
been reported in several patients with NSCLC acquired
resistance to gefitinib5,6.

In this research, in silico approach was used to obtain
peptide compounds as EGFR tyrosine kinase inhibitor, hence
become a promising drug in lung cancer. Peptides have
pharmacological potential as drugs because of their
bioactivity, low toxicity (related to its constituent amino acids),
high diversification, high potential and selectivity, high
efficiency, safe and tolerant, not bioaccumulative and easy to
be synthesized and their accessibility are considered as a high
potential to meet the desires of new drugs7. Furthermore, the
development of more efficient and economic peptide
synthesis and the improvement of peptide purification
systems have been essential for the revival of the peptide field
in recent decades8.

Discovering various target proteins and potential inhibitor
to be developed as new drugs could be facilitated by
combining genomic and proteomic studies with
computational sciences9. In  silico  method or computer-aided
drug discovery and development is a rapid developing field

that grows to reduce the cost and improve time efficiency in
drug development10. The molecular docking simulation is a
method that has been developed to analyze interactions,
affinity and stability of a ligand targeting other biomolecules11.
Hence, the use of in silico method can eliminate the possible
undesired drug candidate.

This study was conducted to obtain the information of
the potential peptide compounds as a novel inhibitor for EGFR
tyrosine kinase through in silico pharmacological test and
molecular docking simulation method.

MATERIALS AND METHODS

This study was conducted at Bioinformatics Laboratory,
Department of Chemistry, Faculty of Mathematics and Natural
Sciences Universitas Indonesia from July, 2019-November,
2019. The method used in this study was based on the
previous publication12. 

Protein preparation: The three-dimensional (3D) structure of
EGFR proteins were acquired from Research Collaboratory for
Structural Bioinformatics Protein Data Bank (RCSB PDB). Each
crystal structures have one unique ligand. Four proteins have
PDB ID: 2ITW (2.88 Å), 2ITX (2.98 Å), 2ITY (3.42 Å) and 2J6 M
(3.1 Å) with ITQ, ANP, IRE and AEE (Fig. 1) as unique ligands,
respectively13. All protein structures were prepared using force
field Amber10: EHT in R-Field solvation by utilizing Molecular
Operating Environment (MOE) 2014.09 software. The process
was initiated with removing water molecules and continued
to LigX stage for optimizing all structures. The prepared
proteins were saved in MOE format (moe).

Pharmacophore designing: In MOE software, 3D
pharmacophore  models  were  determined  through the stage
of superpose and protein-ligand interaction fingerprints (PLIF)
based on the ligand-based pharmacophore approach. The
pharmacophore models were saved in pH4 format (ph4) for
use in the next simulation.

Standard ligand preparation: Four standard ligands (Fig. 1)
have consisted of all unique ligands from four proteins. The
ligands were acquired from ChemSpider and saved in MDB
format (mdb). The preparation process was conducted with
MOE 2014.09 software by applying force field: MMFF94x and
Gas-Phase as solvation. The process started with ‘Wash’ in
default parameter and ‘Energy Minimization’ with RMS
gradient of 0.001 kcal molG1 Å. 

568



Pak. J. Biol. Sci., 23 (4): 567-574, 2020

N

N

N

N
H

O

O

O

(a)

N

N

N
H

H N

N

N

(b)

N

N

O

O

O

N

N H

F

Cl

(c)

N

N

N

N H2

N
O

O H

O H

O

O

O
O

O
O H

P
P

P

O
H

H
N

H O

H O

(d)

Fig. 1(a-d): Standard ligand, (a) 1,2,3,4-tetrahydrogen
staurosporine (ITQ), (b) 6-{4-[4-ethylpiperazine-1-
Y1)methyl]phenyl}-N-[(1r)-1-phenylethyl]-7h-
pyrrolo[2,3-D]pyrimidin-4-amine (AEE788), (c)
Gefitinib (IRE) and (d) Phosphoaminophosphonic
acid-adenylate ester (ANP)

Construction of peptide database: Prior to database
preparation, 8,629 peptide compounds were obtained from
PubChem database. These peptide compounds were screened

by using OSIRIS DataWarrior software. The unwanted
compounds that showed the toxicity properties like
mutagenic, tumorigenic, reproductive effect and irritant must
be eliminated. About 3,258 molecules were prepared through
similar parameters and protocols as the standard ligands.
Then, the peptide database was saved on mdb format.

Molecular docking: Molecular docking simulation was
performed on MOE software with force field AMBER10: EHT
and R-Field solvation. Both standard ligands and peptide
compounds were performed by using pharmacophore-based
molecular docking simulation with two main protocols, such
as rigid docking (30-1 and 100-1) and flexible docking (100-1).
Then, the result was filtered based on the G binding value and
RMSD value <2 Å. Nine ligands molecular interaction was
analyzed and determined as the two best ligands. 

ADME-Tox properties: After several screenings, the potential
ligand from molecular docking simulation went through the
initial pharmacological properties using SwissADME. This
prediction applied to find the health effect from the potential
ligands in the human organ. 

RESULTS

Pharmacophore features generations: Several proteins were
utilized through PLIF method. This method was conducted to
obtaining the pharmacophore features in binding site of the
protein. All protein and their ligands are aligned in MOE
software (Fig. 2a) to predict the pharmacophore features. The
3D visualization of the protein shown that there are two
pharmacophore features in the binding site, such as Acc and
ML and Don (Fig. 2b).

Molecular docking simulation: Before the molecular docking
simulations method, peptide ligands were conducted through
the initial screening using OSIRIS DataWarrior Software to
screen all unwanted compounds based on their toxicity
properties. Within this method, only 3,258 peptide
compounds remained for the molecular docking simulations. 

In the molecular docking simulations, the two main
protocols are conducted to obtain the best ligand based on
their lower G binding, RMSD <2 Å and hydrogen bond
interaction lower than standards (Table 1). Four standard
ligands  (Fig. 1) also underwent docking simulations using
rigid and flexible docking protocols. Only AEE788 (Fig. 1b)
standard compound screened up to the final stage. The
number of ligands that predicted trough these several
methods described in Fig. 3.
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Protein database Screening
ADME-TOX RD 30-1 RD 100-1 FD 100-1 Best

8.629 3.258 2.858 177 9 2

Fig. 2(a-b): (a) 3D structure from all protein and its ligand during the PLIF method, the specified color of the ligand standard
explains respectively, blue color refers to ligand AEE 788, Pink color explains ligand ITQ, orange color represents IRE,
the red color represents ANP ligand and (b) Pharmacophore point Acc and ML (Turquoise) and Don (Purple). The red
and blue in the pocket binding refers to the lipophilicity of the binding site in the protein

Fig. 3: Number of ligands obtained in every step in molecular docking simulation and ADME-Tox prediction using MOE 2014.0901
and OSIRIS DataWarrior

Table 1: dG binding, RMSD and H-bond interaction value of the best ligand and
standard, from induced-fit docking simulation

Interaction
PubChem )G --------------
ID/name (Kcal molG1) RMSD (Å) H-bond
20832941 -13.41 1.61 12
5486816 -12.47 1.21 6
20832936 -12.31 1.01 5
4644096 -11.42 1.38 8
9805315 -11.22 1.43 9
10257704 -11.15 1.21 3
9896098 -11.10 1.42 7
10532551 -11.07 1.68 4
6453935 -10.01 1.14 4
AEE788 -9.74 1.43 5

The visualization of 3D and 2D molecular interaction of
best peptide ligands shown in Fig. 4. Ligand 20832941 (Fig. 4a)
has interacted through seven hydrogen bond interactions
with Ala722, Glu762, Gln791, Met793, Asn842, Asp855 and
Gly857. Additionally, the Ala722, Leu792 and Pro877 have also
had an interaction  with  Ligand  20832941   through  aromatic

B-B interaction. About twenty-seven amino acid residues in
the EGFR protein have interaction with the 20832941. Another
best ligand namely ligand 9805315 (Fig. 4b) was interacted
with twenty amino acid residues of the EGFR protein binding
site, with six hydrogen bond interactions (Ala722, Glu762,
Gln791, Met793, Asn842, Asp855 and Gly857). From the both
best ligand, there are four residues (Asp 855, Glu 762, Gln 791
and Met 793) that remain important, which has forms
hydrogen bond interactions.

ADME-Tox prediction: The ADME-Tox Predictions were
conducted using SWISS-ADME. With this method, several
information such as gastrointestinal absorption (GI),
cytochrome (CYP) inhibitor, drug-likeness properties such as
bioavailability and medicinal chemistry (PAINS and synthetic
accessibility) were gained and summarized in Table 2. Based
on the data, it found that the AEE 788 standard ligand was
inhibited  several cytochromes enzymes such as CYP 2C19,
CYP 2C9, CYP 2D6 and CYP 3A4.
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Fig. 4(a-b): Two candidates of best ligand with PubChem ID, (a) 20832941 and (b) 9805315 in 3D  and  2D  visualization
interaction
In the 2D visualization for each ligand, the green dashed line explains sidechain acceptor/donor and blue dashed line represent backbone
acceptor/donor, every line indicates the interaction between ligand and protein for green dashed line with arene-H (2D visualization in Fig. 4a) indicates
the interaction between hydrogen and aromatic molecules in the structure 

Table 2: ADME-Tox, drug-likeness and medical chemistry properties using SwissADME
PubChem ID GI CYP inhibitor PAINS Bio availability SyntAcc
20832941 Low NO 0 0.17 7.04
5486818 Low NO 3 Alerts (azo_A, imine_one_A, quinone_D) 0.11 6.8
20832936 Low NO 0 0.17 5.29
4644096 Low NO 0 0.17 5.47
9805315 Low NO 0 0.17 4.72
10257704 Low NO 0 0.11 5.37
9896098 Low CYP 3A4 0 0.17 6.46
10532551 Low NO 0 0.17 7.02
6453935 Low NO 0 0.55 4.07
AEE788 High CYP 2C19 0 0.55 3.87

CYP 2C9
CYP 2D6
CYP 3A4
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DISCUSSION

In this study, all proteins (PDB ID: 2ITW, 2ITX, 2J6M, 2ITY)
were prepared before docking simulation using MOE 2014.09.
The water molecules were eliminated because the solvation
effect is not taken into account in the molecular docking
simulation14. All proteins used in this research were retrieved
through X-ray crystallography, which usually lacks in hydrogen
atoms. It is important to have a full atom on protein structures
because it will influence the molecular mechanics, dynamics
and electrostatic calculations involved in molecular docking
simulation14,15. The Amber10: EHT was chosen as a forcefield in
this protein preparation because it is suitable for protein. The
Amber10:EHT is a force field that combines Amber10 with
Extended Hückel Theory (EHT) bonded parameters in order to
include electronic effects16,17.

After prepared the protein, peptide ligands and standard
compounds also were utilized into the preparation
mechanism. These molecules underwent ADME-Tox screening
and energy minimization process as well described in the
material and methods. Energy minimization is a necessary part
of pre-docking preparation because it helps to maintain ligand
into the lower )G value. The lower )G will affect the
conformation of the ligand and it considered closed with the
biological system. 

The pharmacophore's point is necessary to identify from
EGFR protein. The pharmacophore point is an important point
that shows specific biological activity which is indicated by
aligning the target protein of the drug and also the ligand
which is known to be able to carry out the inhibitory activity
of the protein18,19. In this study, the determination of
pharmacophore points was performed using the PLIF method.
Through the PLIF method, the fingerprints covered in a
standardized quantitative score represent the similarities
between the docking pose interaction profile and that of the
protein-ligand reference complex20. 

Protein with PDB ID: 2ITW with a resolution of 2.88 Å with
1,2,3,4-tetrahydrogen staurosporine (ITQ) as their inhibitor in
their binding site was chosen for docking with consideration
of the low protein resolution compared to other proteins.
Protein with the minimum resolution is preferable to ensure
a better quality of protein structure. The binding site of the
EGFR protein consists of Leu718, Ala743, Gly796, Cys797,
Asp800, Thr854, Arg841, Leu844, Thr854, Arg841, Asp855,
Thr790, Gln791, Leu792, Met793, Pro794 and Phe795 amino
acid residues. Determining the binding site that has potential
pharmacological properties must be done. Consequently,

targeting the identified binding site known to control EGFR
protein stabilization. This method was preferable to identify
binding sites rather than using an unknown binding site for a
particular protein that needs more validation21.

ADME-Tox prediction for nine peptide compounds and
one standard ligand were shown in Table 2. Comparing
peptide compounds and standard ligand in ADME-Tox
prediction is necessary to identify the mechanism for drug
administration. Table 2 shows the GI absorption and
bioavailability score predict the compound could act as an oral
drug in drug administration. The high score of GI absorption
and bioavailability in standard ligand determine this drug
possible to act as an oral drug. Compared with the standard
ligand, nine peptides have low scores in GI absorption and
bioavailability. It means, the peptides have better performance
if administrated by intravenous injection. Synthetic
accessibility value is a score based on the fragmental analysis
of the compound structure by the assumption of their size and
complexity. The synthetic accessibility score range is between
1 (easy to synthesis) and 10 (difficult to synthesis). 

AEE788 as standard was identified to inhibit several
cytochrome P450 enzymes such as 2C19, 3A4, 2C9 and 2D6. In
the previous study, AEE788 could act as an inhibitor for
Vascular Endothelial Growth Factor (VEGF) and the Epidermal
Growth Factor Receptor (EGFR). VEGF and EGFR play important
roles in tumor growth and progression22,23. The utilization of
AEE788 as a drug has been obtained to cure Glioblastoma
patients. In the first phase of the clinical trial, several side
effects were observed such as diarrhea, rashes and
hepatotoxicity24. Deng et al.25 suspect that the metabolism of
the drug might be liver size-dependent in the patient with 1
week of treatment. It might accumulate in the early
postoperative phase and may represent an overdose in the
patient with full-size liver25. As a result, the usage of AEE788 as
a drug must be postponed for further research.

In this research, two ligands have been decided to be the
best ligand which acts as a tyrosine kinase inhibitor. Based on
RMSD value <2.0 Å, )G binding value lower than standard
ligand and their H-bond (Table 1), two best ligand candidates
(PubChem ID: 20832941 and ligand 9805315) have been
chosen. Even though the bioavailability for ligand with
PubChem ID: 6453935 considered high rather than these two
compounds. But in protein-ligand interactions, hydrogen
bonding contributed much to protein-ligand formation
stability, build a scoring function for protein-ligand interaction
prediction and developed a hydration penalty score for
protein-ligand interactions26. 
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For further research, the molecular dynamics simulations
approach is necessary to determine the stability of the two
best ligands. It is expected that by knowing the stability of the
two best ligands can find out the optimal conditions of the
ligand that will be used as a drug before conducting in vitro
and  in  vivo  studies.

CONCLUSION

The initial screening and molecular docking simulation
studies were performed to determine the most potential
peptide compounds as an inhibitor of EGFR tyrosine kinase.
About, 8,629 peptide compounds were screened towards
these methods. From, the result of this research, two peptide
ligands, namely ligand 20832941 and ligand 9805315 in
PubChem were revealed as the most potent drug candidates
for EGFR tyrosine kinase for the lung cancer treatment
determining from their )G binding value, RMSD value,
molecular interactions and ADME-Tox properties. Hence, the
molecular dynamics studies should be conducted afterward to
predict the ligand-protein complex stability which has been
formed during the docking simulation.
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