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Abstract— The optimal management of energy generation-

/consumption in modern distribution systems has gained attention in 

the smart grid era. This paper presents optimized and coordinated 

strategies for performing and assessing energy management in multi-

microgrid systems. The energy management process is formulated 

for multi-microgrid systems that simultaneously incorporate several 

energy generation/consumption units, including different types of 

distributed generators (DGs), energy storage units, electric vehicles 

(EVs) and demand response. Due to the probabilistic nature of some 

loads (e.g. EVs) and generators (e.g. wind turbine and photovoltaic 

(PV) modules), a novel probabilistic index is defined to measure the 

success of energy management scenarios in terms of cost 

minimization.  Moreover, by using the new index, common types of 

energy controllers, such as DGs, storage units, EVs and demand side 

management are implemented simultaneously and individually, in a 

system, and the effect of each addition on the defined index and on 

operational costs is investigated. Finally, the robustness of the 

process to the load and generation prediction errors is investigated. 

Index Terms— Energy management, distributed generation, 

storage units, electric vehicles, demand response, Tabu search. 

I. INTRODUCTION 

HE structure of conventional distribution systems is changed 

significantly over the past decades [1]-[2]. The introduction 

of distributed energy resources, along with advanced metering, 

communication and control technologies at the distribution level, 

has changed the conventional distribution systems into multi-

microgrid systems which are usually faster, more controllable and 

reliable. Potentially, there are several types of energy resources 

and energy consumers in multi-microgrid systems. The presence 

of energy resources, (from fixed and dispatchable power to 

probabilistic and intermittent nature DGs), and energy consumers, 

(from fixed and non-controllable to hourly and probabilistic 

variable loads), in the system, have manifested the need for 

optimal management of energy in multi-microgrid systems.  

Energy management in modern distribution systems has been 

an interesting research area for the past decades. Several papers 

have been published on different energy management options in 

smart grids, from optimal scheduling of energy resources [3]-[6] 

to demand-side energy management [7]-[10]. With the increasing 

capacity and variety of them, electric storage units have been an 

appealing subject for performing energy management [11]-[14]. 

Moreover, the number of electric vehicles is increasing in distrib-

ution systems, which also raised several research opportunities, 

especially in terms of energy management [15]-[19].  

Some researches have also been published in energy 

management on microgrids [20]-[26] with multi-agent and/or 

multi-level control structures. For example, the authors in [20] 
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proposed a two-level architecture for distributed energy resource 

management for multiple microgrids using multi-agent systems. 

A symmetrical assignment problem based on naive auction 

algorithm is used in their paper in order to match the buyers and 

sellers in the energy market. Reference [21] proposes a 

decentralized optimal control algorithm for distribution 

management systems by considering distribution networks as 

coupled microgrids using the coordinated information and 

strategies of different microgrids. In [22], the authors present a 

multi-agent based, three-level, hierarchical energy management 

strategy by combining the autonomous control of local distributed 

energy resources at the local level with coordinated energy 

control at the central level of the microgrid. The authors in [23] 

propose a multi-level energy management system for dc 

microgrids operations to ensure system reliability, power quality, 

speed of response, and control accuracy with system distributed 

control scheduled as the primary control. 

Although the results of several interesting research projects 

have been published in the energy management area [3]-[26], the 

literature does not report the development of a systematic 

approach for combining and comparing a variety of energy 

management options in a multi-microgrid system, where each 

microgrid, simultaneously, has different types of DGs, storage 

units, EVs and demand responses. Moreover, the issue of 

assessing different energy management scenarios in distribution 

systems in order to provide insights that will contribute to the 

success of different available energy management programs is not 

resolved yet.  

Given the importance of energy management in smart grids, 

this paper formulates a day-ahead planning strategy for 

performing optimized and coordinated energy management in 

multi-microgrid systems. As shown in Fig.1, such planning will 

simultaneously supervise several energy resources and energy 

consumers in multi-microgrid systems that include dispatchable 

and non-dispatchable intermittent nature DGs, energy storage 

units, large numbers of electric vehicles and demand response. 

With this plan, all the controllable generation/consumption 

devices in different microgrids are controlled by a central energy 

management system and operate in accordance with each other 

(either in the same or in different microgrids) to minimize 

operational costs. Due to the presence of probabilistic nature DGs 

and loads in the system, to calculate the total operational costs 

and show how an energy management scenario will affect 

operational costs, a new probabilistic index is defined to measure 

the success of energy management process. A case study is also 

presented to compare and decide between different options for 

performing energy management in a multi-microgrid system. 

Energy management is then performed for different energy 

generation/consumption units individually and collectively.  
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Fig. 1. Proposed versus existing energy management scenarios. 
 

The effect of increasing the number and capacity of 

generation/consumption units under control on the total costs is 

shown and the defined index is provided for different energy 

management scenarios. Moreover, the impact of prediction error 

on the total daily costs and the defined index is investigated. The 

PG&E 69-bus system is used for the case studies, and several 

sensitivity studies are presented to assess different energy 

management scenarios. The main contributions of the paper can be 

summarized as follows:  

 Formulating the day-ahead optimized energy management 

problem for a multi-microgrid system that incorporates different 

types of energy resources, (e.g., wind turbine, PV modules and 

biomass generators), as well as considering different 

probabilistic models of EVs for performing energy management, 

 Comparing individual and collective energy management options 

for a multi-microgrid system, 

 Defining a new probabilistic index for measuring the success of 

energy management processes in smart grids under probabilistic 

load/generation conditions, namely, the energy management 

success index (EMSI), 

 Assessing different energy management scenarios, separately 

and collectively, in terms of their impact on operational costs and 

the success of the energy management processes. 

The paper is organized as follows: Section II explains the 

energy management concepts and models of system components. 

Section III presents the problem formulation, and the solution 

algorithm is explained in Section IV. The energy management 

process for a multi-microgrid system is presented in Section V, 

and the performance of different energy management options are 

investigated in Section VI. The robustness of the process is studied 

in Section VII, and the paper is concluded in Section VIII. 

II. THE CONCEPTS AND SYSTEM COMPONENTS  

The balance between the generated electric energy and the 

consumed electric energy in a multi-microgrid distribution system 

should always be maintained. Two different approaches can be 

followed in a multi-microgrid system to perform energy 

management. The first approach is to let each microgrid operate 

individually, regardless of the power balance in neighboring 

microgrids. In this approach, there should be individual energy 

management centers for each microgrid to control the 

generation/consumption of the devices inside them. Some 

neighboring microgrids may have excess power and some may 

have power deficits that will not be considered in the operation of 

devices inside the microgrid under control. The other approach is 

to have a central energy management center that can control all the 

devices inside all the microgrids simultaneously. This approach 

can be beneficial in terms of creating a more efficient balance of 

energy between different generation/consumption devices inside 

microgrids and between microgrids themselves. Both approaches 

are investigated in more detail in Section V. Due to the continuous 

and probabilistic variation of load and generation capacities in the 

microgrids as well as timely variation of energy price, such 

generation/consumption balance can be achieved with different 

methodologies. Thus implementing certain measures to manage 

the generation/consumption devices can enormously reduce the 

costs for reaching the balance. In this paper, the load-generation 

balance in a multi-microgrid system is achieved with the objective 

of minimizing the utility costs. For this purpose, as demonstrated 

in Fig. 2, the load and generation uncertainties in the microgrids 

are predicted for the next 24 hours and by considering the hourly 

price of electricity, the optimum state and amount of power 

generation/consumption by the controllable devices are 

determined. Regardless of which energy management approach is 

selected for a multi-microgrid system, the process can be 

performed hourly or in shorter periods, e.g., every 10 minutes, in 

order to achieve more accurate and continuous results. Moreover, 

if the predicted data is not available for 24 hours, the same 

approach can be implemented for a shorter period of time as well 

(e.g. 10 hours). The following subsections explain the models of 

typical energy generation/consumption units in a multi-microgrid 

system and how they can be managed in order to reduce the utility 

costs.  

A. Distributed Generation Units 

The DG units are essential components in microgrids and are 

modeled in this paper as a combination of PV modules, wind 

turbines and biomass generators, which are the typical components 

of the most commonly used DGs in distribution systems.  



 3 

 
Fig. 2. The day-ahead energy management process at hour h. 
 

The DG types presented in this paper have probabilistic, 

intermittent probabilistic and constant power natures, which 

mathematically covers the models used for all types of DGs. 

Therefore, any other type of DG, such as CHP, etc. can be 

modeled using a similar approach. The output of each PV Module 

depends on the amount of solar irradiance, the ambient 

temperature and the characteristics of the module itself. The output 

power of wind turbines depends on the wind speed and the 

parameters of the turbine’s wind-power conversion curve. Detailed 

approaches for modeling such DGs are explained in [27]. The 

biomass generators provide stable firm generation with constant 

but controllable output powers, and are not affected by uncertainty. 

In case of uncertainty in the factors that affect the availability of 

biomass, such as rain, the biomass DGs’ output powers can be 

modeled in a similar way to those of wind turbine generators. For 

the purposes of energy management, the wind turbine and PV 

modules output powers are predicted for the next 24 hours by 

using the short term forecast data for weather conditions. Using 

such data and the price of electricity for the next 24 hours, the 

optimum output power of the biomass DGs is predicted hourly for 

up to the next 24 hours.  

B. Energy Storage Units 

The energy storage units in microgrids are modeled as active 

power consumers during the charging period and as generators 

during the discharging period. The characteristics of these units 

will be totally different during the charging and discharging time 

periods. The optimal schedule for the operation of the storage units 

will be determined in this research based on the cost of energy, the 

cost of operating storage units, etc., for the next 24 hours. A 

constraint has been introduced on the amount of power generated 

by the storage units, which should be less than total loads at 

anytime. This constraint ensures that, even during off-peak hours, 

the real power of storage units is less than total demand and 

guarantees that the reverse power flow, if any, can be modified by 

controlling the DGs’ output power only.  

C. Electric Vehicles 

Electric vehicles (EVs) add enormous uncertainty to the analysis 

of microgrid systems. EVs can be considered as loads during 

charging periods or as loads/generators if they are participating in 

V2G programs. From a different point of view, EVs can be 

charged at home in residential areas or be connected to aggregate 

EV charging stations. As shown in [28], during charging periods, 

the EVs can be modeled as probabilistic loads with a Normal 

distribution function in residential communities, while in EV 

aggregate charging stations they can be  modeled  probabilistically  

TABLE I. SELECTION OF NUMBER OF STATES FOR THE PROBABILISTIC STUDY 

# of States 2 6 10 12 14 16 20 

Objective  

Function (%) 
83.4 91.7 97.4 100 100.1 100.3 100.4 

Processing  

Time (%) 
16.67 50 83.33 100 116.67 133.3 166.7 

 

using the Weibull distribution function. In this research, all four 

scenarios are considered, which are 

 EVs being charged in residential areas, modeled as probabilistic 

loads with Normal distribution, 

 EVs being charged in aggregate EV stations, modeled as 

probabilistic loads with Weibull distribution, 

 EVs being discharged through V2G program in residential areas, 

modeled as probabilistic generators with Normal distribution, 

 EVs being discharged in V2G program in aggregate EV stations, 

modeled as probabilistic generators with Weibull distribution. 

The first two scenarios are modeled as controllable loads for 

which we can determine the time of charging based on a specified 

time period, e.g., night hours. The last two scenarios are 

considered as controllable loads/generators for which we can 

determine the timeframe and amount of their 

consumption/generation depending on the selected energy 

management strategy. In order to determine the probability density 

functions of EVs, the probability distribution parameters (normal 

or Weibull) of the EVs can be assumed to be constant (as shown in 

[28]) or, similarly to the peak EV load pattern, can be predicted by 

using the historical data.  

D. Loads 

The loads in microgrids are modeled considering the IEEE-

RTS [29]. In this system, the hourly peak load is presented as a 

percentage of the daily peak load. In order to gain more accurate 

energy management results, the prediction techniques could also 

be used for modeling the loads probabilistically or hourly. Some of 

the loads are assumed to be controllable and available for demand 

side management purposes. Such loads are considered as 

transferable from time to time, e.g., from on-peak to off-peak 

hours. 

III. PROBLEM FORMULATION  

The probabilistic representation of load-generation states and 

the steps for formulating the proposed energy management success 

index are presented in this section. 

A. Probabilistic Representation of Load-Generation States 

In order to integrate the uncertainties mentioned above into the 

optimization process, such uncertainties are modeled as multi-state 

variables. For this purpose, the continuous probability density 

function of the output power of the wind turbines and PV modules, 

and the EVs charge/discharge pattern for each hour of the day, is 

divided into a number of states. The selected number of states 

affects the accuracy and complexity of the formulation. Selecting a 

small number expedites the calculation process but lowers the 

quality of results, while selecting a large number increases the 

quality of results at the expense of calculation time. As shown in 

Table I, for a simple optimization problem with the objective of 

optimizing EMSI (Section V-C), increasing the number of states 

up to twelve will improve the objective function. However, further 

increases will not have a significant impact on the objective 

function and will adversely affect the processing time. This table 

Predicted Generation of 

Uncontrollable DGs 

from (h) to (h + 24) 

Predicted 

Uncontrollable Loads 

from (h) to (h + 24) 

 

ENERGY 

MANAGEMENT 

UNIT 

Dispatchable DGs 

from (h) to (h+1) 
Storage Units 

from (h) to (h+1) 

Electric Vehicles 

from (h) to (h+1) 
Controllable Loads 

from (h) to (h+1) 

Hourly Price of Electricity 
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shows that using 12 states provides high quality results. Since the 

objective function and the processing times will be different 

depending on the problem and the processing unit, they have been 

normalized with the 12-state values. Therefore, for each hour of 

the day we select 12 wind-speed states (NW), 12 solar-irradiance 

states (NS), and 12 EV charge/discharge states (NEV). In this 

research, the wind speed and solar irradiance and the EVs’ 

behavior are modeled independently for each hour based on their 

historical distribution; therefore, the inter-temporal or any other 

correlations are not considered. Assuming that solar irradiance, 

wind speed and the EVs’ charge/discharge states are independent, 

the probability of any combination of load and generation is 

obtained by multiplying all the probabilities. Therefore, for each 

hour, the number of load-generation states will be calculated by 

multiplying all the states and for a 24-hour period (H=24), the 

number of load-generation states (Nstate) is calculated as shown in 

(1).  
 

 state W S EVN H N N N                                (1) 

 

Each load-generation state has its own probability of 

occurrence. If the inter-temporal correlations of wind speed and 

solar irradiance are to be considered, the probability of each state 

cannot be calculated by simply multiplying the probability of each 

state of wind speed and solar irradiance. In fact, the only 

difference between considering or not considering the correlations 

will be in the method of calculating the probability of each load-

generation state. In the former scenario, the probability of each 

generation state should be calculated by convolving the two 

probabilities of wind speed and solar irradiance; however, in the 

latter scenario, the probability of each state can be calculated by 

simply multiplying the two probabilities. This may slightly affect 

the computational tractability in terms of the calculation of 

probabilities; however, since the formulations of the problem and 

solution algorithms will remain the same, the proposed method is 

still practical and useful in high-renewable systems. In order to 

determine the energy losses or the costs, the AC forward-backward 

power flow is run for the microgrids for every load-generation 

state, considering fixed power factor for the loads and generation 

devices, and the results are accumulated considering the 

probability of each state.  

B. Energy Management Objective Function 

The aim of performing energy management in a multi-

microgrid system is mainly to reduce operational costs. This 

section explains the calculation of total operational costs and 

introduces an index to show how an energy management scenario 

affects operational costs in a microgrid full of probabilistic 

parameters. For this purpose, the probabilities in loads and 

generation units are modeled as deterministic load-generation 

states, as explained in Section III-A. The overall costs or EMSI is 

then calculated by deterministically calculating the costs or EMSI 

for each load-generation state and its accumulation considering the 

probability of the states. The proposed energy management 

success index (shown in (2)) is calculated by using the operational 

costs before and after the energy management process, 
 

_ _

1 _

 EMSI 100
stateN

j Before j After

j

j j Before

TC TC
p

TC

 
   

 
 

                    (2) 

where TCj is the total operational costs at jth load generation state; 

Nstate is the number of load-generation states and pj is the 

probability of jth load-generation state. The steps to calculate the 

operational costs and the EMSI for the simultaneous consideration 

of all energy management options, as well as for the individual 

consideration of each energy management scenario, are explained 

in the following. It should be noted that, since the purpose of this 

paper is to assess different energy management scenarios, only the 

costs that will be affected by energy management process 

(operational costs) are investigated, and other costs, such as 

planning costs, are not considered in this research. 

For the dispatchable biomass DGs, the total operational 

benefits/costs of the DGs (TCDG_j) at jth load-generation state, 

before and after energy management, can be calculated from (3). 

In this case, the total costs of the utility include the cost of lost 

power purchased from the upstream system (first part of (3)) and 

the cost of DGs for the generation of PDG amount of power (second 

part of (3)). On the other hand, installing DGs provides benefits for 

the system, which will reduce costs. These benefits come from 

DGs supplying power (PDG) to a number of loads instead of 

purchasing power from the upstream system (third part of (3)). The 

upstream system is part of the system that supplies each microgrid. 

It could be the grid itself, if the microgrid is directly connected to 

the distribution substation, or it could be another microgrid that 

connects the specified microgrid to the network. 
 

24 24
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where PLoss_h is the total system losses at time h; CE_h is the cost of 

energy at time h; PDG_kh is the output power of kth  DG at time h; 

CDG is the cost of generation for the biomass DGs and NDG is the  

number of dispatchable DGs in the system. In this paper, the 

dispatchable DGs are set as biomass-based and the cost of 

generation is assumed to be the same for all generators. The 

electricity generated by such DGs is usually more costly than that 

generated by large power plants; therefore CDG could be larger 

than CE_h.  It is assumed that, before energy management, the DGs 

are working at nominal power and, after that, the output powers of 

DGs are determined through an optimization process. 

The total operational benefits/costs of storage units (TCESS_j) at 

jth load-generation state, before and after energy management, can 

be calculated from (4), which is different for the charge and 

discharge period of the storage units. 
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       (4) 

 

where PLoss_h is the total system losses at time h, CE_h is the cost of 

energy at time h, PESS_kh is the real power (charge or discharge) of 

kth storage unit at time h, CESS is the cost of charge/discharge for 
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the storage units, ηESS is the efficiency of the storage units and NESS 

is the number of storage units in the system. It is assumed that, 

before energy management, the storage units are not in service 

and, after energy management, the charge/discharge amounts and 

periods are determined by the optimization process. 

The total operational benefits/costs of performing demand side 

management (TCDSM_j) at jth load-generation state, that will be 

affected, arise from energy losses, which cost different amounts at 

different hours and are calculated as shown in (5).  
 

24

_ _ _

1

 DSM j Loss h E h

h

TC P C


                                        (5) 

 

where PLoss_h is the total system losses at time h; and CE_h is the 

cost of energy at time h. In a long-term vision, the demand side 

management may postpone some system upgrades that should be 

performed by the utility and will reduce the utility costs. In the 

energy management research presented in this paper, it is assumed 

that the change in the price of electricity will be reflected in the 

customers; therefore, from the utility’s point of view, the benefits 

of demand side management at the operational stage will be only 

the reduction of energy losses. The change in the price for different 

hours that the load is shifted in between will only be reflected into 

the cost of energy losses that utility covers. Therefore, for this 

energy management scenario, the losses before and after demand-

side management are used to calculate the EMSI. It should be 

noted that the demand-side management process has mutual 

benefits for the customers and the utility. The customers will 

benefit from paying less to the utility due to the lower price of 

electricity, and the utility could benefit from load balancing and 

from reducing the stress of transmission and distribution systems. 

In this research, since the other benefits of DSM are case-specific 

and should be calculated based on specific system conditions, they 

are excluded and, if needed, can easily be added to the total costs 

function.  

The electric vehicles, whether charged through EV aggregate or 

residential buses, can be treated as controllable loads and storage 

units simultaneously. However, there are some restrictions that 

should be considered. Firstly, the behavior of EVs is not 

deterministic; the charging and discharging scenarios, as well as 

whether the EVs are parked or on the road, is probabilistic. For 

this research, it is assumed that 50% of EVs are participating in the 

V2G program, which means that they can also be considered as 

generators as long as they are not being charged, and the 

probability that the car is parked in EV stations or at houses 

follows the probabilistic model presented in [30]. Therefore, as 

was done with the formulations regarding storage units, the total 

operational benefits/costs of the utility that are related to the 

operation of EVs (TCEV_j) at jth load-generation state, can be 

calculated as shown in (6). The only difference between EVs 

operating as storage units and the storage units is that the cost of 

charging the EVs will be paid by the vehicle owners and not by the 

utility; therefore, the total cost will equal zero at charging periods 

and the period of charging for the EVs will only affect the system 

losses which cost different amounts at different hours. In this 

research, it is assumed that, with some price incentives, the EV 

owners are encouraged to participate in V2G program and 

authorize the utility to take control of the charge/discharge pattern 

of their vehicles. Also, it is assumed that if the vehicles are 

participating in V2G program, the utility is already compensating 

their participation during discharge periods; however, the 

compensation can also be considered separately for taking control 

over charging periods, and can be added as a cost for the utility 

during this period as well. 
24
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        (6) 

where PLoss_h is the total system losses at time h; CE_h is the cost of 

energy at time h; PEV_kh is the discharged power of kth  EV bus; 

CEB_h is the cost of buying electricity from EV owners at time h; 

ρEV is the percentage of EVs participating in the V2G program, and 

NEV is the  number of EV buses in the system. Before energy 

management, the EV buses are operating as regular probabilistic 

loads and, after energy management, the charge/discharge amounts 

and time periods for the EVs participating in V2G program are 

determined through the optimization process. 

After calculating total operational costs for all the devices 

including DGs, ESSs, DSM and EVs, the utility’s total operational 

costs for each load-generation state can be formulated as (7). 
 

_ _ _ _ j DG j ESS j DSM j EV jTC TC TC TC TC               (7) 

 

The EMSI can then be calculated by using (2) and by 

calculating the costs before and after performing energy 

management in (7). Since the EMSI represents the reduction in the 

total operational costs of the system, by optimizing the EMSI, the 

total operational cost will be minimized for the system under 

study. In a case where the energy management is performed for a 

multi-microgrid system, TCj can be calculated for each microgrid 

individually and be summed for all microgrids to obtain a single 

objective function for performing energy management.  

IV. SOLUTION ALGORITHM 

The objective function for performing energy management in a 

multi-microgrid system was defined in the previous section 

(EMSI). The goal at this stage is to find appropriate values for the 

decision variables PDG, PST, LDM and PEV for the next 24 hours to 

optimize this objective function.  The combinatorial nature of the 

present problem demands efficient solution algorithms. Heuristic 

optimization techniques are well suited for such optimization 

problems. Two types of algorithms are used in this research: Tabu 

Search (TS), as the main optimization method and the forward-

backward-based probabilistic power flow method. TS is a heuristic 

search algorithm that uses different memory structures to 

intelligently and effectively guide the search to a good solution. As 

with other optimization methods, there are both advantages and 

disadvantages to using TS. The advantages of TS are that it allows 

a non-improving solution to be accepted in order to escape from a 

local optimum, it can be applied to both discrete and continuous 

solution  spaces,  and, for larger  and more  difficult problems 
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TABLE II. SELECTION OF NUMBER OF ITERATIONS 

# of Iterations 20 50 100 150 200 250 300 

Objective Function (%) 66.2 74.3 86.1 95.4 97.3 100 100 
 

TABLE III. SELECTION OF PERCENTAGE OF COMPONENTS TO BE CHANGED 

% of components 5 10 20 30 40 50 60 

Objective Function (%) 62.3 85.1 93.0 100 97.2 96.1 91.8 
 

(such as the problem formulated in this research), Tabu Search 

obtains solutions that rival and often surpass the best solutions 

previously found using other approaches [31]. There are also some 

disadvantages, e.g. many parameters must be determined to reach 

the global optimum and the number of iterations could be large. 

Considering the advantages and disadvantages of TS and the 

nature of the formulated problem, TS will be an appropriate and 

efficient solution algorithm. The steps needed to solve the 

optimization problem using the TS algorithm are shown in Fig. 3 

and explained in the following sub-sections. 

A. Neighborhood Definition in TS 

The first step in TS is to select the starting point, and the process 

continues iteratively until a certain criterion, which is usually the 

maximum iteration numbers, is reached. Selecting a small number 

as the maximum number of iterations will affect the final results. 

However, if the maximum number of iterations is selected 

properly, the whole search space will be covered and examined. 

The maximum iteration number depends on the nature of the 

problem and decision variables. One approach to setting the 

maximum iteration number is to increase it continuously until 

there is no improvement in the objective function value, as was 

done in the research described in the . Table II shows the effect of 

selecting different maximum number of iterations on the objective 

function for a simple optimization problem with the objective of 

optimizing EMSI (Section V-C). It is seen that, by increasing the 

number of iterations, the objective function will improve up to a 

certain value.  

The starting point can be selected as a decision variable with 

arbitrary but feasible values. For example, the values of PDG, PST, 

PDM, and PEV could be all set as zero or 0.5 p.u. to start the process. 

The interesting fact about the Tabu search is that the final solution 

is not dependent on the starting point at all and, by using long-term 

memory (as will be shown in Section IV-C), the search process 

jumps into new regions whenever no improvements is seen in a 

specific region. Therefore, it will be possible to select any value as 

the starting point without leading to different solutions. The 

decision variables for performing energy management by using the 

kth system component for the next 24 hours can be shown as the 

following vectors: 
 

PDG_k = [PDG_k1  ……  PDG_k24],                       (8) 

PST_k = [PST_k1  ……  PST_k24],                         (9) 

                       LDM_k = [LDM_k1  ……  LDM_k24],                     (10) 

PEV_k = [PEV_k1  ……  PEV_k24],                        (11) 
 
 

where the components of PDG_k, PST_k, LDM_k and PEV_k represent the 

output  power  of DGs,  output/input  power  of  storage units, load 

percentage to be supplied and charge/discharge power of EVs for 

the next 24 hour time period, respectively. The next step is to 

make sets of neighbors for all the starting points. Each neighbor is 

selected by changing a number of components of each vector and 

checking its feasibility  in terms  of the constraints which are 

 

 
 

 
Fig. 3. Flowchart of energy management in Multi-microgrid system, Nnbr is 
number of neighbors and Itr is the iteration number. 

 

voltage and current limits and DGs capacities. This number is 

chosen based on the size of the decision variable vectors. A small 

number will make the neighborhood more homogeneous and a 

large number makes it more diverse. Table III shows how 

changing different percentages of the components, used to create 

the neighborhood list, affects the objective function. It is seen that, 

by increasing the percentage of components that are changed, the 

objective function will improve up to a certain value and then will 

worsen. The reason for this is that changing a large percentage of 

components will prevent the search from concentrating in a 

specific region to find the local optimum, which could result in 

locating the global optimum. 

In this research 30% of the components of each decision variable 

vector are changed in creating the neighborhood list. For example, 

if the length of the decision vector is 10, changing three 

components to make a new neighbor is appropriate. Selecting the 

maximum number of neighbors will affect the final results. The 

effect of selecting a different number of neighbors on the objective 

function for the same case study (Section V-C) is shown in Table 

IV. It is seen that, by increasing the number of neighbors, the 

objective function will improve up to a certain value. 
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TABLE IV. IMPACT OF NUMBER OF NEIGHBORS ON THE OBJECTIVE FUNCTION 

# of Neighbors 5 10 25 30 35 40 45 

Objective Function (%) 89.5 88.3 100 100 100 100 100 

 

TABLE V. IMPACT OF LENGTH OF TABU LIST ON THE OBJECTIVE FUNCTION 

TL 2 5 8 10 12 15 20 

Objective Function (%) 64.3 86.2 92.8 100 99.1 97.3 96.4 

 

   Next, the best neighbor is set as the new starting point and the 

process continues until the maximum number of iterations is 

reached. Different memory structures, such as short-term (Tabu 

list), intermediate-term and long-term memories, are implemented 

to diversify and intensify the search process and reach the global 

optimum more effectively.  

B. Tabu List and Aspiration 

To avoid stopping in a local optima, and to prevent cycling 

around it, some Tabu restrictions should be imposed by using a 

short-term memory called Tabu List (TL). This list, which has a 

FIFO (first in first out) structure, keeps track of the best solutions 

that have been visited in previous moves, or the moves that have 

resulted in the optimum point in previous regions, and avoids 

revisiting them. The length of TL depends on the size of the 

problem and is usually determined experimentally. In our problem, 

we have made the TL from the best recently visited solutions. For 

this purpose, a quantity, which is unique for each set of 

parameters, is saved in the TL as shown in (12).  

  

1

( )  2
n

i

i

Z i


                                                (12)  

where Z is a vector that is created by placing the components of all 

decision vectors (including PDG_k, PST_k, LDM_k and PEV_k) together.  

Table V shows the effect of selecting different TL values on the 

objective function for a simple optimization problem with the 

objective of optimizing EMSI (Section V-C). It is seen that, by 

increasing the TL, the objective function will improve up to a 

certain value and then will worsen. The reason again is that 

selecting a large number as TL will prevent the search from 

concentrating in a specific region to find the local optimum 

(potentially global optimum). 

An aspiration criterion is a rule that releases the valuable members 

of Tabu list. This relaxation is allowed when the newly met 

solution point has better properties than the optimum point reached 

so far. This phenomenon will make the search process more 

intelligent and prevent it from missing higher quality results. 

C. Intensification and Diversification in TS 

Two memory structures are used in TS to avoid random search, 

namely, Intermediate-Term Memory (ITM) and Long-Term 

Memory (LTM). The ITM memorizes the common features of 

sub-optimal solutions for a number of iterations and then tries to 

search for the optimum point with similar features in that region. 

This intensification process will guide the search in each region to 

identify the high quality solutions rather than to make random 

undirected movements. During the search process, the LTM is 

used to diversify the search by jumping to a new region and allows 

the algorithm to go through all the possible solutions to find the 

global optima. This long-term memory will keep track of the 

common features of all initial starting points in different regions to 
 

TABLE VI.  SELECTED BUSES FOR INSTALLING ENERGY RESOURCES 

Energy Resource  Locations (Buses) Capacities (kW/kVAr) 

Wind Turbine 13,16,19,43,49,52 50,25,50,50,50,25 

PV Module 17,23,41,50,53,56 25,25,25,25,25,25 

Biomass DG 15,22,27,41,42,54 100,100,100,100,100,100 

Storage Units 11,27,31,48,52,64 50,50,50,50,50,50 

Reactive Sources 5,19,26,33,52,65 50,50,50,50,50,50 
 

 

TABLE VII.  EVS AND CONTROLLABLE LOADS 

Load Type Locations (Buses) Rated Powers (kW/kVA) 

Residential EVs 4,11,22,43,57,62 15,15,15,15,15,15 

Aggregate EVs 5,12,24,44,53,63 25,25,25,25,25,25 

Controllable 

 Loads 
11,12,38,39,48,54 

(145+j104),(145+j104),(128+j91), 

(128+j91),(100+j72),(59+j42) 

 

 
Fig. 4. Multi-microgrid system and the location of components. 
 

avoid restarting from similar, previously used starting points. To 

summarize, as shown in Fig.3, the TS will search all regions and 

finds the local optima in each neighborhood, and when all the 

regions have been searched by the algorithm, the best local optima 

will be the global optima. If the maximum number of iterations is 

selected properly, the whole search space will be covered and 

examined. 

The two types of memories have been implemented for each 

decision vector by using two sets of vectors with the same length 

as the decision variables. Each component of the ITM vectors will 

represent the number of times the associated component has been 

changed in the sub-optimal solutions. The larger each component 

is, the lower the chance is that the value is the optimum. Thus, the 

next movements or neighborhoods will be selected so that the 

components that are thought less likely to be the optimum have a 

higher chance of being changed. The long-term memory is also 

implemented in a similar way. More details on definition and 

implementation of the memory structures can be found in [32]-

[33]. As a sub-program, the forward-backward power flow 

algorithm is also a well-known method used for power flow 

calculations in radial distribution systems [34]. During the 

optimization process, the AC forward-backward power flow is run 

for each load-generation state and the results, such as energy losses 

or EMSI, are accumulated by considering the probability of the 

states. It should be noted that in this paper, it is assumed that the 

distribution system is radial; therefore, the best option for 

performing power-flow would be the forward-backward method. 

However, selecting a different power flow method will not affect 

the proposed energy management scheme. The same goal can be 

achieved by using other methods, such as Newton – Raphson, 

which is more appropriate for solving meshed networks. 
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Fig. 5. The hourly price of selling and buying electricity. 
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Fig. 6. Variation of EMSI by changing the number of controllable units. 
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Fig. 7. Daily costs by changing the number of controllable units. 

V. ENERGY MANAGEMENT IN MULTI-MICROGRID SYSTEMS  

The system under study and the energy management approaches 

proposed for a multi-microgrid system are presented in this 

section. 

A. The System under Study 

The well-known PG&E 69-bus distribution system is selected for 

the implementation and sensitivity studies. The system’s modified 

load data can be found in [35]. This system is divided into four 

microgrids by locating three sectionalizing switches in the system, 

and different types of energy resources are added to the 

microgrids, with the capacities shown in Table VI. During normal 

operation of the system, the microgrids are connected together and 

to the grid. Therefore, the grid power is also covering part of the 

energy required by the loads inside the microgrids. However, the 

same formulations and approach can be used in cases where the 

microgrids are operating in islanded or off-grid mode. The reactive 

sources are modeled as fixed generation installed on specific 

buses. The reactive sources could be fixed capacitors (e.g. bus 5) 

or an auxiliary service provided by the DG unit, such as wind 

turbines (e.g. bus 19), and their location and capacity are 

predetermined based on the construction of the microgrid. In cases 

where there are variable reactive sources, they may also be used 

for voltage/line loading control. In such cases, the generation 

capacities of reactive sources can be considered as decision 

variables for optimization problems, in a similar approach to that 

taken with active power. The EV aggregate charging stations and 

areas with residential EV charging capabilities, as well as 

controllable loads for performing demand side management, are 

listed in Table VII. The locations of energy generation-

/consumption units and the sectionalizing switches are shown in 

Fig. 4. The price of electricity is chosen from Hydro One 

Company in Ontario, Canada. There are three price levels, for on-

peak, mid-peak, and off-peak periods, as shown in Fig. 5.  
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Fig. 8. EMSI and daily costs by changing the number of controllable units. 
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Fig. 9. Daily energy losses by changing the number of controllable units. 

 

In this figure, the hourly price of buying electricity from the 

customers participating in the V2G program is also shown, and is 

proportionate to the selling price. In the following, the two energy 

management options for a multi-microgrid are implemented in the 

system under study and are compared in terms of their 

successfulness.  

B. Multi-Microgrid Isolated Energy Management 

At this stage, the holistic energy management process covering 

all generation/consumption devices is implemented for each 

microgrid separately, and the results are presented. The operational 

costs for each generation/consumption unit are explained in details 

in Section VI. The variation of EMSI and daily costs for different 

microgrids with different numbers of controllable units (0 to 6) are 

shown in Fig. 6 and Fig.7. It is seen that for all microgrids, having 

more units under control will result in larger EMSI index and less 

operational costs. For some microgrids, increasing the number of 

controllable units in the system does not affect the EMSI because 

the controllable unit is not located in that microgrid. For this 

system, the summation of daily costs related to energy 

management in microgrids are reduced from $32 to $-51 per day. 

The negative values mean that performing energy management 

will not only reduce the costs, it will also benefit the system. It 

should be noted that the costs that are considered in this research 

are only those that will be affected by performing energy 

management scenarios, such as costs of losses or operation of 

DGs, storage units and purchasing electricity from EV owners. 

Other costs related to the system, including all planning costs, are 

not considered here. 

C. Multi-Microgrid Group Energy Management  

In this section, the proposed energy management process is 

implemented for the whole multi-microgrid system. The total 

operational costs for each load-generation state are calculated 

using (7), and the EMSI for the system is calculated by 

substituting (7) in (2). It is assumed that, at each stage, one unit 

from all controllable devices comes under control. The EMSI and 

daily costs reduction for increasing the number of units under 

control from 0 to 6 are shown in Fig. 8. It is shown that by 

increasing the number of units under control, the EMSI increases 

from 0 to 298%.  Moreover, the daily costs related to energy 

management will be reduced by increasing the number of units 

under control.  
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Fig. 10. EMSI and daily costs by changing the number of controllable DGs. 
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Fig. 11. Hourly variation DG3 and DG6 output powers. 

D. Results Comparison  

The two proposed scenarios for performing energy 

management for a multi-microgrid system, isolated and group, 

seem to be efficient for a multi-microgrid system. In this section, 

they are compared in terms of daily energy losses as a considerable 

operational cost. The variation of daily energy losses for the two 

scenarios is shown in Fig. 9. It is seen that daily energy losses are 

reduced in both energy management scenarios by increasing the 

number of units under control. The daily energy losses for the 

isolated microgrid energy management are reduced from 297 kWh 

to 252 kWh; however, when energy management is performed for 

the whole system, the daily energy losses are reduced from 297 

kWh to 183 kWh, which is a much larger reduction. Also, the total 

daily costs (benefits) of operating microgrids in group 

management is $-63, while in isolated management, the cost is $-

51. Clearly, this difference in the operational costs and daily 

energy losses, if accumulated over a year or over several years, 

will add up to a huge amount and, in addition to providing 

environmental benefits, will benefit both utilities and customers 

and will affect the price of electricity. In practice, although each 

microgrid may tend to operate independently and have discrete 

energy management systems, this study shows that performing 

energy management for the whole system of multiple microgrids 

simultaneously will be more beneficial and cost effective than 

performing it for each microgrid individually. In fact, the multi-

microgrid group energy management approach avoids the tragedy 

of the commons. In other words, it prevents individual microgrids 

from acting independently and rationally according to their own 

self-interest and from behaving contrary to the best interests of the 

whole system by depleting common resources.  

VI. ASSESSMENT OF ENERGY MANAGEMENT OPTIONS 

At this stage, each energy management scenario is applied in 

the multi-microgrid system individually for different cases, and the 

results in terms of EMSI and total operational costs are 

investigated.  

A. Energy Management via Dispatchable Biomass DGs  

The biomass DGs are considered to be dispatchable in this 

research.  It is assumed that the cost of operating such DGs is 

0.12$/kW. In this section, only the dispatchable DGs are 

considered as control variables for performing energy 
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Fig. 12. EMSI and daily costs by changing number of controllable storage units. 
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Fig. 13. EMSI and daily costs by changing the number of controllable loads. 

 

management. The EMSI and the daily costs for the utility are 

calculated for different cases where the energy management is 

performed for different numbers of DGs, and the results are 

presented in Fig. 10. It is seen that optimally controlling the 

biomass DGs with capacities ranging from 0 to 600 kW, can 

increase the EMSI from 0 to 88.91%. When all the DGs are 

optimally controlled for energy management purposes, the daily 

costs for the utility of operating the DGs only, will be reduced 

from $319.69 to $35.44, which is a considerable reduction for a 

single day. If we assume almost the same amount of savings for a 

period of a whole year or more, we can see that the savings will be 

great. In order to see how the output of  DGs  varies  during  24  

hours  in  the  optimum  energy management scenario, the output 

power of the third and sixth generators are plotted in Fig. 11 as 

samples for a case where all six generators are optimally 

controlled. It is an interesting point that, although the cost of the 

energy generated by biomass DGs is much higher than the price of 

electricity during off-peak hours, owing to the amount of loss 

reductions, it is still more beneficial to run the DGs at some buses 

than to energize the loads from the network. This fact further 

emphasizes the need to perform optimum energy management for 

the modern distribution systems. 
 

B. Energy Management via Storage Units  

In this section, only the storage units are considered as control 

variables to perform energy management. It is assumed that the 

efficiency of the storage units is 80%, with one charge/discharge 

cycle occurring every 24 hours at a cost of 0.005$/kWh. It should 

be noted that, since the purpose of this research is to assess 

different energy management scenarios, only the costs related to 

the operation of the devices are minimized and other costs, such as 

replacements, fixed O&M, etc., are not considered. As shown in 

Fig. 12, by increasing the number of controllable storage units, the 

EMSI increases from 0 to 255%. Moreover, the daily costs related 

to operate the storage units is reduced from $20.89 to $-32.53. The 

negative cost shows that when the storage units are optimally 

controlled, they do not merely cover their own operational costs, 

but provide financial benefits for the utility as well, which may 

cover the installation costs over a longer time.  

C. Energy Management via Demand Side Management  

The demand-side management is considered as a control option 

in this section. It is assumed that up to 30% of the loads connected  
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Fig. 14. EMSI and daily costs by changing the number of controllable EV buses. 
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Fig. 15. Variation of loads at bus 48 before and after demand side management. 

 

TABLE VIII  COMPARING DIFFERENT ENERGY MANAGEMENT OPTIONS 

Control options available for energy management  Daily Costs 

Reduction ($) DGs DESRs EV DSM 

X    41.9 

 X   53.4 

  X  3.4 

   X 2.1 

X X   88.6 

X  X  43.8 

X   X 42.1 

 X X  55.7 

 X  X 54.2 

  X X 5.2 

 X X X 57.9 

X  X X 45.8 

X X  X 91.4 

X X X  92.2 

X X X X 95.3 

 

to buses mentioned in Table VII are controllable and can be shifted 

for up to 6 hours. At each stage, one of the loads is added to the 

controllable loads, and its impact on the EMSI is shown in Fig. 13. 

It is seen that by increasing the number of controllable loads, the 

EMSI increases from 0 to 12.1%. The total daily costs related to 

the shifting of loads are also reduced from $20.48 to $18.37. The 

reduction in daily costs is related to the costs that the utility has to 

pay and clearly the customers’ saving at the controllable buses will 

be much greater due to the difference in the price of electricity 

during off-peak and on-peak hours. 

D. Energy Management via Electric Vehicles  

In this section, only the electric vehicles charging and 

discharging periods for the V2G program are considered as control 

variables. The V2G program cannot be successful without the 

active participation of vehicle owners, and the active participation 

of vehicle owners cannot be obtained without reasonable price 

incentives. The hourly prices for purchasing electricity from 

vehicle owners are as shown in Fig. 5. Through the application of 

the V2G program, the EVs can be ordered to act as generation 

sources and/or as responsive loads depending upon the state of the 

power system and of the EVs battery storage systems. Fig. 14 

shows the variation of EMSI as well as daily costs for the utility 

for several scenarios. It is seen that by taking more EV buses 

(aggregate and residential) under control, the EMSI increases from  

0 to 9.7%. Moreover, the daily cost is reduced from $32.5 to 

$29.1. It is shown that due to the lower capacity of EVs compared 
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Fig. 16. EMSI and daily costs by changing the load prediction error. 

0 1 2 3 4 5 6
0

100

200

300

E
M

S
I 

(%
)

Number of Units under Control

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

D
a
il
y
 C

o
s
ts

 (
$
)

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

D
a
il
y
 C

o
s
ts

 (
$
)

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

D
a
il
y
 C

o
s
ts

 (
$
)

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

D
a
il
y
 C

o
s
ts

 (
$
)

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

D
a
il
y
 C

o
s
ts

 (
$
)

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

0 1 2 3 4 5 6
-80

-60

-40

-20

0

20

40

D
a
il
y
 C

o
s
ts

 (
$
)

   Increasing the Generation 

Prediction Error ( 0% to 15%)

 
Fig. 17. EMSI and daily costs by changing the generation prediction error. 

 

to that of biomass DGs and storage units, the cost reduction is 

relatively lower. The hourly variation of total system loads before 

and after performing energy management for a case in which six 

aggregate and six residential EV buses are under control is shown 

in Fig. 15. As explained before, depending on their availability, the 

state of charge and the system’s condition, EVs can be instructed 

to be generators or responsive loads. For this study it is assumed 

that the charging period can be delayed by up to 12 hours. 

E. Summary and Comparison 

The different energy management scenarios are compared in 

this section to investigate the effectiveness of considering all 

generation/consumption devices in the energy management 

process. For this purpose, the results of several case studies in 

terms of daily costs reduction are presented in Table VIII. In all 

case studies, it is assumed that all six controllable devices from 

each group (DGs, DESRs, DSM and EVs) are covered by the 

energy management system. The letter X in the table shows that 

the related device is controlled in all microgrids for the purpose of 

energy management. It is seen that by including more devices in 

the control zone of the energy management system, the EMSI will 

be larger and the total operational costs will be reduced. It should 

be noted that the cost reduction amount and the calculated values 

depend significantly on the rated power of the controllable devices 

and the results could be different for different selections of such 

values. The purpose of generating this table is to demonstrate that 

considering all controllable devices in the energy management 

process will be more cost effective and beneficial. 

VII. ROBUSTNESS OF THE ENERGY MANAGEMENT PROCESS 

The day-ahead energy management plan, proposed in this paper, 

used the predicted values of loads and generation for the next 24 

hours to plan for the generation and consumption of devices in the 

multi-microgrid system. This section investigates the sensitivity of 

the plan in terms of the EMSI and total costs to the prediction 

error. The prediction error occurs when the actual load/generation 

data for the next 24 hours differs from what we predicted. For 

instance, if we assume the load will be 1pu in hour H but it is 

actually 1.05%, we have a 5% error in load. Therefore, an increase 

in load/generation prediction error is modeled by increasing-

/decreasing  the  actual load/generation by  X% from the  predicted 
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Fig. 18. EMSI and daily costs by changing the number of hours with 10% load 

prediction error. 

 
Fig. 19. EMSI and daily costs by changing the number of hours with 10% 

generation prediction error. 
 

load/generation data for each system component. The EMSI is 

then calculated by using the settings of load/generation devices 

derived from predicted data by using the actual load/generation 

data. The EMSI and total costs for the cases that we have 

examined (5%, 10% and 15% prediction error in load and 

generation level) are plotted in Fig. 16 and Fig. 17, respectively. 

The prediction error is considered as both excess and deficit (up or 

down shift) compared to predicted values of all loads and 

generation units in the system, and the EMSI and daily costs for 

the worst cases are plotted in the figures. As shown in Fig. 16, by 

increasing the load prediction error from 0% to 15%, for the case 

that all the units are under control, the EMSI is reduced from 

298% to 246%. Also for the same case, by increasing the load 

prediction error, the total daily costs are increased from $-63 to $-

52. The impact of generation prediction error on the EMSI and 

daily costs are plotted in Fig. 17. It is seen that by increasing the 

generation prediction error from 0% to 15%, the EMSI reduces 

and the daily costs increase. For the case that all devices are under 

control, the EMSI reduces from 298% to 239%, and the total daily 

costs are increased from $-63 to $-45 per day. To better illustrate 

the impact of hourly basis prediction error on the EMSI and total 

costs, several case studies are run and the results are presented in 

Fig. 18 and Fig. 19. In these figures, it is assumed that the 

prediction error is 10% and this error exists for predicted load and 

generation for the next X hours, where X ranges from 1 to 24. It is 

seen that, by increasing the number of hours that have 10% 

prediction errors for load and generation, the calculated error for 

EMSI and daily costs will increase. Moreover, the error in 

calculated EMSI and daily costs is slightly larger if the error is in 

the amount of power predicted to be generated by the DGs.  This 

study shows that although some benefits are lost due to the 

prediction error, the benefits in terms of the EMSI and daily costs 

are still considerable to justify energy management 

implementation in smart distribution grids. 

VIII. CONCLUSIONS 

In this paper, an optimized strategy for performing energy 

management in multi-microgrid systems is presented. The research 

paper makes new contributions to the field in terms of defining a 

new probabilistic index (EMSI) to assess the success of energy 

management options, considering all energy management options 

(including probabilistic DGs, DESRs, DSM and EVs) 

simultaneously for the purpose of energy management, solving the 

energy management problem for multi-microgrid systems and 

performing assessments for different energy management 

scenarios.  

A case study is presented to compare two different energy 

management options for multi-microgrid systems. It is shown that 

in a multi-microgrid distribution system, performing energy 

management for the whole system simultaneously would be more 

beneficial compared to performing it separately for each 

microgrid. It is shown that the total system’s energy losses will be 

much lowered when energy management is performed collectively. 

Furthermore, through several sensitivity studies, it is shown that 

in most cases, performing energy management in a multi-

microgrid system does not merely cover the controlled devices’ 

operational costs, but also provides the utility with financial 

benefits that may cover the installation costs over a long period of 

time. Moreover, by simultaneously performing different energy 

management scenarios (e.g., controlling all generation-

/consumption units), the EMSI will increase further and the 

operational costs will be reduced significantly.  

The case studies presented in this paper provide an insight for 

utility engineers to 1) compare the different energy management 

scenarios in a multi-microgrid system, and 2) select the 

appropriate energy management option, based on their 

requirements, for implementation in a multi-microgrid distribution 

system. 
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