Seth BordensteinPennsylvania State University | Penn State
Seth Bordenstein
Ph.D. Biology, U. Rochester
About
242
Publications
50,348
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
15,308
Citations
Introduction
Huck Endowed Professor in Microbiome Sciences and Director of the Microbiome Center at Pennsylvania State University. Research in symbiosis, evolution, ecology, microbiome, speciation, bacteriophage, antibiotic discovery, horizontal gene transfer and microbial genomics. Founding Director of the worldwide science education program Discover the Microbes Within! The Wolbachia Project. Consultant for genomics and science education. Lab: https://bordensteinlab.com | Twitter: @Symbionticism
Publications
Publications (242)
The genus Wolbachia is an archetype of maternally inherited intracellular bacteria that infect the germline of numerous invertebrate species worldwide. They can selfishly alter arthropod sex ratios and reproductive strategies to increase the proportion of the infected matriline in the population. The most common reproductive manipulation is cytopla...
Significance
The World Health Organization recommended pilot deployment of Wolbachia -infected mosquitoes to curb viral transmission to humans. Releases of mosquitoes are underway worldwide because Wolbachia can block replication of these pathogenic viruses and deterministically spread by a drive system termed cytoplasmic incompatibility (CI). Desp...
Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This domain-specific ecology underscores why eukaryotic viruses typically co-opt eukaryotic genes and bacteriophages commonly harbour bacterial genes. However, the presence of bacteriophages in obligate intracellular bacteria of eukaryotes may promote DNA transfers between...
Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern, whereby the ecological relatedness of host-associated microbial communities parallels the phylogeny of related host species. Here, we test the prevalence of phylosymbiosis and its functional significance under highly controlled conditions by characterizing the microbiota...
Wolbachia are cytoplasmically inherited bacteria that cause a number of reproductive alterations in insects, including cytoplasmic incompatibility, an incompatibility between sperm and egg that results in loss of sperm chromosomes following fertilization. Wolbachia are estimated to infect 15-20% of all insect species, and also are common in arachni...
The rising interest and success in deploying inherited microorganisms and cytoplasmic incompatibility (CI) for vector control strategies necessitate an explanation of the CI mechanism. Wolbachia-induced CI manifests in the form of embryonic lethality when sperm from Wolbachia-bearing testes fertilize eggs from uninfected females. Embryos from infec...
The extent to which prophage proteins interact with eukaryotic macromolecules is largely unknown. In this work, we show that cytoplasmic incompatibility factor A (CifA) and B (CifB) proteins, encoded by prophage WO of the endosymbiont Wolbachia, alter long noncoding RNA (lncRNA) and DNA during Drosophila sperm development to establish a paternal-ef...
The Microbiome Sciences are at a crucial maturation stage. Scientists and educators should now view the Microbiome Sciences as a flourishing and autonomous discipline, creating degree programs and departments that are conducive to cohesive growth.
Human microbiome variation is linked to the incidence, prevalence, and mortality of many diseases and associates with race and ethnicity in the United States. However, the age at which microbiome variability emerges between these groups remains a central gap in knowledge. Here, we identify that gut microbiome variation associated with race and ethn...
Although profibrotic cytokines, such as IL-17A and TGF-β1, have been implicated in the pathogenesis of interstitial lung disease (ILD), the interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as the phosphorylation of STAT3, have not been defined. Here, through chromatin immuno...
Although profibrotic cytokines such as IL-17A and TGF-β1 have been implicated in interstitial lung disease (ILD) pathogenesis, interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as phosphorylation of STAT3, have not been defined. Here we show by chromatin immunoprecipitation s...
Independent studies demonstrate the significance of gut microbiota on the pathogenesis of chronic lung diseases; yet little is known regarding the role of the gut microbiota in lung fibrosis progression. Here we show, using the bleomycin murine model to quantify lung fibrosis in C57BL/6 J mice housed in germ-free, animal biosafety level 1 (ABSL-1),...
Environmental stressors can impact the basic biology and applications of host-microbe symbioses. For example, Wolbachia symbiont densities and cytoplasmic incompatibility (CI) levels can decline in response to extreme temperatures and host aging. To investigate whether transgenic expression of CI-causing cif genes overcomes the environmental sensit...
Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performe...
Human genetic variation associates with the composition of the gut microbiome, yet its influence on clinical traits remains largely unknown. We analyzed the consequences of nearly a thousand gut microbiome-associated variants (MAVs) on phenotypes reported in electronic health records from tens of thousands of individuals. We discovered and replicat...
Increasing evidence suggests that gut microbiota plays a critical role in colorectal cancer (CRC) development; however, the underlying mechanism is largely unknown. We investigated the relationship of commensal microbiota with host DNA methylation (DNAm) and gene expression in colorectal adenoma, the major precursor of CRC.
This study included 72 p...
Wolbachia are the most common obligate, intracellular bacteria in animals. They exist worldwide in arthropod and nematode hosts in which they commonly act as reproductive parasites or mutualists, respectively. Bacteriophage WO, the largest of Wolbachia’s mobile elements, includes reproductive parasitism genes, serves as a hotspot for genetic diverg...
Species are fundamental units of biology that exemplify lineage diversification, while symbiosis of microbes and macrobial hosts exemplify lineage unification between the domains of life. While these conceptual differences between speciation and symbiosis often dominate the narrative of the respective fields, Lynn Margulis argued for interconnectio...
Inherited microorganisms can selfishly manipulate host reproduction to drive through populations. In Drosophila melanogaster, germline expression of the native Wolbachia prophage WO proteins CifA and CifB cause cytoplasmic incompatibility (CI) in which embryos from infected males and uninfected females suffer catastrophic mitotic defects and lethal...
The worldwide endosymbiosis between arthropods and Wolbachia bacteria is an archetype for reproductive parasitism. This parasitic strategy rapidly increases the proportion of symbiont-transmitting mothers, and the most common form, cytoplasmic incompatibility (CI), impacts insect evolution and arboviral control strategies. During CI, sperms from sy...
Inherited microorganisms can selfishly manipulate host reproduction to drive through populations. In Drosophila melanogaster, germline expression of the native prophage WO proteins CifA and CifB cause cytoplasmic incompatibility (CI) in which sperms fertilize uninfected embryos that suffer catastrophic mitotic defects and lethality; however in infe...
Wolbachia are the most common obligate, intracellular bacteria in animals. They exist worldwide in arthropod and nematode hosts in which they commonly act as reproductive parasites or mutualists, respectively. Bacteriophage WO, the largest of Wolbachia's mobile elements, includes reproductive parasitism genes, serves as a hotspot for genetic diverg...
Microbial symbiosis and speciation profoundly shape the composition of life’s biodiversity. Despite the enormous contributions of these two fields to the foundations of modern biology, there is a vast and exciting frontier ahead for research, literature, and conferences to address the neglected prospects of merging their study. Here, we survey and...
Wolbachia are the most widespread bacterial endosymbionts in animals. Within arthropods, these maternally-transmitted bacteria can selfishly hijack host reproductive processes to increase the relative fitness of their transmitting females. One such form of reproductive parasitism called male killing, or the selective killing of infected males, is r...
Wolbachia is currently at the forefront of global efforts to control arbovirus transmission from the vector Aedes aegypti. The use of Wolbachia relies on two phenotypes—cytoplasmic incompatibility (CI), conferred by cifA and cifB genes in prophage WO, and Wolbachia-mediated pathogen blocking (WMPB). These traits allow for local, self-sustaining red...
Independent reports note the significance of gut microbiota on lung disease severity; however, studies using murine models to define the role of the gut microbiome in pulmonary fibrosis progression are missing. We used the bleomycin murine model to quantify lung fibrosis in C57BL/6J mice housed in germ-free, animal biosafety level 1 (ABSL-1), or an...
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbin...
Background and Aims
The type of fat consumed in animal-based western diets, typically rich in the saturated fat palmitate, has been implicated in cardiometabolic disease risk. In contrast, the most abundant mono- and polyunsaturated fats, more typical in a vegetarian or plant-based diet, potentiate less deleterious effects. This study determined di...
Significance
Microbes have a strong impact on the biology of their host, with those living in the gut being essential to immunity, development, and metabolism. A functional gut, however, has been lost several times during animal evolution. Here, using sister sea urchin species, we report that the loss of a functional gut corresponds with a reduced...
Phylosymbiosis is a cross-system trend whereby microbial community relationships recapitulate the host phylogeny. In Nasonia parasitoid wasps, phylosymbiosis occurs throughout development, is distinguishable between sexes, and benefits host development and survival. Moreover, the microbiome shifts in hybrids as a rare Proteus bacterium in the micro...
Wolbachia are the most widespread bacterial endosymbionts in animals. Within arthropods, these maternally-transmitted bacteria can selfishly hijack host reproductive processes to increase the relative fitness of their transmitting females. One such form of reproductive parasitism called male killing, or the selective killing of infected males, is r...
The most widespread intracellular bacteria in the animal kingdom are maternally-inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and a stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curb...
Phylosymbiosis is a cross-system trend whereby microbial community relationships recapitulate the host phylogeny. In Nasonia parasitoid wasps, phylosymbiosis occurs throughout development, is distinguishable between sexes, and benefits host development and survival. Moreover, the microbiome shifts in hybrids as a rare Proteus bacteria in the microb...
Wolbachia are maternally transmitted, intracellular bacteria that can often selfishly spread through arthropod populations via cytoplasmic incompatibility (CI). CI manifests as embryonic death when males expressing prophage WO genes cifA and cifB mate with uninfected females or females harboring an incompatible Wolbachia strain. Females with a comp...
The Elizabeth W. Jones Award for Excellence in Education recognizes an individual who has had a significant impact on genetics education at any education level. Seth R. Bordenstein, Ph.D., Centennial Professor of Biological Sciences at Vanderbilt University and Founding Director of the Vanderbilt Microbiome Initiative, is the 2020 recipient in reco...
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. Howe...
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. Howe...
Wolbachia are the world’s most common, maternally-inherited, arthropod endosymbionts. Their worldwide distribution is due, in part, to a selfish drive system termed cytoplasmic incompatibility (CI) that confers a relative fitness advantage to females that transmit Wolbachia to their offspring. CI results in embryonic death when infected males mate...
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. Howe...
We have recently argued that, because microbes have pervasive – often vital – influences on our lives, and that therefore their roles must be taken into account in many of the decisions we face, society must become microbiology‐literate, through the introduction of relevant microbiology topics in school curricula (Timmis et al. 2019. Environ Microb...
Wolbachia are the world’s most common, maternally-inherited, arthropod endosymbionts. Their worldwide distribution is due in part to a selfish drive system termed cytoplasmic incompatibility (CI) that confers a relative fitness advantage to females that transmit Wolbachia to their offspring. CI results in embryonic death when infected males mate wi...
Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the characterization of a new, cross-system trend in host-associated microbiomes. Defining phylosymbiosis as 'microbial community relationships that recapitulate the phylogeny of their host', we review the relevant literature and data in the last decade, emphasizing...
Wolbachia are widespread bacterial endosymbionts that manipulate the reproduction of diverse arthropods to spread through a population and can substantially shape host evolution. Recently, reports identified three prophage WO genes ( wmk , cifA , and cifB ) that transgenically recapitulate many aspects of reproductive manipulation in Drosophila mel...
Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbiont...
As microbiome science expands, academic centres scramble to fill many needs, from service provider to industry liaison. A newly created network aims to share strategies and accelerate knowledge transfer, and invites others to join the efforts.
Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the characterization of a new, cross-system trend in host-associated microbiomes. Defining phylosymbiosis as “microbial community relationships that recapitulate the phylogeny of their host”, we review the relevant literature and data in the last decade, emphasizing...
In this systemic investigation of racial differences in the oral microbiome using a large data set, we disclosed the significant differences in the oral microbial richness/evenness, as well as in the overall microbial composition, between African-Americans and European-Americans. We also found multiple oral bacterial taxa, including several preiden...
Unidirectional cytoplasmic incompatibility (CI) results in a postfertilization incompatibility between Wolbachia -infected males and uninfected females. CI contributes to reproductive isolation between closely related species and is used in worldwide vector control programs to drastically lower arboviral vector population sizes or to replace popula...
Animal sociability through microbes
Accumulating evidence suggests that the microbiota living in and on animals has important functions in the social architecture of those animals. Sherwin et al. review how the microbiota might facilitate neurodevelopment, help program social behaviors, and facilitate communication in various animal species, includ...
Background
Cigarette smoking is a common risk factor for diseases and cancers. Oral microbiota is also associated with diseases and cancers. However, little is known about the impact of cigarette smoking on the oral microbiota, especially among ethnic minority populations.
Methods
We investigated cigarette smoking in relationship with the oral mic...
Wolbachia are the most widespread maternally-transmitted bacteria in the animal kingdom. Their global spread in arthropods and varied impacts on animal physiology, evolution, and vector control are in part due to parasitic drive systems that enhance the fitness of infected females, the transmitting sex of Wolbachia. Male killing is one common drive...
Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the characterization of an emerging trend in host-associated microbiomes. Defining phylosymbiosis as “microbial community relationships that recapitulate the phylogeny of their host”, we review the relevant literature and data in the last decade, emphasizing frequen...
Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the characterization of an emerging trend in host-associated microbiomes. Defining phylosymbiosis as “microbial community relationships that recapitulate the phylogeny of their host”, we review the relevant literature and data in the last decade, emphasizing frequen...
Phylosymbiosis is an ecoevolutionary hypothesis and emerging pattern in animal-microbiota studies whereby the host phylogenetic relationships parallel the community relationships of the host-associated microbiota. A central prediction of phylosymbiosis is that closely related hosts exhibit a lower microbiota beta diversity than distantly related ho...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Wolbachia are maternally inherited bacteria that infect arthropod species worldwide and are deployed in vector control to curb arboviral spread using cytoplasmic incompatibility (CI). CI kills embryos when an infected male mates with an uninfected female, but the lethality is rescued if the female and her embryos are likewise infected. Two phage WO...
Wolbachia is a genus of obligate intracellular bacteria found in nematodes and arthropods worldwide, including insect vectors that transmit dengue, West Nile, and Zika viruses. Wolbachia's unique ability to alter host reproductive behavior through its temperate bacteriophage WO has enabled the development of new vector control strategies. However,...
We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxon...
The original version of this Article contained an error in Fig. 1a, in which the sequences of the reverse and forward primers were swapped