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Spatiotemporal Saliency Estimation
by Spectral Foreground Detection

Çağlar Aytekin , Horst Possegger, Thomas Mauthner, Serkan Kiranyaz, Horst Bischof, and Moncef Gabbouj

Abstract—We present a novel approach for spatiotemporal
saliency detection by optimizing a unified criterion of color
contrast, motion contrast, appearance, and background cues. To
this end, we first abstract the video by temporal superpixels.
Second, we propose a novel graph structure exploiting the saliency
cues to assign the edge weights. The salient segments are then
extracted by applying a spectral foreground detection method,
quantum cuts, on this graph. We evaluate our approach on several
public datasets for video saliency and activity localization to
demonstrate the favorable performance of the proposed video
quantum cuts compared to the state of the art.

Index Terms—Salient object detection, foreground detection,
spatiotemporal, saliency, spectral graph theory.

I. INTRODUCTION

IMAGE and video saliency detection has gained much at-
tention in the last two decades after the seminal work of

Itti et al. [1]. Saliency maps allow us to filter irrelevant im-
age and video regions which do not contain visually interesting
information. Thus, saliency estimation is a valuable preprocess-
ing step for a variety of applications such as image and video
summarization [2], stereoscopic video coding [3], image and
video retargeting [4]–[6], compression [7], object detection [8],
surveillance [9], [10], and action recognition [11].

We focus on identifying a salient object region as a whole
to enable further improvements for applications such as object
detection or action recognition. Prior work in this research field
is mostly based on three cues, namely contrast, appearance, and
background. First, the contrast cue covers the assumption that a
salient object is in contrast with its local surrounding [12] or the
rest of the scene [13]. Second, the appearance cue is related to
the expected shape and location properties of an object, such as
the fact that an object has a well-defined closed boundary [14]
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Fig. 1. Importance of motion for spatiotemporal saliency. From left to right:
horse-riding frames, optical flow visualization, saliency result of [16], and the
proposed VQCUT.

or that it covers a large area of the image region [15], [16].
Finally, the background cue is used in order to define saliency
as a dissimilarity measure from a set of expected background
regions, such as image boundaries, e.g. [17], [18].

Recently, there have been successful approaches to visual
saliency detection in images such as graph-based manifold rank-
ing [19], absorbing Markov chain [20], geodesic saliency [17],
saliency filters [21], robust background detection [18], and
Quantum Cuts [15]. Although these methods achieve a consid-
erable performance for still images, it is not a straightforward
task to apply them directly on videos, as the saliency concept
for videos can be much more complex than in still images. This
is due to the additional motion information. For example, an
object may not have a distinctive local or global color contrast;
however, it can be very salient due to its motion (e.g. see Fig. 1).
Such issues motivated research on specific methods for video
saliency, i.e. detecting salient objects in videos. Moreover, video
saliency detection adresses the shortcomings of some video seg-
mentation methods that require manual annotation in the first
frame [22], extracts a number of spatiotemporal tubes contain-
ing many irrelevant proposals [23] or that are designed to extract
only one primary object from the video [24], [25].

Some of the recent approaches to video saliency are as fol-
lows. Guo and Zhang [26] represent each frame as a quaternion
containing intensity, color, and motion information. Then, a
multiresolution model is proposed to calculate the spatiotempo-
ral saliency map of an image by this representation. Liu et al.
[27] propose a superpixel based saliency model by exploiting
motion and color histograms in both local and global manner.
Mancas et al. [28] compute the saliency map by determining the
global rarity in the optical flow using a multi-scale approach.
Itti and Baldi [29] extract low-level information such as color,
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motion, flicker, orientation and intensity with linear center-
surround filters and obtain a master-saliency map. Rahtu et al.
[30] use motion, illumination, and color contrast cues to obtain a
saliency model, whereas Singh et al. [31] use color, motion, ob-
jectness, and boundary cues to extract different saliency maps.
These saliency maps are then merged via weight learning by lin-
ear support vector machines. Fang et al. [32] compute temporal
and spatial saliency separately and then merge them consider-
ing an uncertainity analysis regarding the confidence on each
saliency map. Zhao et al. [33] learn a fixation bank including
color, intensity, orientation and motion features and the human
fixations around a given location. During testing, the feature
maps are decomposed into blobs and local activation patterns
are matched against the fixation bank to determine the saliency
value of the blobs. Mauthner et al. [34] introduce a Bayesian
saliency formulation via encoding-based joint distribution esti-
mations for color and motion information separately, and then
both local and global color and motion saliency estimations are
merged in an adaptive manner.

Most of these video saliency approaches consider spatial and
temporal saliency as separate problems and try to fuse them after
separately calculating each, e.g. [27], [31], [32], [34], whereas
others rely only on motion information, e.g. [28]. However, a
salient object might be visually interesting either because of its
motion or solely based on color contrast. Additionally, object
saliency might result from both color and motion information
combined, although separately they might not be in high contrast
with the rest of the video. Therefore, relying solely on one of
these measures or considering them separately and then merging
them to estimate saliency would fail to detect the salient objects
in such scenarios. Zhao et al. [33] adress this issue by learning
saliency from combined features, however their method is su-
pervised and aimed to detect human fixation maps, rather than
salient objects. Finally, the background and appearance cues
that proved useful in image saliency tasks have not been given
much attention by the video saliency methods, although they
may bear significant information for an accurate salient object
detection.

In this paper, to address these issues we propose a unified
method which simultaneously exploits: (i) the local color and
motion contrast, (ii) the global motion contrast, (iii) the appear-
ance cue modeled as an expectation of large area coverage, and
(iv) the background cue via estimating the dominant motion at
the video boundaries. To this end, we formulate an optimization
criterion which combines all of these cues. We first represent
the video by temporal superpixels [35] and form a graph using
our novel edge weights which are based on these saliency cues.
Next, we apply Quantum Cuts (QCUT), a recently proposed
spectral foreground extraction algorithm [15] in order to find
the saliency probability of regions, given a set of background
regions. The main reason for selecting QCUT is the fact that it
differs from other spectral graph algorithms, such as normalized
cuts [36], by its ability to formulate an optimization problem
solely based on the foreground and to incorporate prior back-
ground information. QCUT was shown to outperform many
competing algorithms for salient object detection in still im-
ages, e.g. see [15], [16]. The graph construction of these works

Fig. 2. Graph structure for QCUT. To separate foreground nodes (denoted
by 1) from background nodes (denoted by 0), QCUT relies on the pairwise
affinities wi,j , as well as the unary background prior ui (i.e., the connection to
the auxiliary background node, denoted as BKG).

however, is designed for still images. The main difference of
the proposed method compared to QCUT is the novel graph
construction that is more suitable for salient object detection
from videos. We show that this contribution is crucial as it leads
to a 25 percent relative improvement on maximum F1 measure
on the results obtained by applying QCUT to each video frame
separately.

The rest of the paper is organized as follows: First, we briefly
summarize QCUT in Section II. Then, we present the proposed
spatiotemporal saliency detection method Video Quantum Cuts
(VQCUT) in Section III. In Section IV, we demonstrate the
performance of our unified method for both video saliency
and activity localization tasks. Finally, Section V concludes the
paper.

II. QUANTUM CUTS

Quantum Cuts (QCUT) is a spectral foreground detection
method for graphs. Consider a graph with nodes to be labeled
as foreground or background, augmented by an additional aux-
iliary node BKG to represent the background sink. Connecting
every node to its neighbors and the auxiliary BKG node, we
obtain a representation as illustrated in Fig. 2. For simplicity,
this illustration defines nodes to correspond to image pixels with
a 4-connected neighborhood. However, this representation can
be easily generalized to any connected graph.

Let wi,j denote the affinity between two nodes i and j of
the graph, and ui denote the background prior for node i (i.e.
the unary potential of its connection to the BKG node). From
a saliency perspective, we then seek the foreground partition A
which is in contrast with the rest of the graph (contrast cue), has
a large area (appearance cue), and is dissimilar from the back-
ground (background cue). All of these cues can be combined in
a single optimization criterion as

A� = arg min
A

cut
(A, Ā)

area (A)
(1)
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which can be rewritten as

y� = arg min
y

∑
i,j wi,j (yj − yiyj ) +

∑
i uiyi∑

i yi
(2)

where y = (y1 , . . . , yN )� is a binary label vector with yi = 0
indicating that node i belongs to the background and yi = 1
indicating foreground, respectively. The numerator in (2) con-
sists of pairwise terms based on the connection to neighboring
nodes, and unary terms which model the background prior. This
joint optimization criterion simultaneously maximizes the area
of A, the local contrast of A via the pairwise terms, and the
dissimilarity of A from the background via the unary terms.

Although this minimization is NP-hard, it was shown in [15]
that a spectral approximation of the solution can be achieved
by introducing a vector z = (z1 , . . . , zN )� satisfying z2

i = yi ,
i.e. zi ∈ {−1, 0, 1}. Without loss of generality, (2) can be ex-
panded by adding the term

∑
i,j wi,j

(
z2
i z

2
j − zizj

)
to limit

the solution set of z. This term only penalizes the assignments
(zi, zj ) = (1,−1) and (zi, zj ) = (−1, 1) and thus, leads to a
tighter solution set for z. For all other pairwise assignments,
this term is ineffective and has no effect on the actual label-
ing y. Hence, one can rewrite (2) as

y� = arg min
y

∑
i,j wi,j

(
z2
j − zizj

)
+
∑

i uiz
2
i∑

i z
2
i

. (3)

In matrix form, this minimization problem corresponds to

z� = arg min
z

z�HMz
z�z

(4)

HM(i, j) =

⎧
⎪⎨

⎪⎩

ui +
∑

k∈Ni
wk,i if i = j

−wi,j if j ∈ Ni

0 otherwise

(5)

where Ni is the set of neighbors of node i. If z is relaxed to
have real values, the minimization in (4) has a spectral approx-
imation as it turns into a Rayleigh Quotient and the solution y�

is obtained as the eigenvector corresponding to the minimum
eigenvalue λ of the eigenproblem

HMz� = λz� , y� = z� ◦ z� (6)

where ◦ is the Hadamard product. Note that as long as there
exists a non-zero ui , HM is positive definite and the minimum
eigenvalue is greater than zero. Hence, the solution is obtained
via the eigenvector corresponding to this minimum eigenvalue.
Due to the similarity of (6) to discretized solutions of the time-
independent Schrödingers Equation [37] in quantum mechanics,
this method is called Quantum Cuts. In particular, the original
Hamiltonian operator in quantum mechanics is a special case of
the modified Hamiltonian HM in (5), where all the weights are
constant.

QCUT was originally introduced as a salient object detec-
tion method for still images in [15], where each pixel of the
input image corresponds to a separate node within the graph.
The affinities between nodes of this 4-connected graph were
selected as the inverse of their color distance. Aytekin et al.
[16] proposed a multi-resolution extension of QCUT by using

Fig. 3. Tracked temporal superpixels at different frames of a video. See text
for details.

different granularity levels of a superpixel segmentation to form
the graph. In both works, image boundaries were confidently
connected to the background node, assuming that these regions
are likely to be background.

Although QCUT achieves notable performance for saliency
detection in images, there are several limitations when applying
it for video saliency tasks. First, the assumption that the salient
object does not touch the boundary is often violated for videos.
Second, applying QCUT on a per-frame level may not produce
temporally consistent results throughout the video, i.e. an object
which is salient in one frame may not be salient in another.
Finally, both [15] and [16] only exploit color information to
find an optimal cut. However, a salient object in a video may
not necessarily be salient in color, but it can be salient due to its
motion (recall Fig. 1). Therefore, we need a method to produce
temporally consistent results which considers both color and
motion saliency in a unified manner. In particular, we design
an operator similar to HM in (5) for the whole video and apply
Quantum Cuts once for this matrix to obtain the consistent
saliency maps for the whole video.

III. VIDEO QUANTUM CUTS

To apply Quantum Cuts for video saliency detection, we pro-
pose a novel spatiotemporal Hamiltonian operator matrix. First,
a graph representation of the input video is formed as detailed in
Section III-A. Second, we introduce our saliency based affinity
measures in Section III-B and finally, we discuss how to model
the background prior in Section III-C. Combining these terms,
we can then define the spatiotemporal Hamiltonian operator
matrix and solve the corresponding video saliency problem in
Section III-D.

A. Video Graph Representation

To form a graph for the whole video, we first extract tempo-
ral superpixels (TSPs) [35] which are then used to represent the
nodes, i.e. each superpixelSi corresponds to a node of the graph.
One drawback of the temporal superpixel extraction is that TSPs
are not robust w.r.t. partial occlusions, sensitive to noisy optical
flow estimation, and are likely to disappear frequently. Fig. 3
illustrates these limitations on a sample video frame. Note that
some superpixels on the neck of the horse (magenta and white)
shift their position and the superpixel on the rider’s head (cyan)
is lost after a few frames. Nevertheless, the TSP video abstrac-
tion preserves both the color and motion information which we
can be useful to solve the video saliency problem in a unified
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Fig. 4. First-order (yellow) and second-order (cyan) frame-wise neighbors
N F
k ,i of a superpixel Si (green) visualized on a close-up view of the blue

rectangle (left).

manner. Moreover, at the end of this section, we will show that
our proposed method provides robust solutions to handle the
drawbacks of TSPs.

To define the edges of the graph, we first consider the set of
frame-wise neighbors N F

k,i of a superpixel Si at frame k. We
denote the superpixels that share a boundary withSi as 1st-order
neighbors. Similarly, 2nd-order neighbors are those superpixels
that share a boundary with any 1st-order neighbor of Si , see
Fig. 4. Experimentally, we observed that including 2nd-order
neighbors improves the results due to two valuable contribu-
tions, (i) they extend the local contrast information and (ii) they
enable us to recover additional texture information. For exam-
ple, the 2nd-order neighbors connect repeating homogeneous
regions as in Fig. 4, which preserves the texture information.

Using the frame-wise neighborhood relation, we can define
the set of video neighbors N V

i for a superpixel Si . These are the
superpixelsSj which are frame-wise neighbors ofSi throughout
the video until either Si or Sj disappears. More formally, let
Gk denote the graph formed from all superpixels that exist at
frame k, where only those superpixels that share a boundary are
connected with a weight of 1. Then, the video neighbors N V

i of
a superpixel Si are given as

N V
i =

{
Sj : Sj ∈ N F

k,i ,∀k : Ok,i,j = 1
}

(7)

N F
k,i = {Sj : Pk,i,j ≤ 2, Ok,i,j = 1} (8)

where Pk,i,j denotes the length of the shortest path between
Si and Sj in the graph Gk ; and Ok,i,j is an indicator of the
co-occurence Si and Sj , i.e. Ok,i,j = 1 if both superpixels are
present at frame k. Having defined the edges of our video graph,
we next introduce the weights of these edges, i.e. the affinity
measure between nodes in this graph.

B. Affinity Measures

As a first measure to decide on the affinity between two
superpixels, we exploit their color information. We represent
each superpixel by its mean L*a*b* color

μC
i =

1
|Si |

∑

p∈Si
LABp (9)

where p denotes a pixel and |Si | denotes the number of pixels
within Si . The color distance between two superpixels is then
given as

DC
i,j =

∥
∥μC

i − μC
j

∥
∥ . (10)

As objects may be salient due to their respective motion,
we exploit their motion similarity as a second affinity cue. To
achieve this, we define a pairwise motion trajectoryTi,j between
Si and Sj by concatenating the centroids Ci,k of Si for each
frame k in which it co-occurs with Sj as

Ti,j = cat (Ci,k ),∀k : Ok,i,j = 1 (11)

where cat(·) is the concatenation operator. We shift the origins
of the trajectories Ti,j and Tj,i to (0, 0) to reduce the bias of
intra-frame centroid differences, i.e. we focus on the distance of
the trajectory shape. Then, we define the motion dissimilarity
between two superpixels as

DM
i,j =

‖Ti,j − Tj,i‖∑
k Ok,i,j

. (12)

Besides color and motion, we additionally exploit the joint
lifespan length of two superpixels as an affinity measure. Nor-
malizing this measure by the lifespan of the respective super-
pixel, we define the repetition affinity

Ri,j =
∑

k Ok,i,j∑
k Ok,i

(13)

where Ok,i indicates if superpixel Si exists at frame k (i.e.
Ok,i = 1) or not (i.e.Ok,i = 0). Note that this affinity measure is
only computed for video neighbors, as other superpixels will not
be connected within the video graph. Thus, if both superpixels
Si and Sj appear and disappear at the same frame they are
tightly connected. Also, if Si disappears very early compared to
Sj , it is still tightly connected to Sj but not vice-versa, i.e. the
superpixel with the longer lifespan has a higher confidence of
being part of the foreground region than the other one (which
might be a dynamically changing object part or even noise).

Finally, we expect a salient region within a video to stand
out in motion information in a global manner as well. To model
this global motion saliency, we propose the following simple,
yet efficient measure. Salient superpixels (superpixels belong-
ing to salient regions) have a lot more frame-wise neighbors
throughout the video than non-salient ones, as their neighbors
change frequently due to the motion contrast. Hence, we con-
sider the number of the total frame-wise neighbors of superpixel
Si throughout the video, normalized by the superpixel lifespan,
as a measure of global motion saliency. The reason for the nor-
malization is to prevent over-emphasizing superpixels with long
lifespan or suppressing short ones, as some temporal superpix-
els within the objects may disappear due to sudden appearance
changes. More formally, the global motion contrast measure is
given as

GM
i =

∣
∣
∣
∣
⋃

k∈V
N F
k,i

∣
∣
∣
∣

∑
k Ok,i

. (14)

Consider two superpixels with the same lifespan, where one
belongs to a static background region and the other is on the
boundary of a moving object. The latter superpixel would have
a higher number of unique neighbors throughout its lifespan as
its immediate background keeps changing, whereas the former
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(static background) superpixel has only a few unique neigh-
bors as it is within a static background. Therefore, (14) would
yield a much higher value for the object boundary superpixel
highlighting its motion distinctiveness which is desirable. Now
consider two superpixels which are both on the boundary of the
same moving object, with one having a shorter lifespan than the
other, e.g. due to occlusion of that object part. These two su-
perpixels should have the same global motion contrast measure
since they are representing the boundary of the same object.
Thus, we normalize the global motion contrast by the lifespan
of the superpixels.

In summary, we have four different sources of information
for graph affinities, namely the color difference DC

i,j , the mo-
tion difference DM

i,j , the repetition affinity Ri,j , and the global
contrast measureGM

i . Combining the repetition affinity with the
motion and color distance can be achieved as follows. First, color
and motion differences are normalized to have a mean value of
1 within a video to ensure equal contribution of both terms.
Then, we linearly combine the color and motion distances, nor-
malized w.r.t. the repetition affinity, i.e. the normalized distance
DN
i,j decreases with larger repetition affinity

DN
i,j =

DC
i,j +DM

i,j

Ri,j
. (15)

Integrating the global motion contrast measure GM
i with the

constructed measure so far is however, rather more difficult.
In particular, GM

i will be high for superpixels on the border
of an object that is salient in motion, as these will have many
frame-wise neighbors throughout the video. However, super-
pixels within the salient object will not have as many changing
frame-wise neighbors. Hence, GM

i should be used to enhance
the distance between superpixels between the object boundaries
and the background only, i.e. those regions where the normal-
ized color distance is already high. To control the effect of GM

i ,
we introduce the confidence measure

ξi = 1 − exp

(
−(DN

i,j )
2

σ2

)

(16)

where σ is a pre-defined penalization constant. Note that this
type of non-linear penalization is commonly used in cut-based
methods, e.g. [36], [38]. Finally combining all measures and
inverting the distance for conversion to affinities, we obtain the
pairwise affinity scores

wi,j =
((
DN
i,j

)2 (
1 + ξi ·GM

i

)
+ ε
)−1

(17)

where ε is a small constant to prevent division by zero. Equation
(17) adopts the same distance to affinity conversion function
with [15], the square of the pairwise distances between graph
nodes are simply inverted. The final pairwise distance is ob-
tained by weighting the normalized distance DN

i,j to include the
contribution of the global motion contrast measure GM

i . The
weighting depends on the confidence ξi where the lowest con-
fidence leads to using

(
DN
i,j

)2
as is and the highest confidence

leads to doubling it.

C. Video Background Prior

We now turn our attention to the diagonal potential matrix
formed by the background unaries ui . [15] assumed that the
image boundaries are definitely background and thus, they are
assigned high unary background potentials to pixels on the im-
age border. The unary potentials for the rest of the image was
left 0, meaning that no prior background information is avail-
able inside the image. This approach could result in failure
for videos, since it is common that objects enter the video at
a later time step, leave the field-of-view earlier or touch the
frame boundaries throughout the video. Therefore, we propose
a robust background prior to prevent inaccurate assignments
of background to salient regions on the video boundaries. The
background prior is only assigned to regions which contribute
to the dominant motion on the video boundary. The regions that
are in contrast with the dominant motion on the other hand are
not given any prior as they might represent salient regions. This
is achieved as follows. First, we extract an approximate motion
vector for each superpixel as

Mi =
Ci,max (Ki ) − Ci,min (Ki )∑

k Ok,i
(18)

where Ki = {k : Ok,i = 1} is the set of frames in which Si is
present.

We assume that there is dominant background motion in-
formation in the motion vectors of superpixels on the frame
boundaries. We represent this motion vector set by M as
follows:

M =

{

Mi :
∑

k

Ok,i > τM ,∃k : Si ∈ Bk

}

. (19)

Bk is the set of superpixels at frame k which are located on the
frame boundaries. Superpixels with a lifespan shorter than τM
frames are not considered, since they do not provide reliable
information.

Next, in order to find the dominant motion on the video bound-
ary, we perform k-means withNC clusters on the set of boundary
motion vectors M. Within the NC clusters, we search for the
salient clusters which are assumed to have significantly less
samples than the remaining clusters. To this end, we first sort
the clusters in descending order according to their cardinality.
The largest cluster is always considered as background due to
the assumption that the majority of the superpixels at the video
boundaries belong to the background. Consecutive clusters are
added to the background only if they contain more elements
than half the size of the previously added cluster. The remain-
ing clusters are not considered as background, as they have a
sufficient motion contrast compared to the majority of the su-
perpixels on the video boundaries. Algorithm 1 summarizes this
selection of the background superpixel set B.

D. Spatiotemporal Hamiltonian Matrix

Given both the pairwise affinities and the background prior,
we can now form the spatiotemporal Hamiltonian matrix HST
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Algorithm 1: Background superpixel selection
Input: Boundary motion vectors M
Output: Set of background superpixels B

1: Obtain clusters Ci , i = 1, . . . , NC of M using k-means
and sort these in descending order according to their
cardinality.

2: B = C1
3: for c = 2 to NC do
4: if |Cc | ≥ 0.5 |Cc−1 | then
5: B = B ∪ Cc
6: else
7: Exit the loop

Algorithm 2: Single scale Video Quantum Cuts
Input: Input video (RGB frames), number of used

eigenvectors Nλ, superpixel granularity NS

Output: Saliency map S
1: Extract temporal superpixels [35] for the input video

with granularity NS.
2: Construct the Hamiltonian matrix HST as in Eq. (20).
3: Solve multispectral QCUT for HST:
4: • Compute the eigenvectors ψi of HST with the smallest

Nλ eigenvalues λi .
5: • Compute the saliency map S by Eq. (22).

for the video as

HST (i, j) =

⎧
⎪⎨

⎪⎩

ui +
∑

k∈N V
i
wk,i if Si = Sj

−wi,j if j ∈ N V
i

0 otherwise

(20)

where wi,j is given by (17) and ui is defined as

ui =

{
∞ if Si ∈ B
0 otherwise.

(21)

Next, we solve QCUT once for HST in order to find a saliency
map for the whole video. Thus, we call this method Video Quan-
tum Cuts (VQCUT), as summarized in Algorithm 2. Due to var-
ious changes in the video, some superpixels on the salient object
might disappear prematurely and some are born at a later time
step, thus causing a fragmented temporal superpixel extraction.
In such scenarios, the first eigenvector of HST might not com-
pletely cover the whole object movement throughout the video.
To overcome this limitation, we exploit a larger spectrum ofNλ

small eigenvalues. Therefore, we combine the eigenvectors ψi
by a confidence measure that is inversely proportional to their
eigenvalues λi , to obtain the saliency map S as

S =
Nλ∑

i=1

ψi ◦ ψi
λi

. (22)

Note that these are the saliency scores on the superpixel level.
Thus, to get per-frame saliency maps, we propagate the saliency
score of each superpixel back to the corresponding image
regions.

The proposed method not only provides a joint optimization
of various saliency cues for salient object detection, it also ad-
dresses the shortcomings of temporal superpixel (TSP) extrac-
tion method as in the following cases. (i) TSPs are not robust
to occlusions. This is particularly addressed by using several
eigenvectors as explained in Section III-D. A first eigenvector
may represent the salient object region before it gets occluded
and another eigenvector may represent the same salient object
after the occlusion. (ii) Due to noisy optical flow estimation,
inaccurate shifts can occur in TSPs’ positions. In our proposed
graph construction, we only define TSPs as graph neighbors
if they have stayed neighbors in each frame during their joint
lifespan. This automatically disconnects the inaccurate TSPs
whose locations are shifted incorrectly from the ones that are
more reliable. (iii) In very dynamic scenes some TSPs may have
extremely short lifespan and might be unreliable. The proposed
asymmetric Repetition affinity introduced in Section III-B ele-
gantly handles these unreliable TSPs by favoring the TSPs with
longer lifespans as foreground regions. Moreover, the TSPs with
short lifespans are also discarded during dominant boundary
motion estimation as explained in Section III-C.

Finally, similar to [16], we observed that embedding QCUT
in a multi-resolution framework yields improved results. There-
fore, we extract the saliency maps for several scales (i.e. dif-
ferent levels of superpixel granularity) and combine the results
by averaging the saliency maps. Our experiments demonstrate
the performance gain from this multi-resolution approach, espe-
cially for scenarios where the object scale changes significantly.
A higher superpixel resolution helps detecting relatively small
objects, whereas a lower resolution proves useful to detect large
ones.

IV. EXPERIMENTAL RESULTS

We perform an extensive evaluation of our VQCUT on pub-
licly available datasets. First, we provide a quantitative analysis
on two video saliency datasets, namely Fukuchi [39] and Seg-
track [40]. The Fukuchi dataset consists of 10 videos, capturing
usually one salient object. Some videos are highly dynamic and
contain both camera and object motion. The Segtrack dataset
contains 14 videos and is more complex, as it captures more
than one salient object within each video and includes severely
cluttered backgrounds. We compare our approach against the
state-of-the-art video saliency methods RT [30], RR [28], ITTI
[29], TMP [31], SP [27], SCUW [32] and EBSGR [34].

Besides these standard video saliency tasks, we also apply
VQCUT for activity localization where the goal is to localize
activities within a video to enable unsupervised training of ac-
tivity recognition algorithms. We follow the evaluation protocol
of [34] and demonstrate the performance of VQCUT on two
selective sports activity datasets: UCF Sports [41] and Olympic
Sports [42]. The UCF Sports dataset contains 150 low-quality
television broadcast videos of 10 different sports. This dataset
depicts challenging scenarios, such as cluttered backgrounds,
fast camera and object motion, and non-rigid object deforma-
tions. Additionally, we evaluate our approach on the Olympic
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Fig. 5. Recall-precision curves for VQCUTM (multiscale), VQCUTS (single scale), and competing methods on the video saliency datasets (a) Fukuchi [39] and
(b) Segtrack [40] (compared to EQCUT [16], EBSGR [34], ITTI [29], TMP [31], RR [28], RT [30], SP [27], and SCUW [32]), as well as activity localization on
(c) UCF Sports [41] and (d) Olympic Sports [42] (compared to EQCUT [16], EBSG [34], OBJ [43], SUL [44], and RT [30]).

TABLE I
PERFORMANCE METRICS FOR THE VIDEO SALIENCY TASK ON (A) FUKUCHI AND (B) SEGTRACK,

AS WELL AS FOR THE ACTIVITY LOCALIZATION TASK ON (C) UCF SPORTS AND (D) OLYMPIC

Sports dataset1 which contains 134 videos of 16 different sports.
This dataset also covers several challenging scenarios, includ-
ing large object scale variations. For both activity localization
tasks, we compare VQCUT to the state-of-the-art EBSG [34],
RT [30], SUL [44], and OBJ [43].

A. Parameter Settings

In all our experiments, we keep the parameters of VQCUT
fixed. In particular, we use a temporal superpixel granularity of
NS = 800 for our single scale experiments (denoted VQCUTS)
and NS = {400, 600, 800} for the different scales of our multi-
resolution approach (denoted VQCUTM). The penalization con-
stant is set to σ = 0.1. To estimate the background potentials,
we use a minimum lifespan length for reliable boundary super-
pixels of τM = 10 and obtain NC = 5 boundary motion vector
clusters. To overcome the limitations due to fragmented tempo-
ral superpixels, we combine the saliency scores corresponding
to the Nλ = 10 smallest eigenvectors. VQCUT has been shown
to be quite robust to parameter selections. Detailed experiments
for different parameter settings are provided in Appendix E.

1Bounding box annotations for the Olympic Sports dataset have been provided
by the authors of [34].

B. Evaluation Protocol

We evaluate all approaches via recall-precision curves,
mean and maximum F1 score, normalized scanpath saliency
(NSS) [45], the similarity metric (SIM) [46], and the shuffled
AUC [47]. Details on the evaluation metrics are provided in
Appendix A. Note that the video saliency datasets provide de-
tailed binary segmentation masks as ground truth, whereas for
the activity localization datasets only bounding box annotations
are available. For the latter, we follow the box prior evaluation
of [34] to allow for a fair comparison. To include OBJ [43], we
follow the parametrization of [48] and take the top 100 proposals
returned by the objectness detector to create a max-normalized
saliency map per frame. Please note that VQCUT is completely
unsupervised and requires no pre-training.

C. Comparison to the Baseline

The recall-precision curves for all evaluations are illustrated
in Fig. 5, while the remaining performance metrics are sum-
marized in Table I. Our results are denoted as VQCUTS (sin-
gle scale) and VQCUTM (multi-resolution), respectively. As a
first experiment, we compare VQCUT to the baseline, i.e. EQ-
CUT [16], the multi-resolution extension of QCUT. From the
results we clearly see the improvements over EQCUT by incor-
porating novel affinities covering spatiotemporal saliency cues.
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Fig. 6. Exemplary saliency results for activity localization on UCF Sports (top three rows) and Olympic Sports (bottom three rows). From left to right: input
image with bounding-box ground truth annotation, saliency maps obtained by our VQCUTM, EBSG [34], OBJ [43], RT [30], and SUL [44].

Furthermore, compared to [34] which separately fuses motion
and appearance saliency maps, we see that our unified approach
which simultaneously exploits motion and appearance in a joint
optimization step achieves a notable performance improvement.

D. Multiresolution Benefits

Applying VQCUT on graphs formed for different levels
of superpixel granularities and combining the saliency scores
(VQCUTM) also yields a notable improvement compared to the
single scale version (VQCUTS). The only exception is the UCF
Sports dataset, where both VQCUTM and VQCUTS perform on
par. This is due to the limited amount of scale variation within
this dataset. For all other datasets, where the object scale varies
much more, VQCUTM yields significantly more robust results.

E. Comparison to the State-of-the-Art

Our evaluations demonstrate the favorable performance of
both VQCUT variants (i.e. single scale and multi-resolution)
compared to the state-of-the-art for both, standard video saliency
and activity localization tasks. Except for the very similar

performances of VQCUTM and EBSG in terms of NSS and SIM
measures on the Olympic Sports dataset, VQCUTM achieves the
top performance, usually with a notable gap to the competitors.
Fig. 6 illustrates the performance of VQCUTM and competi-
tors for several different sports on the UCF Sports and Olympic
Sports datasets. A visual comparison to the state-of-the-art for
the salient object detection task on the Fuckuchi and Segtrack
datasets is provided in Fig. 7.

F. Computational Complexity

An unoptimized Matlab code for the proposed method takes
around 0.78 seconds per frame for the multiresolution variant
and 0.35 seconds per frame for the single resolution variant on an
Intel Core i7-3740QCM CPU@2.70 GHz. The computational
complexity comparison in Table II illustrates that the proposed
method is faster than the competing methods. Note that the re-
ported run time does not include temporal superpixel extraction
time. Temporal superpixel extraction takes around 11.21 sec-
onds for the single resolution variant and 23.44 second for the
multi-resolution variant. In future, similar faster methods can be
employed in order to speed up the whole method.
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Fig. 7. Exemplary saliency results for spatiotemporal salient object detection on Fukuchi (top three rows) and Segtrack (bottom three rows). From left to right:
input image with ground truth annotation, saliency maps obtained by our VQCUTM, EBSG [34], ITTI [29], RR [28], RT [30], SCUW [32], SP [27], and TMP [31].

TABLE II
COMPUTATIONAL COMPLEXITY OF COMPETING METHODS

VQCUTM VQCUTS EQCUT EBSG ITTI TMP RR RT SP SCUW OBJ SUL

Time (sec) 0.78 0.35 0.85 2.06 NA NA 0.94 8.01 11.85 26.90 3.14 0.41

V. CONCLUSION

We proposed a spatiotemporal saliency detection method for
videos by combining local color and motion contrast cues, a
global motion contrast cue, as well as shape and background
cues all within a single joint optimization problem. Our experi-
ments on several public datasets demonstrate the benefits of this
joint optimization of the saliency cues. Moreover, both single
scale and multi-resolution variants of Video Quantum Cuts per-
form favorably to the state-of-the-art, even for complex tasks,
such as activity localization. As a future work, we plan to run
the proposed algorithm on video partitions separately rather than
the whole video at once, in order to handle failure cases due to
change of the concept of saliency with changing video content.

APPENDIX

In the following, we provide additional explanations and vi-
sualizations. Appendix A summarizes the applied evaluation
metrics. Appendix B visualizes the cut cost distributions result-
ing from the proposed affinity measures. Appendix C analyzes

the effect of each part of the proposed spatiotemporal affinity
measure. Finally, Appendix D presents a baseline experiment
against Normalized Cuts and Appendix E demonstrates the ro-
bustness to varying parameter settings.

A. Evaluation Metrics

As stated in the main paper, we evaluate all approaches via
recall-precision curves, mean and maximum F1 score, nor-
malized scanpath saliency (NSS) [45], the similarity metric
(SIM) [46], and the shuffled AUC [47]. The precision, recall,
and F1 measures are defined as

pre(τ) =
|G ∩ Sτ |
|Sτ | , rec(τ) =

|G ∩ Sτ |
|G| (23)

F1(τ) = 2
pre(τ) rec(τ)

pre(τ) + rec(τ)
(24)

respectively, where G is the binary ground truth mask and Sτ is
the binary segmentation obtained via thresholding the saliency
mask S at confidence τ .
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Fig. 8. Log-affinity histogram plots of the cut costs on the 16 sports categories of the Olympic Sports Dataset.

The normalized scanpath saliency is defined as

NSS =
1
NG

NG∑

p=1

S(p) − μS
σS

(25)

where S(p) is the value of the evaluated saliency map at the
ground truth point p and NG is the total number of ground truth
points. For this, the saliency map is normalized to have zero
mean and unit standard deviation.

The similarity metric is defined as

SIM =
X∑

x=1

min (S(x),G(x)) (26)

where S(x) is the normalized probability distribution of the
saliency map at point x and G(x) is the normalized probability
distribution of the ground truth at point x.

The area under the curve (AUC) metric is defined as area
under the receiver operating characteristics curve. The shuffled
AUC [47] (sAUC) uses samples from other saliency maps in-
stead of the tested one in order to select the random threshold
values to form the AUC curve.

These measures can be readily applied for video saliency
datasets, where binary ground truth segmentations are

available. For the activity localization datasets, however, only
coarse bounding box annotations are available. To allow for a
fair comparison, we follow the box prior evaluation in [34],
i.e. the thresholded saliency masks Sτ are filled with spanning
bounding boxes before computing the recall and precision val-
ues. For more details, please refer to [34].

B. Cut Cost Distributions

The proposed spatiotemporal Hamiltonian matrix is assym-
metric, i.e. wi,j is the cut cost if Sj is assigned foreground and
Si is assigned background, whereas wj,i is the cut-cost if Si
is assigned foreground and Sj is assigned background. Fig. 8
illustrates the cut cost distribution for the cases:

1) Both Sj and Si are foreground (denoted as F–F).
2) Both Sj and Si are background (B–B).
3) Sj is foreground and Si is background (F–B).
4 Si is foreground and Sj is background (B–F).
One would expect the F-B edges to have the minimum affini-

ties since these are the desired object boundaries to be cut. On
the other hand, we should avoid to cut B-F edges, which means
assigning a foreground node to the wrong partition. Addition-
ally, we would expect high affinities for both F–F and B–B
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Fig. 9. Log-affinity histogram plots to demonstrate the effect of normalizing the combined color and motion affinity measure by the repetition affinity. See text
for details.

edges. However, due to color differences within the salient ob-
jects and noisy superpixel segmentations these affinities can get
damped. Nevertheless, as long as these affinities are higher than
for F–B edges, we find a correct cut. From Fig. 8 we can see
that the proposed spatiotemporal affinity measure can seperate
F–B edges quite nicely from B–F edges while preserving high
values for both F–F and B–B edges.

C. Repetition Affinity and Global Motion Contrast

Next, we analyze the effect of each part of the proposed spa-
tiotemporal affinity measure. To this end, we first show the ben-
efits of normalizing color and motion cues by the corresponding
repetition affinity in Fig. 9. Note that before normalizing the
color and motion cues by the repetition affinity, the affinity as-
signment is symmetric, i.e. there is no difference between F–B
and B–F connections (and hence, F–B = B–F in Fig. 9). For
a complex dataset, such as Olympic Sports, color and motion
cues are not discriminative enough to enhance the boundaries
on the salient object border. Using the repetition affinity to nor-
malize both color and motion cues, we can distinguish between

object, background, and border regions. Similarly, by adding the
global motion contrast cue (see Fig. 10) we can suppress edge
weights on the object borders even more, while both object and
background affinities stay high.

D. Quantum Cuts Versus Normalized Cuts

In this additional experiment, we compare Quantum Cuts
(QCUT) [15] with Normalized Cuts (NCUT) [36]. NCUT clus-
ters the image into two segments without providing any infor-
mation to distinguish background from foreground. Thus, we
assume that there is an oracle which correctly predicts which
segment should be selected as foreground. We perform the com-
parison for both a frame-wise oracle (i.e. deciding for each frame
separately which partition is foreground) and a video oracle (i.e.
deciding once for the whole video). The results of both oracles
are very similar, since saliency scores are backprojected to the
corresponding superpixel regions and thus, no significant label
change occurs throughout the whole video.

We evaluate both cut methods on the Segtrack dataset us-
ing a single superpixel granularity of NS = 800 and consider
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Fig. 10. Log-affinity histogram plots to demonstrate the effect of the global motion contrast cue. See text for details.

Fig. 11. Comparison of QCUT and NCUT on the same Hamiltonian HST.

only the first eigenvector to reconstruct the saliency maps. Both
QCUT and NCUT are given the same spatiotemporal affinity
matrix HST. From the results (see Fig. 11 and Table III) we can
see that NCUT is not suitable for saliency estimation. This is
mainly due to the fact that NCUT was designed as an image
segmentation approach and is only applicable for related tasks.

TABLE III
COMPARISON OF QCUT AGAINST NCUT

Max F1 Mean F1 NSS SIM

QCUT 0.73 0.48 3.07 0.52
NCUT (Frame Oracle) 0.24 0.15 0.48 0.09
NCUT (Video Oracle) 0.24 0.15 0.44 0.09

We can see this from the minimization criterion of NCUT. Al-
though it reduces the cut cost, it also tries to increase the color
constancy within each segment via an association term. While
this is useful for general image segmentation, it fails for salient
object segmentation since object segments often have varying
colors (e.g. different trouser and jacket color). Additionally, it
is not possible to assign a background prior within NCUT, as
there is no such definition as “background”.

In contrast to NCUT, QCUT can assign a background prior,
which can be obtained in an unsupervised manner. Further-
more, the minimization criteria of QCUT focuses solely on the
foreground, whereas NCUT is tailored for image segmentation.
Thus, QCUT should be favored for saliency estimation when
compared to NCUT or Graph Cut.
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TABLE IV
PARAMETER ANALYSIS

Note that we cannot conduct an experiment comparing QCUT
to Graph Cut [38], as the latter is an interactive method which
requires both foreground and background seeds. This is due to
the fact that Graph Cut minimizes the cut only and if there is
no unary cost of not assigning a region as foreground (i.e. if no
foreground seed is given) the best cut is no cut at all. Instead,
everything is labelled as background. Our experimental results
confirmed that without foreground seeds, Graph-Cut labels ev-
ery region as background. QCUT on the other hand, always
produces a foreground segment (i.e. performs a cut), due to the
additional object term which maximizes the foreground segment
area. Hence, QCUT can be used to extract foreground regions
in an unsupervised manner.

E. Robustness to Parameters

We analyzed the robustness of our method w.r.t. its parameters
(i.e. σ, τM , Nλ and NC) on the Segtrack dataset. For each
experiment, one parameters was changed and the remaining
parameters were fixed to the values stated in Section IV. As can
be seen from Table IV, VQCUT is quite robust to variations
of its parameters. Thus, VQCUT can be applied to a variety of
tasks without tedious parameter fine tuning.
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