Serkan Kiranyaz

Serkan Kiranyaz
Qatar University · Department of Electrical Engineering

Professor
New-generation Machine Learning: Operational Neural Networks --> See: http://selfonn.net/

About

322
Publications
134,005
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,860
Citations
Citations since 2016
192 Research Items
8657 Citations
201620172018201920202021202205001,0001,5002,0002,500
201620172018201920202021202205001,0001,5002,0002,500
201620172018201920202021202205001,0001,5002,0002,500
201620172018201920202021202205001,0001,5002,0002,500
Introduction
The public webpage for Self-ONNs: http://selfonn.net/ where the resources and Python code for Self-ONNs are now openly shared. Other Public Software with source codes: 1-) One-Dimensional Convolutional Neural Networks (1D-CNNs) MATLAB CODE is NOW SHARED: http://www.structuralvibration.com/cnns/ 2-) Generalized Operational Perceptrons (Non-linear MLPs) Python code is NOW SHARED: https://pypi.org/project/pygop/
Additional affiliations
August 2015 - present
Qatar University
Position
  • Professor (Full)
December 2009 - September 2015
Tampere University
Position
  • Professor (Full)
February 1998 - May 2000
Nokia
Position
  • Senior Researcher

Publications

Publications (322)
Chapter
A structural damage detection system specifically designed to monitor multiple structures at a network level is introduced in this paper. Such a monitoring system improves resiliency and helps manage the operation and maintenance of structures in an optimum way. The authors have focused on stadia-type laboratory structures for this network. Health...
Article
Full-text available
In this study, we propose a novel approach to predict the distances of the detected objects in an observed scene. The proposed approach modifies the recently proposed Convolutional Support Estimator Networks (CSENs). CSENs are designed to compute a direct mapping for the Support Estimation (SE) task in a representation-based classification problem....
Article
Full-text available
An intelligent insole system may monitor the individual’s foot pressure and temperature in real-time from the comfort of their home, which can help capture foot problems in their earliest stages. Constant monitoring for foot complications is essential to avoid potentially devastating outcomes from common diseases such as diabetes mellitus. Inspired...
Preprint
Full-text available
Restoration of poor quality images with a blended set of artifacts plays a vital role for a reliable diagnosis. Existing studies have focused on specific restoration problems such as image deblurring, denoising, and exposure correction where there is usually a strong assumption on the artifact type and severity. As a pioneer study in blind X-ray re...
Article
Full-text available
Device mobility in dense Wi-Fi networks offers several challenges. Two well-known problems related to device mobility are handover prediction and access point selection. Due to the complex nature of the radio environment, analytical models may not characterize the wireless channel, which makes the solution of these problems very difficult. Recently...
Preprint
Full-text available
Deep Convolutional Neural Networks (CNNs) have recently reached state-of-the-art Handwritten Text Recognition (HTR) performance. However, recent research has shown that typical CNNs' learning performance is limited since they are homogeneous networks with a simple (linear) neuron model. With their heterogeneous network structure incorporating non-l...
Preprint
Full-text available
This paper proposes a low-cost and highly accurate ECG-monitoring system intended for personalized early arrhythmia detection for wearable mobile sensors. Earlier supervised approaches for personalized ECG monitoring require both abnormal and normal heartbeats for the training of the dedicated classifier. However, in a real-world scenario where the...
Article
Full-text available
Myocardial infarction (MI) is a life-threatening disorder that occurs due to a prolonged limitation of blood supply to the heart muscles, and which requires an immediate diagnosis to prevent death. To detect MI, cardiologists utilize in particular echocardiography, which is a non-invasive cardiac imaging that generates real-time visualization of th...
Article
Full-text available
Objective: Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of wearable ECG sensors. However, even with numerous deep learning approaches proposed r...
Article
Full-text available
Abstract— Deep Convolutional Neural Networks (CNNs) have recently reached state-of-the-art Handwritten Text Recognition (HTR) performance. However, recent research has shown that typical CNNs’ learning performance is limited since they are homogeneous networks with a simple (linear) neuron model. With their heterogeneous network structure incorpora...
Preprint
Full-text available
A complete smart insole solution that continuously monitors the foot plantar pressure and temperature can detect foot complications early and that too from the convenience of the user home. Widespread health complications such as Diabetic Mellitus need continuous foot complication monitoring to avoid severe complications. With that motivation, this...
Poster
Full-text available
Diabetes Mellitus is a chronic medical condition resulting from a high amount of sugar in the blood and Diabetic Sensorimotor Polyneuropathy (DSPN) is one of the many life-threatening consequences of Diabetes [1], which often leads to severe health complications, lower limb amputation, and death. Diabetes is known to cause neuropathy, especially in...
Article
Full-text available
Diabetes mellitus (DM) is one of the most prevalent diseases in the world, and is correlated to a high index of mortality. One of its major complications is diabetic foot, leading to plantar ulcers, amputation, and death. Several studies report that a thermogram helps to detect changes in the plantar temperature of the foot, which may lead to a hig...
Preprint
Full-text available
Diabetic sensorimotor polyneuropathy (DSPN) is one of the prevalent forms of neuropathy affected by diabetic patients that involves alterations in biomechanical changes in human gait. In literature, for the last 50 years, researchers are trying to observe the biomechanical changes due to DSPN by studying muscle electromyography (EMG), and ground re...
Data
Appendix for the study: Blind ECG Restoration by Operational Cycle-GANs
Article
Full-text available
Diabetic neuropathy (DN) is one of the prevalent forms of neuropathy that involves alterations in biomechanical changes in the human gait. Diabetic foot ulceration (DFU) is one of the pervasive types of complications that arise due to DN. In the literature, for the last 50 years, researchers have been trying to observe the biomechanical changes due...
Article
Full-text available
Objective: ECG recordings often suffer from a set of artifacts with varying types, severities, and durations, and this makes an accurate diagnosis by machines or medical doctors difficult and unreliable. Numerous studies have proposed ECG denoising; however, they naturally fail to restore the actual ECG signal corrupted with such artifacts due to...
Article
Full-text available
Background: Diabetic sensorimotor polyneuropathy (DSPN) is a major form of complication that arises in long-term diabetic patients. Even though the application of machine learning (ML) in disease diagnosis is very common and well-established in the field of research, its application in DSPN diagnosis using nerve conduction studies (NCS), is very l...
Preprint
Full-text available
Myocardial infarction (MI) is the leading cause of mortality and morbidity in the world. Early therapeutics of MI can ensure the prevention of further myocardial necrosis. Echocardiography is the fundamental imaging technique that can reveal the earliest sign of MI. However, the scarcity of echocardiographic datasets for the MI detection is the maj...
Preprint
Full-text available
The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals, highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable sensors. This paper proposes two robust methods: i) Wavelet packet decomposition (WPD), and ii) WPD in combination with canonical correlation analysis (WPD-CCA...
Preprint
Full-text available
Objective: Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. The main reason is the significant variations of both normal and arrhythmic ECG patterns among patients. Automating this process with utmost accuracy is, therefore, highly desirable du...
Article
Full-text available
Although numerous R-peak detectors have been proposed in the literature, their robustness and performance levels may significantly deteriorate in low-quality and noisy signals acquired from mobile electrocardiogram (ECG) sensors, such as Holter monitors. Recently, this issue has been addressed by deep 1-D convolutional neural networks (CNNs) that h...
Preprint
Full-text available
Coronavirus disease 2019 (COVID-19) has been diagnosed automatically using Machine Learning algorithms over chest X-ray (CXR) images. However, most of the earlier studies used Deep Learning models over scarce datasets bearing the risk of overfitting. Additionally, previous studies have revealed the fact that deep networks are not reliable for class...
Preprint
Full-text available
The band selection in the hyperspectral image (HSI) data processing is an important task considering its effect on the computational complexity and accuracy. In this work, we propose a novel framework for the band selection problem: Self-Representation Learning (SRL) with Sparse 1D-Operational Autoencoder (SOA). The proposed SLR-SOA approach introd...
Preprint
Full-text available
Continuous long-term monitoring of electrocardiography (ECG) signals is crucial for the early detection of cardiac abnormalities such as arrhythmia. Non-clinical ECG recordings acquired by Holter and wearable ECG sensors often suffer from severe artifacts such as baseline wander, signal cuts, motion artifacts, variations on QRS amplitude, noise, an...
Preprint
Full-text available
Raman spectroscopy provides a vibrational profile of the molecules and thus can be used to uniquely identify different kind of materials. This sort of fingerprinting molecules has thus led to widespread application of Raman spectrum in various fields like medical dignostics, forensics, mineralogy, bacteriology and virology etc. Despite the recent r...
Article
Harnessing the inherent anti-spoofing quality from electroencephalogram (EEG) signals has become a potential field of research in recent years. Although several studies have been conducted, still there are some vital challenges present in the deployment of EEG-based biometrics, which is stable and capable of handling the real-world scenario. One of...
Article
Full-text available
Novel coronavirus disease (COVID-19) is an extremely contagious and quickly spreading coronavirus infestation. Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which outbreak in 2002 and 2011, and the current COVID-19 pandemic are all from the same family of coronavirus. This work aims to classify COVID-19, SARS...
Article
Full-text available
Social distancing is crucial to restrain the spread of diseases such as COVID-19, but complete adherence to safety guidelines is not guaranteed. Monitoring social distancing through mass surveillance is paramount to develop appropriate mitigation plans and exit strategies. Nevertheless, it is a labor-intensive task that is prone to human error and...
Chapter
In this chapter, recent state-of-the-art techniques in biosignal time-series analysis will be presented. We shall start with the problem of patient-specific ECG beat classification where the objective is to discriminate the arrhythmic beats from the normal (healthy) beats of an individual patient. So, we will answer the ultimate question of how to...
Chapter
This chapter presents deep learning methodologies for medical imaging tasks. The chapter starts with echocardiography for early detection of myocardial infarction (MI) or commonly known as heart attack. Early and fundamental signs of MI can be visible as the abnormality in one or several segments of the left ventricle (LV) wall, where a segment may...
Article
Full-text available
Physiological signal measurement and processing are increasingly becoming popular in the ambulatory setting as the hospital-centric treatment is moving towards wearable and ubiquitous monitoring. Most of the physiological signals are highly susceptible to various types of noises, especially movement artifacts. The electroencephalogram (EEG) and fun...
Article
In recent years, physiological signal-based authentication has shown great promises, for its inherent robustness against forgery. Electrocardiogram (ECG) signal, being the most widely studied biosignal, has also received the highest level of attention in this regard. It has been proven with numerous studies that by analyzing ECG signals from differ...
Article
Full-text available
Objective: Despitethe proliferation of numerous deep learning methods proposed for generic ECG classification and arrhythmia detection, compact systems with the real-time ability and high accuracy for classifying patient-specific ECG are still few. Particularly, the scarcity of patient-specific data poses an ultimate challenge to any classifier. R...
Article
Binary segmentation of volumetric images of porous media is a crucial step towards gaining a deeper understanding of the factors governing biogeochemical processes at minute scales. Contemporary work primarily revolves around primitive techniques based on global or local adaptive thresholding that have known common drawbacks in image segmentation....
Preprint
Full-text available
Classical image denoising methods utilize the non-local self-similarity principle to effectively recover image content from noisy images. Current state-of-the-art methods use deep convolutional neural networks (CNNs) to effectively learn the mapping from noisy to clean images. Deep denoising CNNs manifest a high learning capacity and integrate non-...
Preprint
Full-text available
Device mobility in dense Wi-Fi networks offers several challenges. Two well-known problems related to device mobility are handover prediction and access point selection. Due to the complex nature of the radio environment, analytical models may not characterize the wireless channel, which makes the solution of these problems very difficult. Recently...
Preprint
Full-text available
Myocardial infarction (MI) is the leading cause of mortality in the world that occurs due to a blockage of the coronary arteries feeding the myocardium. An early diagnosis of MI and its localization can mitigate the extent of myocardial damage by facilitating early therapeutic interventions. Following the blockage of a coronary artery, the regional...
Article
Full-text available
Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detect...
Article
Full-text available
Preventive maintenance of modern electric rotating machinery (RM) is critical for ensuring reliable operation, preventing unpredicted breakdowns and avoiding costly repairs. Recently many studies investigated machine learning monitoring methods especially based on Deep Learning networks focusing mostly on detecting bearing faults; however, none of...
Chapter
This paper presents a brief overview of vibration-based structural damage detection studies that are based on machine learning (ML) in civil engineering structures. The review includes both parametric and nonparametric applications of ML accompanied with analytical and/or experimental studies. While the ML tools help the system learn from the data...
Chapter
This paper presents a brief overview of vibration-based damage identification studies based on Deep Learning (DL) in civil engineering structures. The presence, type, size, and propagation of structural damage on civil infrastructure have always been a topic of research. In the last couple of decades, there has been a significant shift in the damag...
Chapter
Monitoring the structural performance of engineering structures has always been pertinent for maintaining structural health and assessing the life cycle of structures. Structural Health Monitoring (SHM) and Structural Damage Detection (SDD) fields have been topics of ongoing research over the years to explore and verify different monitoring techniq...
Article
Full-text available
The immense spread of coronavirus disease 2019 (COVID-19) has left healthcare systems incapable to diagnose and test patients at the required rate. Given the effects of COVID-19 on pulmonary tissues, chest radiographic imaging has become a necessity for screening and monitoring the disease. Numerous studies have proposed Deep Learning approaches fo...
Preprint
Full-text available
Preventive maintenance of modern electric rotating machinery (RM) is critical for ensuring reliable operation, preventing unpredicted breakdowns and avoiding costly repairs. Recently many studies investigated machine learning monitoring methods especially based on Deep Learning networks focusing mostly on detecting bearing faults; however, none of...
Preprint
Full-text available
Despite the proliferation of numerous deep learning methods proposed for generic ECG classification and arrhythmia detection, compact systems with the real-time ability and high accuracy for classifying patient-specific ECG are still few. Particularly, the scarcity of patient-specific data poses an ultimate challenge to any classifier. Recently, co...
Preprint
Full-text available
Although numerous R-peak detectors have been proposed in the literature, their robustness and performance levels may significantly deteriorate in low quality and noisy signals acquired from mobile ECG sensors such as Holter monitors. Recently, this issue has been addressed by deep 1D Convolutional Neural Networks (CNNs) that have achieved state-of-...
Preprint
Full-text available
Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain. The fact that glaucoma does not show any symptoms as it progresses and cannot be stopped at the later stages, makes it critical to be diagnosed in its early stages. Although various deep learning models have been applied for detect...
Article
Full-text available
Diabetes foot ulceration (DFU) and amputation are a cause of significant morbidity. The prevention of DFU may be achieved by the identification of patients at risk of DFU and the institution of preventative measures through education and offloading. Several studies have reported that thermogram images may help to detect an increase in plantar tempe...
Preprint
Full-text available
In CS literature, the efforts can be divided into two groups: finding a measurement matrix that preserves the compressed information at the maximum level, and finding a reconstruction algorithm for the compressed information. In the traditional CS setup, the measurement matrices are selected as random matrices, and optimization-based iterative solu...
Preprint
Full-text available
Operational Neural Networks (ONNs) are new generation network models that can perform any (non-linear) transformation with a proper combination of "nodal" and "pool" operators. However, they still have a certain restriction, which is the sole usage of a single nodal operator for all (synaptic) connections of each neuron. The idea behind the "genera...