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Abstract  

A crucial point in the discussion on planetary boundaries relates to the difficulties and the 

uncertainties in their quantification, given the underpinning ecological and environmental 
complexity inherent to the assessed phenomena, together with the level of normativity 

which such definition entails. When Planetary Boundaries’ thresholds are used for 

comparing current level of pressure on environment and ecosystems another aspect 
becomes as well critical. This is the robustness of the quantification of the underpinning 

current levels of environmental pressures. In fact, the quantification of such levels may 
entail critical aspects, as it usually consists of emission accounting (often incomplete) or 

modelling exercise (with the clear limitations linked to any modelling effort). In order to 
monitor progress towards the reduction of resources use and the associated environmental 

impacts, the present study aims at shading light on the different options for assessing the 
level of environmental pressure and impacts, adopting life cycle impact assessment models 

for estimating the impacts. Actually, the present report aims at assessing the available 

information related to the environmental pressure at European and global scale in relation 
to 15 categories of impact (climate change, ozone depletion potential, human toxicity 

cancer and no cancer, ecotoxicity, particulate matter, ionising radiation, photochemical 
ozone formation, acidification, eutrophication, land use, water depletion and resource 

depletion). The estimated impacts may represent the so called “normalisation factors” 
(NFs) used in the context of Life Cycle Assessment (LCA), which are used to estimate the 

relevance of the impacts associated to a product or a system. Moreover, this study 
explores the feasibility of the calculation of different sets of normalisation factors 

applicable in the LCA context and examines how those reference values perform when 

compared to planetary boundaries. 
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1 Introduction  

Over the last decades, the technological developments taking place at global level and the 

continuous increase in human population have led to an unprecedented demand for natural 
resources for various sectors (e.g. energy, transport, materials and chemicals production) 

and to an increasing pressure to the environment due to emissions in air, soil and water. 

The high level of consumption of natural resources, in particular easily accessible ones 
such as fossils, which characterize economies especially in developed countries, has raised 

concerns about the sustainability of global socio-economic systems, due mainly to the 
impacts associated to their combustion, both at the local and global scale, as well as in 

relation to their finiteness. On such a background, a primary challenge for sustainability is 
meeting human socio-economic prosperity and welfare while preserving environmental 

health on the Earth (Fang et al., 2015). Therefore, environmental policies focusing on 
efficiency improvements, such as European 7th Environment Action Programme (7th EAP), 

have been established to meet the 2050 visions of “living well within the ecological limits 

of the planet” (EC, 2013; EEA, 2015). The 7th EAP provides a systemic framework to 
address efforts towards meeting challenging objectives such those included in the 

Sustainable Development Goals (UN-SDG, 2016). It entails reaching economic 
development, by limiting natural capital degradation, by managing natural resources 

sustainably within the environmental limits of the planet. Therefore, it becomes crucial 
understanding how global production-consumption patterns are affecting the environment 

by means of measuring human-driven impacts. 

The assessment of the level of pressure to the environment and the underpinning causes 

is a key element for the identification of possible solutions in terms of impact reduction 

and improved sustainability. More and more, life cycle based methodology are adopted to 
assess production and consumption patterns along supply chains and to identify hotspots 

of impact. Those hotspots may represent, then, the key areas of interventions to be 
considered both in the private and public sector for reducing impacts.  

Life cycle assessment (LCA) is a reference methodology for the evaluation of impact along 
supply chain. Through the so called “normalisation step” impacts related to a specific 

supply chain are compared with reference values related to impacts related to a given 
system (being a country, continent or the entire globe). Indeed, in the context of LCA and 

according to ISO 14044 (ISO 2006), normalisation is the optional step that allows the 

interpretation of the characterized results in terms of relative environmental relevance of 
the impacts (Benini & Sala, 2016). In fact, normalisation offers a common reference 

situation of the impacts on the environment for every impact category (Sleeswijk et al., 
2008), meaning that through normalisation abstract impact scores for each impact 

category are converted into relative contributions of the analyzed product or system to a 
reference situation. Normalisation factors (NFs) are based on both existing regional and 

global inventories of emissions and resource use, together with estimations for missing 
flows (e.g. proxy for toxicity related impacts, Cucurachi et al., 2014), characterized by 

using impact assessment methods. 

Recently, the UNEP/SETAC Life Cycle Initiative (UNEP/SETAC LCI) has been discussing the 
role of normalisation (Pizzol et al. 2016), recommending the use of global NFs as they are 

perceived by practitioners as relevant for decision-making. In fact, normalisation can play 
an important role in providing information on the magnitude of impacts, by comparing 

them with a reference state, thus facilitating the communication to the stakeholders. 
Moreover, these assessments may support meeting the challenging goals related to the 

7th EAP and the UN-SDG. 

In order to identify the distance to the ideal reference state, the concept of Planetary 

Boundaries (PBs) has been recently introduced. PBs framework was firstly proposed, in 

2009, by Rockström and colleagues (Rockström et al., 2009), then improved by Steffen 
et al. (2015) to define the “safe operating space for humanity”. Specifically, PBs represent 

a set of global limits for critical biophysical subsystems or processes of the planet which 
regulate the resilience of the Earth, namely the interactions of land, oceans, atmosphere 



 

4 
 

and life which underpin the stability of the planet. PBs are designed as safety borders 

around complex science-based and ecology-based thresholds within which human 
activities can develop without inducing irreversible environmental changes. In fact, human 

activities may both directly or indirectly impact the state of the environment, triggering 
cumulative (i.e. from local to regional scale) and systemic changes (i.e. at global scale) 

(EEA, 2015) that may exceed the carrying capacity of the Earth system, namely the 
boundary between global environmental sustainability and unsustainability. According to 

Bjørn and Hauschild (2015), carrying capacity has been defined as “the maximum 
sustained environmental intervention a natural system (e.g. Earth system) can withstand 

without experiencing negative changes in structure or functioning that are difficult or 

impossible to revert.” 

The set of PBs can be used for identifying consensus-based impact-reduction targets at 

the global scale in LCA contexts, namely a basis for assessing the potential of interventions 
to reduce the environmental impact of the socio-economic systems (Sandin et al., 2015). 

Indeed, in the context of the discussion on absolute sustainability (e.g. Bjørn & Hauschild, 
2013 and 2015), proposals for linking the impacts quantified by the midpoint categories 

commonly included in the impact assessment of LCA (LCIA) and the carrying capacity of 
the affected ecosystems have been recently presented both through the development of 

carrying capacity-based normalisation references (Bjørn & Hauschild, 2015), and the 

development of the planetary boundary allowance method (Doka, 2015).  

Although knowledge of PBs can improve environmental policy relevance, by measuring the 

sustainability gap between current human-driven impacts and their related carrying 
capacity thresholds (Fang et al., 2015), a crucial point is usually linked to the difficulties 

and the consequent uncertainties in defining a boundary, due to the underpinning 
ecological and environmental complexity of their evaluation. Furthermore, another aspect 

becomes critical, if considering that those boundaries should be set in order to compare 
the current level of human-driven pressure on the environment with a reference state 

representing an ecological threshold. In fact, defining an unequivocal level of pressure due 

to human activities may be also difficult as it is usually the result of emission accounting 
(often incomplete) or of modelling exercise (bringing with it the clear limitations that any 

modelling effort may involve). 

Nowadays, several gaps remain in the knowledge around PBs, which represent a still under 

discussion concept. Besides the difficulties in identifying a valuable and measurable 
threshold in relation to human-driven impacts, several impact categories from the LCIA 

framework, such as those related to human toxicity, are still missing to be accounted for 
in the context of PBs. Proposals for addressing them have been recently discussed, e.g. in 

terms of planetary health framework (Whitmee et al., 2015). 

In order to monitor the progress towards the goal of decoupling economic growth from 
the use of natural resources and their environmental impacts, the present study aims at 

shading light on the different options for assessing the level of environmental pressure 
and impacts due to human interventions, adopting LCIA models for estimating the impacts. 

Specifically, the study builds on the calculation of different sets of NFs applicable in the 
LCA context, as a result of an effort in extending the coverage of emissions and resource 

use, explicitly describing strengths and innovations, as well as limitations and possible 
uncertainties. Then, this study explores how those references stand when compared to 

planetary boundaries, which represent the sustainability reference point for “living well” 

on the Earth. 
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2 Methodology for the calculation of normalisation factors 

The estimation of environmental pressures, in terms of emissions into air, soil and water 

as well as resource use, and potential impacts related to emission and resource 
consumption could be conducted by adopting several strategies, as reported in Table 1. 

Traditionally, NFs in LCA have been defined according to a territorial perspective, namely 

collecting statistical information associated with emissions and resource use at a certain 
geographical scale (country, continent, global) (Sala et al., 2015). Consumption-oriented 

approaches could be also considered, either based on the assessment of emissions and 
resource use in the context of a specific consumption areas (e.g. the LCA of representative 

food products, Notarnicola et al., 2017) or on the assessment of emissions and resource 
used by allocating them to economic sectors, such as in the environmental extended input-

output approaches (Merciai & Schmidt, 2016). A number of hybrid approaches have been 
proposed in literature in order to take the advantages of each of the techniques, according 

to the specific scope and resolution of the analysis. One of these options is represented by 

a hybrid framework in which the domestic profile is coupled with a product-based estimate 
for the trade (namely, adding impact due to imported goods and subtracting that of 

exported ones), as performed in the Raw Material Equivalents study by Eurostat (2015).  

Table 1: Different approaches and perspectives for the estimate of pressure and impact on the environment. 

Accounting 

perspective 

Rationale Resolution of the 

assessment 

Source of data 

for the 

estimation 

Limits of the 

estimation 

Territorial 

Direct emissions and 

extraction of resources 

occurring within 

territorial boundaries 

Overall economy, 

with possible 

differentiation in 

sectors 

Statistical data, 

models for 

emission 

estimation 

Only local 

emissions and 

resource 

extraction are 

taken into account 

import and export 

are not accounted 

for 

Consumption-

based products 

Direct emissions and 

extraction of resources 

occurring within 

territorial boundaries 

as well as indirect 

ones, both modelled 

as products’ supply 

chains 

Final products 

LCI of 

representative 

products and 

categories of 

consumption (e.g. 

Food, mobility, 

housing) 

The selection of 

representative 

products may lead 

to incomplete 

estimation of the 

overall impacts 

Consumption-

based sectors 

Direct emissions and 

extraction of resources 

occurring within 

territorial boundaries 

as well as indirect 

ones (both import and 

export), both modelled 

as sectoral supply 

chains 

Economic sectors 

Based on extended 

environmental 

input output 

The sector- based 

approach is 

usually associated 

with a relatively 

limited coverage 

of emissions and 

resource. 

Hybrid 

consumption 

based 

(territorial and 

consumption 

based) 

Direct emissions and 

extraction of resources 

occurring within 

territorial boundaries 

modelled as in the 

territorial perspective 

indirect ones (import 

and export) modelled 

as products’ supply 

chains 

Direct impacts: 

overall economy, 

with possible 

differentiation in 

sectors  

Indirect impacts: 

products 

Territorial for 

domestic and 

product-based for 

trade 

High uncertainty 

due to: 

discrepancy in the 

coverage of 

emissions and 

resource. The 

number of 

products that 

could be modelled 

is anymay limited. 
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In the present report, the calculation of NFs, as common reference situation of the impacts 

on the environment, was built on a vast collection of international data on emissions and 
resources extracted at the following scales:  

a. EU-27 (territorial, consumption- and production- based) 

b. Global (territorial, covering both production and consumption at global scale) 

After their translation into the International reference Life Cycle Data system (ILCD) 
elementary flows, emission and extraction data were characterized through the ILCD 

recommended impact assessment methods (EC-JRC, 2011), using characterization factors 
(CFs) at midpoint (Sala et al., 2015), whose related categories are typically consistent 

with the focus points of environmental policy (Sleeswijk et al., 2008). 

Several key choices were made in relation to the sources of data and on mapping of 
elementary flows, along with methodological assumptions for building the inventories and 

the normalisation references: 

 The year 2010 has been taken as reference year.  

 The inventories cover emissions into the environmental compartments (i.e. air, 
water and soil), as well as resource extracted within defined boundaries according 

to the selected scale, taking into account both production and consumption features 
related to the reference year. 

 In the selection on the sources, official statistics based on measured values and 

with a large coverage of emission flows were preferred. However, considering the 
broad variety of scientific sources available at different scales, we adopted a more 

detailed procedure, according to the hierarchical approach proposed by Sala et al. 
(2015) and based on the criteria of Sleeswijk et al. (2008). This allows guiding the 

authors in the selection of data when alternatives options for the same inventory 
flows were available. Specifically, the preferences were the following, in decreasing 

importance: i) authoritative literature sources, such as officially reported measured 
or estimated emission values provided by EU and international governance bodies, 

based on agreed models, methods and standards, with documented and reliable 

metadata, and recurrent quality checks. Datasets already used in EU/global 
monitoring and policy making and providing consistent time-series were preferred 

since they ensure a high degree of robustness and stakeholders acceptability; ii) 
activity-based estimations, derived as “activity data * emission factor”, coming 

from official datasets, scientific or grey literature (e.g. sectorial reports), and 
available Life Cycle Inventories (LCIs); iii) statistical proxies in terms of time or 

flows, when the correlation is statistically tested and significant; iv) reasonable 
although untested assumption(s), based on cause-effect models. We generally 

used this procedure in order to fill-in punctual data gaps (e.g. use of a value 

available for a specific year, not coinciding with the reference year, without evident 
underlying trend).  

 In case of relevant data missing, spatial extrapolation and temporal data gap filling 
procedures (following the hierarchy from iii to iv) were used for completing the 

inventories. Particularly, in the case of temporal extrapolation, we adopted the 
following sequential prioritization rules to select data for covering the gaps: a) data 

for 2010, strictly from the same primary source; b) data for 2010 from an 
alternative source; c) data relating to years which are different from the reference 

(e.g. from 2008 to 2011, preferably, but in any case within 2008-2014) coming 

from the primary source; d) if no one of the previous alternatives is valid, data for 
a year different from the reference one, coming from an alternative source. The 

details of the extrapolations are reported in the next sections for each impact 
category in the relative reference scale. Overall, a complete list of methodologies 

is reported in Sala et al. (2014). 
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 A qualitative assessment of the coverage completeness and robustness of datasets 

used for building the inventories is included, according to specific criteria defined 
through an expert judgement. Inventory coverage completeness was evaluated in 

terms of the extent to which the inventory data were available compared to 
available flows in ILCD for specific impact categories and a score of I (highest 

coverage, from 60% to 100% of completeness) or II (medium coverage, from 30% 
to 59%) or III (lowest coverage, from 0 to 29%) was given. The robustness of the 

inventory was evaluated in relation to several aspects linked to the quality of data, 
namely the combination of different sources and the adoption of extrapolation 

strategies. Specifically, a three-level score was attributed, as follows: I (highest 

robustness, meaning data from published datasets from official data sources, 
subjected to a quality assurance procedure and limited use of extrapolation 

methods, i.e. <20 % of the impact derived from extrapolation); II (medium 
robustness, meaning unpublished datasets and/or use of extrapolation methods for 

more than 20 % but less than 80 % of the impact); III (lowest robustness, meaning 
use of extrapolation methods for more than 80 % of the impact). 

 

The sets of final NFs at different scales could be used as self-standing normalisation 

references in LCA studies. Furthermore, the resulting European and global NFs could be 

compared against the planetary boundaries’ references (according to the definition of 
Rockström et al., 2009) in order to identify the extent to which the different references 

are overcoming thresholds related to the safe operating space at planetary level. 

Moreover, additional set of normalisation factors could be calculated according to the 

approaches presented in table 1. The methodology for their calculation is reported below.  

2.1 EU-27 inventory  

As reported in Sala et al. (2015), the calculation of the NFs for Europe is based on the 

refinement and update of the ‘Resource Life Cycle indicators’ dataset developed by the 

EC-JRC (Benini et al., 2014a), that was used as a basis for building the inventory. These 
indicators were developed within the Life Cycle Indicators framework (EC-JRC, 2012b) 

following the EU Communication “Roadmap to a resource efficient Europe” (CEC, 2011).  

The EU-27 inventory, defined as domestic inventory, is built on a vast data collection at 

country scale, covering the releases into air, water and soil and resources extracted in the 
EU-27 territory, related to the reference year 2010. According to the abovementioned 

hierarchical approach, the EU-27 inventory is predominantly constituted of raw data 
proceeding from national and international agencies, which provide environmental 

statistics, such as FAO, Eurostat, EEA, etc. When the selected statistical datasets were not 

complete with respect to relevant data, namely important data were missing or only 
partially available at a country or time-series basis, specific extrapolation procedures were 

adopted to fill the data gaps, according to the methodologies proposed in Sala et al. 
(2014). As a result, the domestic inventory includes also data derived from estimations 

and assumptions performed in order to complement the available datasets. The final list 
of data sources by group of substances is reported in Table 2, with relation to each impact 

category.  

Table 2: Data sources used to compile the EU-27 domestic inventory. Source: Sala et al., 2015. 

Impact category Substance groups as in ILCD Data sources1 

Climate change 

CO2, CH4, N2O both from direct 

emissions and those associated 

to LULUCF (land use, land-use 

change and forestry) 

- UNFCCC (2013) 

HFCs, PFCs and SF6 - UNFCCC (2013) 

                                          
1 All the references reported in this table could be retrieved from Sala et al. 2015, with the specific links at the 

data source that has been used at the time of the calculation of the European domestic inventory 
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Impact category Substance groups as in ILCD Data sources1 

Other substances** - Total NMVOC per sector from: CORINAIR/EEA 

(2007; 2009); EMEP/CEIP (2013a) for sector 

activity modelling; speciation per sectors 

(Laurent and Hauschild, 2014) 

HCFC-141b, HCFC-142b  - EDGARv4.2 (EC – JRC & PBL, 2011) 

1,1,1-trichloroethane - E-PRTR database (EEA, 2013a) 

Ozone 

depletion 

potential 

CFCs, HCFCs, etc. - Total NMVOC per sector from: CORINAIR/EEA 

(2007; 2009);EMEP/CEIP (2013a) 

‘EMEP_reported’ for sector activity modelling; 

speciation per sectors (Laurent and Hauschild, 

2014) 

HCFC-141b, HCFC-142b - EDGARv4.2 (EC – JRC & PBL, 2011) 

1,1,1-trichloroethane - E-PRTR database (EEA, 2013a) 

Human toxicity 

(cancer, non-

cancer) and 

Ecotoxicity 

Air emissions 

Heavy metals (HMs) - EMEP/CEIP (2013a) ‘EMEP_reported’ 

Organics (non-NMVOC): e.g. 

dioxins, PAH,, HCB, etc. 

- EMEP/CEIP (2013a) ‘EMEP_reported’,   

- E-PRTR (EEA 2013a) 

NMVOC • - Total NMVOC per sector from: 

CORINAIR/EEA (2007; 2009);EMEP/CEIP 

(2013a) for sector activity modelling; 

speciation per sectors (Laurent and Hauschild, 

2014) 

Water emissions 

Industrial releases of HMs + 

organics 

- E-PRTR (EEA, 2013a) 

- Waterbase (EEA, 2013b) 

- Eurostat (2013a) 

Urban WWTP (HMs + organics) - Waterbase (EEA, 2013b), OECD (2013a), 

Eurostat (2013b) 

Soil emission: •  

Industrial releases (HMs, POPs) • - E-PRTR (EEA 2013a) 

Sewage sludge (containing 

organics and metals) 

- usage EEA (2013b) and Eurostat (2013c)  

- EC (2010) for Heavy Metal composition  

- EC (2001) for dioxins 

Manure • - FAOstat (2013a), Amlinger et al. (2004), 

Chambers et al. (2001) 

Pesticides 

Active ingredients (AI) 

breakdown 

- Pesticide usage data: FAOstat (2013d; 2013e) 

(F, H, I, O + chemical classes) + Eurostat 

(2013f) for second check  

- Eurostat (2013d) for crop harvested areas; 

FAOstat (2013b) 

- FAOstat (2013c) for organic areas 

Particulate 

matter/ 

Respiratory 

inorganics 

CO, NOX (as NO2) - UNFCCC (2013) 

SO2, NH3 - EMEP/CEIP (2013b) – ‘EMEP_modeled’ 

dataset 

PM10, PM2.5 - EEA (2013c) 

PM0.1  - EDGARv4.2 (EC-JRC/PBL, 2011) 

Ionising 

Radiations 

emissions of radionuclides to air 

and water from energy 

production (nuclear and coal) 

- UNSCEAR data on emissions factors (2008) 

for 14C, 3H, 131I; 

- nuclear energy production (Eurostat, 2013l; 

2013m) 

- Ecoinvent 3.01 (Weidema et al., 2013) 

- OSPAR (2013a) 

emissions of radionuclides to air 

and water from nuclear spent-

fuel reprocessing 

- UNSCEAR data (2008) on emissions emission 

factors for 3H, 14C, 60Co, 90Sr, 99Tc, 129I, 

106Ru, 137Cs and 241Pu  

- Spent fuel reprocessing statistics are from the 

International Panel on Fissile Materials (IPFM) 

(Forwood, 2008; Schneider and Marignac, 

2008). 

discharge of radionuclides from 

non-nuclear activities (radio-

chemicals production and 

research facilities) 

- OSPAR Commission  database (OSPAR, 

2013b) for: radio-chemicals production and 

research facilities 

discharge of radionuclides from 

oil & gas industry 

- OSPAR Commission  database (OSPAR, 

2013c) 

- overall oil production figures (Eurostat, 

2013r) 
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Impact category Substance groups as in ILCD Data sources1 

emissions to air and water from 

the end-of-life scenario of 

gypsum boards 

- Ecoinvent (v 3.01) unit processes (Weidema 

et al., 2013); 

- PRODCOM data (PRODCOM/Eurostat 2013). 

Photochemical 

ozone 

formation 

NMVOC - Total NMVOC per sector from: CORINAIR/EEA 

(2007; 2009);EMEP/CEIP (2013a) for sector 

activity modelling; speciation per sectors 

(Laurent and Hauschild, 2014) 

NOX (as NO2) - UNFCCC (2013) 

SO2 - EMEP/CEIP (2013b) – ‘EMEP_modeled’ 

dataset 

Acidification 
NOX (as NO2) - UNFCCC (2013) 

SO2, NH3 - EMEP/CEIP (2013b) – EMEP_modeled dataset 

Terrestrial 

eutrophication 

NOX (as NO2) - UNFCCC (2013) 

NH3 - EMEP/CEIP (2013b) – ‘EMEP_modeled’ 

dataset  

Freshwater 

eutrophication 

Phosphorous (total) to soil and 

water, from agriculture 

- Eurostat (2013g) for phosphorous Input and 

Output data 

- UNFCCC (2013) for nitrogen input 

- FAOstat (2013b) for cultivated cereal surfaces  

- Bouwman et al. (2009) 10% loss of P to water 

as global average 

Phosphorous (total) to soil and 

water, from sewages 

- removal efficiency of Phosphorous Van Drecht 

et al (2009) 

- Use of laundry and dishwater detergents, 

(RPA 2006) 

- Fraction of P-free laundry detergent (RPA 

2006) 

- % of people connected to wastewater 

treatment OECD (2013a), Eurostat (2013h) 

Marine 

eutrophication 

NOx (as NO2) - UNFCCC (2013) 

NH3 - EMEP/CEIP (2013b) – ‘EMEP_modeled’ 

dataset 

Nitrogen (total) to water, from 

agriculture 

- Ntot input data, losses to water and to air, 

synthetic fertilizers, manure UNFCCC (2013).  

- N output based on ratios (by country, by 

year) between Input and Output by Eurostat 

(2013g), multiplied to Inputs from UNFCCC 

(2013) 

Nitrogen (total) to soil and water, 

from sewages 

- protein intake, FAOstat (2013f) 

- removal efficiency of Nitrogen Van Drecht et 

al (2009) 

- Percentage of people connected to WWTP 

OECD (2013a) and Eurostat (2013h) 

Land use 

“Land occupation” and “land 

transformation” : forest, 

cropland, grassland, settlements, 

unspecified 

- UNFCCC (2013) national inventories 

- Corine Land Cover (EEA, 2012) for CY and MT 

Water 

depletion 

Gross freshwater abstraction  - Eurostat (2013i) ; OECD (2013b) ;FAO-

Aquastat (2013) 

Resource depletion 

- energy carriers, 

minerals and 

metals 

Metals - British Geological Survey -BGS (1995, 2000, 

2002, 2012) 

- Raw Material Group RMG (2013) 

- World Mining Data WMD (2014) 

- EC (2014) 

Minerals - PRODCOM (PRODCOM/Eurostat, 2013) 

Energy carriers - Eurostat (2013l; 2013m; 2013n; 2013o; 

2013p; 2013q) 
*method for extrapolation as reported in Sala et al 2014. 
** including 1,1,2-trichloro-1,2,2-trifluoroethane, methylenchloride, chloroform, tetrachloromethane, chlorodifluoromethane, 
dichlorofluoromethane, CFCs, Dichloromethane 

 

2.2 Global inventory 

The set of NFs as estimate of the global environmental pressures and impact in 2010 was 
built by following a territorial approach similar to the one described in Sala et al. (2015) 

for the EU-27 reference system.  
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International statistics on emissions and resources extracted at global level were gathered, 

translated into elementary flows according to ILCD nomenclature and characterized 
through the ILCD recommended impact assessment models (EC-JRC, 2011), using CFs at 

midpoint.  

The inventory, which refers to the year 2010, is based on a vast data collection, covering 

the emissions into the environmental compartments (i.e. air, water and soil) and resource 
extracted at the global scale. When relevant data were missing, specific extrapolation 

procedures were adopted to fill the data gaps, according to the methodologies for 
extrapolation available in Sala et al. (2014). The overall list of data sources by group of 

substances is reported in Table 3, with relation to each impact category. When different 

data sources were available, all the retrieved data have been reported in order to allow a 
qualitative evaluation of the uncertainties associated to the global inventory estimates.  

Table 3: Data sources used to compile the global inventory for the reference year 2010. 

Impact category Substance groups as in ILCD Data sources2 

Climate change 

CO2, CH4, N2O both from direct 

emissions and those associated 

to LULUCF (land use, land-use 

change and forestry); PCFs; 

HFCs; SF6 

- EDGAR v4.2  (EC-JRC & PBL, 2013) 

 HCFC-141b; HCFC-142b - EDGAR v.4.2 (EC-JRC & PBL, 2011a) 

 HCFC-22; CFC-11; Halon-1211 - Fraser et al., 2014 

 Aggregated datum 
- EDGAR v4.2 (EC-JRC & PBL, 2011b); 

UNFCCC (2015) 

Ozone depletion 

potential 

HCFC-140  - Fraser et al., 2015  

CFC-11 - Fraser et al., 2014 

HCFC-22; Halon-1211, Halon 

total 

- Fraser et al., 2013 

Human toxicity 

(cancer, non-

cancer) and 

Ecotoxicity 

Air emissions: 

- Cucurachi et al., 2014 

Heavy metals (HMs) 

Organics (non-NMVOC): e.g. 

dioxins, PAH, HCB, etc. 

NMVOC 

Water emissions: 

Industrial releases of HMs + 

organics 

Urban WWTP (HMs + organics) 

Soil emission: 

Industrial releases (HMs, POPs) 

Sewage sludge (containing 

organics and metals) 

Manure 

Pesticides: Active ingredients 

(AI) breakdown 

Particulate 

matter/Respiratory 

inorganics 

NOx (as NO2); NH3 

- EDGAR v4.3.1. (EC-JRC & PBL, 2016); 

ECCAD v6.6.3 (GEIA, 2016); Oita et al., 

2016 

SO2 

- EDGAR v4.3.1. (EC-JRC & PBL, 2016); 

ECCAD v6.6.3 (GEIA, 2016); Klimont et 

al., 2013 

PM10, PM2.5 
- EDGAR v4.3.1. (EC-JRC & PBL, 2016); 

Winijkul et al., 2015 

CO  
- EDGAR v4.3.1. (EC-JRC & PBL, 2016); 

ECCAD v6.6.3 (GEIA, 2016) 

Ionising radiation 

emissions of radionuclides to air 

and water from energy 

production (nuclear) 

- nuclear energy production (IAEA-PRIS, 

2016) 

 

Emissions of radionuclides to air 

and water from nuclear spent-

fuel reprocessing 

- RADD (2016); UNSCEAR (2016); WNA 

(2016a) 

Photochemical 

ozone formation 
NMVOC; NOX (as NO2), CH4;CO - EDGAR v4.3.1 (EC-JRC & PBL, 2016) 

                                          
2 These references are within the reference list of the present report 
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Impact category Substance groups as in ILCD Data sources2 

Acidification NOX (as NO2); SO2; NH3 

- EDGAR v4.3.1 (EC-JRC & PBL, 2016); 

ECCAD v6.6.3 (GEIA, 2016); Oita et al., 

2016 

Terrestrial 

eutrophication 
NOX (as NO2); NH3 

- EDGAR v4.3.1. (EC-JRC & PBL, 2016); 

ECCAD v6.6.3 (GEIA, 2016); Oita et al., 

2016 

Freshwater 

eutrophication 

Phosphorous (total) to soil and 

water, from agriculture 

- Bouwman et al., 2013 

Marine 

eutrophication 

NOx (as NO2); NH3 

- EDGAR v4.2 (EC-JRC & PBL, 2011a); 

EDGAR v.4.3.1 (EC-JRC & PBL, 2016); 

ECCAD v6.6.3 (GEIA, 2016); Oita et al., 

2016 

Nitrogen (total) to water, from 

agriculture 

- Bouwman et al., 2013 

 

Land use 

“land occupation” and “land 

transformation” : forest, 

cropland, grassland, settlements, 

unspecified  

- Farago et al., (submitted) 

Water depletion 
Gross freshwater abstraction 

& Gross water consumption  

- FAO-Aquastat (2016); Eurostat (2016); 

OECD (2016) 

Resource depletion - 

energy carriers, 

minerals and metals 

Metals; minerals 
• - USGS, 2011 a, b 

energy carriers 
• - WNA, 2016b 

• - IEA, 2014 

 

In the following sub-sections, (i) the data sources and (ii) the extrapolation methods 
adopted in case of missing data along with the related sources are presented for each 

impact category. The file containing all the calculations described in the following sections 
is available upon request. 

2.2.1 Climate change (GWP) 

Emissions of greenhouse gases into air, contributing to climate change, were 
predominantly retrieved from the EDGAR (Emission Database for Global Atmospheric 

Research) database v. 4.2 (EC-JRC & PBL, 2011a, b and 2013), both as single elementary 
flows in terms of Gg emitted per year and as characterized aggregated value, referred to 

as “GHG total” (total of greenhouse gases measured in Gg CO2 equivalent). Specifically, 

EDGAR v4.2 is a bottom-up modelling exercise based on activity data and emission factors 
from time periods up to 2010 (single flows’ case) or 2012 (aggregated value). EDGAR has 

the advantage of being coherent among the different Member States. However, there is 
no periodical review and update process. 

Two additional data sources were taken into account: i) the Commonwealth Scientific and 
Industrial Research Organisation (CSIRO) report (Fraser et al., 2014); ii) the report of the 

United Nation Framework Convention on Climate Change (UNFCCC, 2015). In the first 
mentioned publication, global emissions to air up to 2014 are derived from background 

observations at Cape Grim (Australia) and from other AGAGE (Advanced Global 

Atmospheric Gases Experiment) stations in the Northern and Southern Hemispheres. 
These emissions are expressed in Gg and calculated using a global model of atmospheric 

chemistry and transport and a Bayesian method based on Rigby et al. (2013). Instead, in 
UNFCCC report (2015), data are built on national greenhouse gas inventories from the 

Parties included in Annex I to the Convention for the period 1990-2013. Data from the 
national inventories are expressed in kTonnes (i.e. Gg) CO2 equivalent, following the 

characterization based on the GWP100 from IPCC (2007). Data proceeding from the Parties 
not included in the Annex I of the Convention were not taken into account, since they were 

out of date (e.g. 1990/1994) and no references to an underlying trend were provided in 

order to apply an extrapolation strategy. 

According to the presented data sources, it was possible to build four different inventories. 

The main features of each inventory are listed below. 
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1. An inventory composed by single flows (Global 2010 (i)) emissions was based mainly 

on EDGAR v4.2 (EC-JRC & PBL, 2011a). Direct greenhouse gas emissions in EDGAR 
include: carbon dioxide (CO2) totals excluding short-cycle biomass burning (such as 

agricultural waste burning and Savannah burning) and excluding other biomass 
burning (such as forest fires, post-burn decay, peat fires and decay of drained 

peatlands); methane (CH4) totals and N2O totals including also biofuel and biomass; 
fluorinated gases (F-gases), namely hydrofluorocarbures (HFCs), perfluorocarbons 

(PFCs) and sulfur hexafluoride (SF6),  and nitrogen trifluoride (NF3). To complement 
the inventory with 2010 data, values for HCFC-22, CFC-11 and halon-1211, were taken 

from the CSIRO report (Fraser et al., 2014) 

2. To cover the remaining gaps for 2010 in the previous inventory, a temporal 
extrapolation was applied in order to obtain a more comprehensive inventory option 

(Global 2010 (ii)). We extrapolated data for HCFCs, namely HCFC-141b and HCFC-
142b, from EDGAR v.4.2 (EC-JRC & PBL, 2011a), for emissions in 2008. Then, all the 

emission data from EDGAR (i.e. both 2008 and 2010) were combined with the 
estimations from Fraser et al. (2014) model. This was possible, since data were quite 

complementary, i.e. no alternative options for the same flow were available. 

3. An additional option (Global 2010 (iii)) is represented by the aggregated value from 

EDGAR v.4.2 (EC-JRC & PBL, 2011b). This is based on all the anthropogenic CH4 

sources, N2O sources and emissions of F-gases (HFCs, PFCs and SF6).  It also includes 
CO2 totals excluding short-cycle biomass burning, but including other biomass burning. 

This latter aspect has to be taken into consideration as source of bias when comparing 
the two calculated NFs, since this may cause underestimation of the NF in the first case 

(i.e. single flow cases). The aggregated value was calculated using the GWP100 metric 
of IPCC (1996, not updated). 

4. Another aggregated GHGs value (Global 2010 (iv)) was taken from the UNFCCC (2015) 
report. This GHG value was already characterized, as the GHG total value from EDGAR 

(EC-JRC & PBL, 2011b). 

 

Option 3 is assumed to be incomparable with the other: although, all the methods use CFs 

according to the GWP100 from IPCC, the aggregated value by EDGAR (Global 2010 (iii)) 
was calculated using an old version of GWP100 metric of IPCC (1996, not updated); whereas 

ILCD adopted CFs based on GWP100 metric from IPCC (2007). 

2.2.2 Ozone depletion potential (ODP) 

Ozone depleting substances’ emissions to air, were taken from CSIRO reports (Fraser et 

al., 2013, 2014, 2015), as for some substances accounting for climate impacts. 
Specifically, data on HCFC-140 (referred to as “MC” in the reference report), CFC-11, 

HCFC-22 and halon-1211 were retrieved respectively from Fraser et al., 2015, 2014 and 
2013, in terms of Gg of substance emitted to air per year. 

Due to the lack of several emission data for the year 2010, a temporal data gap filling 
procedure was applied to some substances, namely halon-1001, HCFC-141b and HCFC-

142b. In these cases, we used the values available for 2008, estimated by the same 

authors through the same methodology as 2010 extrapolations, assuming that the 
emission remained unchanged during the years between 2008 and 2010. We preferred to 

use data from CSIRO calculations instead of adopting different sources, to be consistent 
with the prioritization of data sources explained at the beginning of section 2.  

Except for halon-1211, whose figure was available as single flow, and halon-1001, whose 
value was extrapolated from 2008, data on halons were provided by CSIRO as aggregated 

value in terms of total Gg emitted into air in 2010. In order to estimate halons’ contribution 
to the global impact to the ozone layer, an average characterization factor was applied. 

For consistency with the study, the average was calculated considering the CFs of all the 

eight halon elementary flows contributing to ozone depletion available in ILCD.  
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Halon-1211 and the extrapolated halon-1001 taken as single (potentially representative) 

flows for halons, and the aggregated value for halons may represent possible alternatives 
to be considered for calculating global reference for the ozone depletion category. 

2.2.3 Human toxicity cancer (HTOXC), non-cancer (HTOXNC) and 
freshwater ecotoxicity (FRWTOX) 

Emissions into air, water and soil contributing to toxicity-related impacts were collected 

from Cucurachi et al. (2014), as characterized aggregated value for each impact category. 
These data derive from the combination of actual emissions and additional extrapolated 

values. As extensively explained in Cucurachi et al. (2014) and Sala et al. (2014), due to 

a limited availability of emission data, extrapolation strategies were applied to existing 
chemical inventories from Europe, USA, Canada, Japan and Australia for filling the data 

gaps for certain flows and then calculating the three global normalisation references 
associated to each impact category. Adopted extrapolation procedures were based on CO2 

emissions, GDP (Gross Domestic Product) values and Hg emissions. 

CO2 emission-based strategy was used owing to the fact that they may represent the level 

of industrialisation and the energy intensity of a country. Alternatively, GDP-based 
strategy was used assuming the close and direct relationship between economic growth 

and the industrial production with the associated releases into the environment. 

Furthermore, a procedure based on Hg emissions was applied, since the occurrence of Hg 
is related to activities that may be not captured neither by GDP nor by CO2, e.g. mining 

which may occur in relatively underdeveloped and poor countries.  

Additionally, we calculated five alternatives global references for each toxicity-related 

category, based on: 

- A global average, calculated as geometric mean of the extrapolated global references 

(i.e. those estimated by Cucurachi et al. (2014) scaling up EU-27 plus inventory to the 
world using CO2, GDP and Hg emissions); 

- A global average calculated as the global geometric mean obtained according to the 

previous point, multiplied by the relative ratio between EU-27 value (Sala et al., 2015) 
and EU value measured by Cucurachi et al. (2014);  

- Three global references for CO2, GDP and Hg emissions, calculated as the global 
extrapolated reference for CO2, GDP and Hg emissions respectively, multiplied by the 

relative ratio between EU-27 value (Sala et al., 2015) and EU value measured by Cucurachi 
et al. (2014). 

Multiplying the extrapolated global values by the ratio between the EU-27 value from Sala 
et al. (2015) and EU value from Cucurachi et al. (2014) is necessary in order to adjust the 

global values proposed by Cucurachi et al. (2014) to the scale of the inventory built by 

Sala et al. (2015), which represents the EU-27 normalisation factor proposed by EC-JRC. 

2.2.4 Particulate matter/Respiratory inorganics (RIPM) 

Data on nitrogen and sulphur dioxide (NO2 and SO2, respectively), ammonia (NH3), carbon 
monoxide (CO) and particulates such as PM10 and PM2.5, which represent the predominant 

flows contributing to the global impacts associated to the category particulate matter and 

respiratory organics (RIPM), come from different sources, mainly EDGAR v.4.3.1 (EC-JRC 
& PBL, 2016) and MACCIty database distributed by ECCAD v.6.6.3 (GEIA, 2016). ECCAD 

is a project of the Global Emissions InitiAtive (GEIA), launched by the Ether Pole, the 
French Center of Atmospheric Products and Service, and developed under a partnership 

between CNES (Centre National d’Etudes Spatiales) and INSU (Institut National des 
Sciences de l’Univers).  

EDGAR v.4.3.1 database covers emissions to air in terms of Gg per year from 1970 to 
2010 by country for several sectors (i.e. energy industry, transport, chemical industry, 

manure management, agricultural waste burning, solid waste disposal, etc.). Whereas, 



 

14 
 

ECCAD dataset provides the access to global and regional emission data of atmospheric 

compounds in terms of Tg emitted per year, collected and linearly interpolated, for each 
sector and each year between 1960, 1970, 1980, 1990, 2000, 2005 and 2010.  

Other information related to the emission of nitrogen compounds to the air was retrieved 
from the paper of Oita et al. (2016), which reported data of Tg of NOx emitted for the year 

2010, mapped in ILCD as nitrogen dioxide (NO2). The corresponding ILCD characterization 
factor was adopted for quantifying the midpoint impact category indicator. Oita and 

colleagues (2016) provided data on anthropogenic emissions of nitrogen compounds to 
the atmosphere mainly coming from agriculture and industry sector, especially energy 

generation and transport, collected respectively from FAO and the International Fertilizer 

Association (IFA) databases.  

The same online available datasets, except for Oita et al. (2016), were used to compile 

the inventory of SO2 flows. Additional data for global SO2 flow, in terms of Tg emitted in 
2010, were retrieved from Klimont et al. (2013), whose calculations were based on an 

agreed bottom-up model used for estimating the changes in atmospheric SO2 between 
2000 and 2011.  

More data on PM2.5 and PM10 emissions were taken from the publication of Winijkul et al. 
(2015), where the authors built a global and regional, size-resolved inventory of PM 

emissions (Gg/yr) from various sources, including urban, industrial, and transportation for 

the year 2010. 

2.2.5 Ionising radiation (IR) 

The inventory for the ionising radiation impact category for 2010 was built on the 
emissions of radionuclides to air and water from energy production both from nuclear 

sources and nuclear spent-fuel reprocessing. 

As explained by Sala et al. (2014), to take into consideration the fact that not all the 
countries that produce energy from nuclear sources have a commercial reprocessing 

facility, the emissions from electricity production and spent-fuel reprocessing were 
accounted separately. 

The aggregated characterized value representing the impact due to the radiative emissions 
following energy production was estimated on the total nuclear installed net capacity at 

global level, in terms of Megawatt (MW). Particularly, nuclear power capacity data were 
retrieved from the International Atomic Energy Agency’s Power Reactor Information 

System (IAEA-PRIS, 2016) for 31 countries on a global scale, for a total of 441 operating 

reactors in 2010, mostly located in Europe, Northern America, East Asia and South Asia. 

According to the definition given by IAEA, operating reactors are those reactors that were 

in operation at least for a short time during 2010, including reactors that were shutdown 
(permanently or into medium-long term) during the reference year. 

From this data, MW of total nuclear power installed in the EU-27 territory in 2010 were 
selected for calculating the ratio EU-27/World of the installed energy capacity. Once 

calculated the above-mentioned ratio, its reciprocal was multiplied by EU-27 impact value 
(i.e. the normalisation factor for ionising radiation) from Sala et al. (2015), to get the total 

value for the world, measured in kBq U-235 eq. 

The emissions of ionising radiations to airborne and liquid effluents in 2010 due to nuclear 
spent-fuel reprocessing activities were retrieved from the European Commission’s 

Radioactive Discharges Database (RADD, 2016) for the reprocessing plants of UK 
(Sellafield and Dounreay), France (La Hague) and Germany (Karlsruhe). Emissions were 

expressed in terms of GBq of emitted substance.  

Within 2010 data for the UK, a temporal extrapolation was applied for estimating the 

emission of antimony-125 (Sb-125) to liquid effluents. According to the downwards trend 
of emissions for this substance, the value was calculated as geometric mean of 2009 and 

2011 values.  
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Radioactive emissions from reprocessing activities in India and Russia were derived from 

UK and France data, respectively, according to the reprocessing technology employed and 
assuming the full capacity of the reprocessing plant. Specifically, the full commercial 

reprocessing capacity of plants in India and Russia was multiplied by emissions factors 
calculated for each substance as ratio between GBq of emitted substance and the full 

commercial reprocessing capacity of plants of the UK and France, respectively. Final 
emission profile for India and Russia was expressed in GBq of emitted substance. 

Reprocessing capacity information was retrieved from the World Nuclear Association report 
(WNA, 2016a) 

Additional data on radioactive emissions from nuclear spent-fuel reprocessing was taken 

from the United Nations Scientific Committee on the Effects of Atomic Radiation 
(UNSCEAR, 2016) for Tokai plant, in Japan, for the years 1998 to 2002. No updated data 

were available. In any case, the relative contribution of those data is negligible (i.e. 0.2% 
of the total emission from reprocessing activities). The emission profile for Japan was 

calculated as geometric mean of all data from the temporal series for each substance. 

2.2.6 Photochemical ozone formation (POF) 

Data related to the flows that contribute to photochemical ozone formation for 2010 were 

taken from EDGAR v.4.3.1 (EC-JRC & PBL, 2016).  

Data on non-methane volatile organic compounds (NMVOC), nitrogen dioxides (NO2), 

ammonia (NH3) and carbon monoxide (CO), which represent the predominant flows 
contributing to the global impacts associated to this category, were retrieved in terms of 

Gg of emissions for the year 2010. 

NMVOC group includes a high number of substances that are known to cause effects 

related to photochemical ozone formation. In EDGAR database, we retrieved an 

aggregated value for this elementary flow, which has a specific and unique CF in ILCD, 
allowing us to characterize the impacts deriving from these substances. 

Alternatively, according to the methodology developed by Laurent and Hauschild (2014), 
a substance breakdown could be done, using available speciation profiles based on specific 

sectoral activity data. Breakdown strategy would allow us to have a more comprehensive 
and precise inventory base on a greater number of elementary flows, characterizing the 

impact of each substance by using their specific CF available in ILCD. In the EU-27 exercise 

made by Sala et al. (2015), the characterized result for NMVOC based on breakdown 
procedure remains relatively unchanged with respect to the characterized value obtained 

by using total NMVOC aggregated value (no-breakdown procedures). However, unlike the 
EU-27 emissions, information on speciation profiles for NMVOC substances at global level 

was not readily available in the current literature, as only total NMVOC emissions were 
reported. Therefore, we used only the aggregated value for NMVOC. 

2.2.7 Acidification (AC) 

As for RIPM inventory, the atmospheric emissions of nitrogen oxides (NOx) contributing to 
acidification-related impacts were taken from EDGAR v4.3.1 (EC-JRC & PBL, 2016) in 

terms of mass (Gg) of NO2 and from ECCAD v6.6.3 (GEIA, 2016) and Oita et al. (2016) in 
terms of Tg/yr of NOx. In ILCD NOx flows are mapped as NO2, i.e. they share the same CF. 

We decided to map the flows of NOx and NO2 as NO2, since the ratio between NO and NO2 
is unknown from the statistics. Subsequently, after the adequate transformation to kg of 

mass flows, the corresponding characterization factor was used for calculating the 

midpoint impact indicator.   

Data on sulphur dioxides (SO2) and ammonia (NH3) were retrieved from the same sources. 

There was no need to apply either temporal or spatial extrapolations to cover data gaps. 
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2.2.8 Terrestrial eutrophication (EUTT) 

The flows contributing to terrestrial eutrophication are NOx and NH3 to air, whose statistics 
were taken as mass flows from EDGAR v4.3.1 (EC-JRC & PBL, 2016), ECCAD v6.6.3 (GEIA, 

2016) and Oita et al. (2016). NOx was retrieved as both NOx and NO2, and mapped into 
NO2 since these flows have the same CF in ILCD and statistics do not provide detailed 

information on the amount of NO and NO2. Then, as for the other categories dealing with 

NOx, the corresponding characterization factor was used for calculating the midpoint 
impact indicator.  

Neither temporal nor spatial extrapolations were applied to cover data gaps. 

2.2.9 Freshwater eutrophication (EUTF) 

Data on the total emissions of phosphorus (P) to soil and water, leading to freshwater 

eutrophication, were collected from the publication of Bouwman et al. (2013) and 
estimated for the reference year 2010, as data for this year were not directly available. In 

Bouwman et al. (2013), a comprehensive inventory of global P availability in the 
agricultural systems is presented, covering the following years: 1900, 1950, 2000, and 

the possible future changes in 2050, based on the United Nations medium projection which 
depicts a world with a population in continuous expansion, constantly growing economy, 

increasing consumption, especially of meat- and milk-based products. 

Global P budget (i.e. the difference between inputs from the application of fertilizer and 
manure, and the loss through crop harvesting, grazing or grass mowing) and global P 

runoff (i.e. the only pathway which is assumed to move P to water sources), were mapped 
into ILCD elementary flows as “Phosphorus, total (to soil)” and “Phosphorus, total (to 

water)”, respectively. No details about specific emissions, such as phosphate and 
phosphoric acid, were found.  

According to the linear growth of global P amount underlined by the study, a linear 
extrapolation strategy was applied for calculating the annual increase of both P budget 

and runoff from crop-livestock production systems at global level between the years 2000 

and 2050. The figures related to 2010 were then estimated. 

2.2.10 Marine eutrophication (EUTM) 

In order to build the inventory for marine eutrophication, statistics on nitrogen compounds 
were retrieved from various sources. The flows of NOx to air for 2010 were taken from 

EDGAR v4.3.1 (EC-JRC & PBL, 2016) in terms of NO2, while from ECCAD v6.6.3 (GEIA, 

2016) and Oita et al. (2016) in terms of NOx. In ILCD, NOx flows are mapped as NO2, i.e. 
they are characterized by the same CF. Both for this reason and for the fact that the NO2 

and NO amounts are unknown from the statistics, we mapped the flows of NOx and NO2 
as NO2. Subsequently, the corresponding characterization factor was used for calculating 

the midpoint impact indicator.   

Airborne emission data on ammonia (NH3) were available in EDGAR v4.3.1 and Oita et al. 

(2016). In the latter, also the NO3
- emission to water was available. 

The total emission of nitrogen (N tot) to water was obtained from the paper of Bouwman 

et al. (2013), following the same procedure explained for P in the previous paragraph on 

freshwater eutrophication. Firstly, global N budget (i.e. the difference between inputs from 
the application of fertilizer and manure, and the loss through crop harvesting, grazing or 

grass mowing) was mapped into ILCD elementary flows as “Nitrogen total (to water)”. 
This is because we assumed that the global N budget available in the soil can move to 

water through leaching and runoff. Then, according to the linear growth of global N tot 
amount observed in the study, a linear extrapolation was applied for calculating the annual 

increase of N budget from crop-livestock production systems at global level between the 
years 2000 and 2050. The figures related to 2010 were finally estimated. 
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To cover several data gaps, thus obtaining a more complete inventory, emission data from 

different sources were used and combined, according to the prioritisation of sources 
proposed by Sala et al. (2015), maintaining the consistency with the choices made for the 

other impact categories. 

2.2.11 Land use (LU) 

The inventory related to the land use impact category was developed according to the 

following criteria, as reported in Farago et al. (submitted): a) global coverage, b) spatially-
differentiated at a country level, c) land use occupation and transformation flows, d) 

consistent with the reference year of 2010. 

According to Sala et al. (2014), data on occupation and transformation from UNFCCC were 

considered not adequate because of inconsistencies and lack of completeness. Given that, 
with the exception of UNFCCC, no publicly available data exist for land transformation, the 

approach applied in this work implied deriving transformation values as differences of 
occupation data between years. 

Concerning agricultural and forestry land use classes, data were extracted from the 

statistics provided by FAOstat (FAOstat 2016), whose nomenclature was not compliant 
with the one adopted by ILCD. Therefore, a previous mapping step was needed. Farago 

and colleagues (submitted) exhaustively report the outcome of this classification. 

In order to calculate inventories for transformation flows, FAOstat time series at country-

scale resolution were used: the transformation inventories were estimated as the 
difference between two consecutive years of occupation data. In order to get an average 

transformation data to represent the 2010 reference year, Farago and colleagues chose to 
take into account the 2005-2010 time-span. 

Since data about urban areas global coverage were publicly not available, another 

extrapolation strategy was necessary, based on the population density as a proxy indicator 
of urban areas. This kind of data was retrieved from NASA, by adopting a 300 

inhabitants/km2 as a suitable threshold for identify urban areas, following the OECD 
methodology. NASA population density grids adjusted to the March 2015 Revisions of the 

United Nations World Population Prospects (UN WPP) Country Totals (CIESIN, 2016) was 
chosen in this work. Similarly to what was done for agriculture and forestry, the 

transformation inventories for urban areas were calculated adopting the time-series 
extrapolation strategy. 

Data retrieved from the FAO map “Dominant land cover type” representative for the year 

2010 were used to obtain the inventories values for ‘other’ land use classes (namely shrub 
land, grassland, bare soil and water bodies). Since no datasets providing time series were 

available, it was not possible to calculate transformation inventories for these flows. 
Consequently, the final impact reference for land use category could be underestimated 

due to the lack of impact data of these land use classes. 

2.2.12 Water depletion (WD) 

In order to calculate NF for water depletion, two different inventories were built by taking 

into account two kinds of data: the gross freshwater (i.e. from river and from the ground) 
abstraction and the water consumption. In order to be compliant with the methodology 

indicated in Sala et al. (2015), no distinctions were made between fresh and ground water. 
Data on water withdrawals for hydropower generation are not accounted within the NFs, 

according to the Swiss Ecological Scarcity impact assessment method by Frischknecht al. 

(2009), which is currently recommended by EC-JRC (EC-JRC, 2011). 

Concerning water withdrawal, data were mainly retrieved from FAO database (FAO-

Aquastat, 2016). Given that many gaps were found for our reference year, i.e. 2010, other 
databases were consulted, namely Eurostat database (Eurostat, 2016a) and OECD 

database (OECD, 2016), both accessed in November 2016. Although some additional data 
were found, many countries were still without an inventory value, some of them with a 
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potentially significant role in the water depletion category. For this reason, values referred 

to other years were used to fill the gaps, considering the 2008-2014 timespan, in line with 
the hierarchical approach explained at the beginning of section 2. 

As already mentioned, also a consumption-based inventory was built, starting from 
WAterGAP (Müller Schmied et al., 2014) data. This inventory was compiled as well because 

it is more complete in terms of data. However, it should be used as a proxy for withdrawal 
because the ILCD model for water depletion requests a withdrawal inventory to be 

correctly applied. 

2.2.13 Resources depletion - Energy carriers, mineral and metals 

(RD-E-MM) 

In order to compile a global inventory for resources depletion, two different kind of data 

were retrieved: (i) minerals and metals and (ii) energy carriers. 

The inventory for the first group of resources was built by means of the USGS commodity 

report (USGS, 2011a) and the USGS mineral yearbooks (USGS, 2011b). Mine production 
data at global scale were extracted from the above-mentioned documents privileging 

values related to the metal content, in order to be consistent with ILCD characterization 
factors. For a number of elements, i.e. arsenic, chromium, phosphorus, potassium and 

rare earths, the data retrieved were representative for the oxide compound of the element 

(e.g. arsenic trioxide, chromite, potash) which is effectively mined. In these cases, the 
amount of the element itself was extrapolated by using the molecular weight of the oxide 

compound and the atomic weight of the element. 

Concerning the accounting of each energy carrier in a global inventory, two different data 

sources were adopted, for fossils and uranium. Data on fossils, namely peat, brown and 
hard coal, natural gas and crude oil, were retrieved for the reference year 2013 from the 

International Energy Agency (IEA, 2014). Actually it was not possible to find the same 
data for 2010 since they are constantly updated. Data retrieved described the total 

production in terms of mass, therefore a conversion to energy amount was necessary, by 

using the average energy content (EC-JRC, 2012a). 

On the hand, uranium inventory amount was extrapolated from the World Nuclear 

Association website (WNA, 2016b). Data on uranium production were referred to 2013 as 
well in order to be consistent with the reference year selected for fossil energy carriers. 

Moreover, they data were representative of its production in terms of amount but, since 
ILCD characterization factor refers to the produced energy, a conversion was operated, 

using the energy content as for the fossil carriers’ conversion. 

2.3 EU-27 Basket of products for selected final consumption 

categories 

In order to track the overall environmental impacts of the European Union and ultimately 
of each Member State, while taking into account also the burdens associated with trade, 

in 2012, the EC-JRC developed a lifecycle-based approach that focus on specific 
representative products. These products are then up-scaled to overall EU consumption 

figures, named the Basket of Products (BoP) indicators (EC-JRC, 2012b). The project 
focuses on indicators that measure the environmental impact of the consumption of goods 

and services by the average European citizen, partly focusing on selected areas of 
consumption (food, housing and mobility) and partly on the total apparent consumption. 

The development of the basket of products is largely explained in Notarnicola et al. (2017) 

and Sala et al. (2016). The methodology is based on the following steps: 

1. Selection of the most representative products in terms of mass and economic 

values. 
2. Disaggregation of the inventory model used to represent average EU basket 

products. 
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3. Definition of the main assumptions according to goal and scope of the study. 

4. Data collection and adaptation. 
5. Environmental assessment adopting ILCD methodology. 

 
The BoP Food (Table 4) is built for modeling the food and beverage consumption in Europe. 

The composition of the basket reflected the relative importance of the products categories 
in terms of mass and economic value. The BoP Housing (Table 5) represents the housing 

consumption in Europe by taking into account: i) two dwelling types (Single family house 
-SFH and Multi-family house - MFH), ii) 3 climate zones (warm, moderate and cold) and 

iii) four periods of construction. Source of these data were adapted (aggregated data) 

from Intelligent Energy Europe (IEE) Project ENTRANZE (2014) Finally, the BoP mobility 
(Table 6) was built for modeling the mobility of citizens in Europe. The composition of the 

basket reflects the relative importance of the products categories in terms of mass used 
by citizens. 

Table 4: Product groups in the BoP food and related quantities (per-capita consumption in one year). Source: Sala et al. 
(2016). 

Product Groups Basket product  

Per-capita 

consumption 
(kg/pers.*yr-1) 

Per-capita 

consumption 
% 

MEAT 

Pig meat 41 8% 

Beef  14 3% 

Poultry 23 4% 

DAIRY 

Milk & Cream 80 15% 

Cheese 15 3% 

Butter 4 1% 

CEREAL-BASED Bread 39 7% 

SUGAR Sugar 30 6% 

OILS 
Sunflower oil 5 1% 

Olive oil 5 1% 

VEGETABLES Potatoes 70 13% 

FRUIT 
Oranges 17 3% 

Apples 16 3% 

BEVERAGES 

Mineral water 105(*) 19% 

Roasted Coffee  4 1% 

Beer 70(*) 13% 

PRE-PREPARED MEALS Meat based dishes 3 1% 

Total   541 100%3  

(*) This value is expressed in liters 

  

                                          
3 100% of the products in the BoP, which actually covered 58% of the food consumed by an average EU citizen 

in one year 
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Table 5: Composition of the residential building stock. Average floor area per dwelling type, by climate zone and by 
period of construction in EU-27 and relative number of dwellings and dwellers. Source: Sala et al. (2016). 

Type of 

dwelling 
Climate Year  

Average floor 

area/dwelling 

(m2) 

N° 

dwellings 

Total floor 

area (m2) 

N°  

dwellers 

SFH 

WARM 

<1945 1.10E+02 3.99E+06 4.39E+08 5.48E+07 

 

1945-1969 9.77E+01 3.94E+06 3.85E+08 

1970-1989 1.00E+02 5.03E+06 5.03E+08 

1990-2008 1.29E+02 3.02E+06 3.89E+08 

MODERATE 

<1945 8.98E+01 1.91E+07 1.71E+09 2.21E+08 

 

1945-1969 9.12E+01 2.17E+07 1.98E+09 

1970-1989 9.58E+01 2.49E+07 2.38E+09 

1990-2008 1.02E+02 1.58E+07 1.61E+09 

COLD 

<1945 1.02E+02 1.14E+06 1.16E+08 1.17E+07 

 

1945-1969 9.99E+01 1.12E+06 1.12E+08 

1970-1989 1.17E+02 1.26E+06 1.47E+08 

1990-2008 1.25E+02 6.30E+05 7.86E+07 

MFH 

WARM 

<1945 8.97E+01 5.56E+06 4.99E+08 7.26E+07 

 

1945-1969 8.57E+01 1.10E+07 9.41E+08 

1970-1989 9.00E+01 1.23E+07 1.11E+09 

1990-2008 9.52E+01 6.92E+06 6.59E+08 

MODERATE 

<1945 5.85E+01 1.29E+07 7.54E+08 1.25E+08 

 

1945-1969 6.10E+01 1.65E+07 1.01E+09 

1970-1989 5.71E+01 1.98E+07 1.13E+09 

1990-2008 6.00E+01 1.20E+07 7.17E+08 

COLD 

<1945 5.55E+01 1.33E+06 7.36E+07 9.46E+06 

1945-1969 5.96E+01 1.58E+06 9.42E+07 

1970-1989 6.03E+01 1.83E+06 1.10E+08 

1990-2008 6.44E+01 9.11E+05 5.86E+07 
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Table 6: Products in the BoP Mobility: EU28 fleet composition, vehicle-km and passenger-km travelled. Source: Sala et 
al. (2016). 

Products  Sub-products in Use stage 

Sub-

product 

code 

Vehicle-

kilometers 

(million) 

Passenger-

kilometers 

(million) 

Road 

transport 

Passenger 

Cars 

Gasoline <1,4 l 5.88E+05  5.88E+05  

Gasoline <1,4 l 1.13E+05  1.13E+05  

Gasoline <1,4 l 7.46E+04  7.46E+04  

Gasoline 1,4 - 2,0 l 5.31E+05  5.31E+05  

Gasoline 1,4 - 2,0 l 1.01E+05  1.01E+05  

Gasoline 1,4 - 2,0 l 6.70E+04  6.70E+04  

Gasoline >2,0 l 9.79E+04  9.79E+04  

Gasoline >2,0 l 1.88E+04  1.88E+04  

Gasoline >2,0 l 1.24E+04  1.24E+04  

Diesel 1,4 - 2,0 l 8.17E+05  8.17E+05  

Diesel 1,4 - 2,0 l 1.56E+05  1.56E+05  

Diesel 1,4 - 2,0 l 1.03E+05  1.03E+05  

Diesel >2,0 l 2.07E+05  2.07E+05  

Diesel >2,0 l 3.96E+04  3.96E+04  

Diesel >2,0 l 2.62E+04  2.62E+04  

LPG 4.90E+04  4.90E+04  

 

2W 

Mopeds <50 cm³ 4.82E+04  4.82E+04  

Motorcycles <250 cm³ 2.24E+04  2.24E+04  

Motorcycles >250 cm³ 4.44E+04  4.44E+04  

Buses 

Urban Buses Standard 

15 - 18 t 

2.50E+04  2.50E+04  

Coaches Standard 

<=18 t 

2.29E+03  2.29E+03  

Urban CNG Buses 2.29E+03  2.29E+03  

Rail 

transport 

Electric SP 23 - 2.86E+05 

Diesel SP 24 - 1.15E+05 

Air 

transport 

National flights SP 25 - 1.21E+05 

Intra-EU flights SP 26 - 7.27E+05 

Extra-EU flights SP 27 - 1.86E+06 

Totals   3.15E+06 3.11E+06 

 

2.4 Estimation of global inventory from input/output (I/O) 

approach  

As pointed out in Sala et al. (2016), to obtain more detailed insights on the contribution 

of specific sectors to the environmental impact and on the supply chains underneath global 
final consumption, a disaggregation of the inventory by economic sectors should be 

provided. One option to gain such information is to use a top-down approach, i.e. to 
disaggregate into a large number of sectors (or products) through multi-regional input 

output tables (MRIOTs), e.g. EXIOBASE v.3. A full description of EXIOBASE v3 is yet not 

available in literature.  However, it has been communicated by the DESIRE4 project team 
in several occasions to EC bodies and EEA. A description of its prior version (EXIOBASE 

                                          
4 http://fp7desire.eu/ 
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v2) is reported in Wood et al. (2015) and a methodological report by Merciai and Schmidt 

(2016) is available online. 

The database is the result of a series of EU funded research projects (EXIOPOL5, CREEA6 

and DESIRE), the last one (DESIRE) completed in February 2016. The database should 
allow for the consistent construction of resource efficiency indicators (91 indicators in total) 

addressing the EU production and consumption, including impacts which happens outside 
of the EU, as it covers 44 countries + 5 Rest of the World regions, and 200 sectors x 163 

products, and the production and consumption perspective. The time series cover the 
period 2000 – 2011. As pointed out by Wood and colleagues (2015), EXIOBASE v3 should 

provide more sector detail and the greatest amount of environmental data compared to 

any other MRIO database, with a time series and sectorial resolution which are suitable 
for the purposes of this analysis. Its main drawback consists in the limited coverage of 

countries/regions if compared to other MRIO databases, e.g. GTAP (Narayanan et al. 2014) 
or EORA (Lenzen et al., 2013). 

On one hand, this disaggregation option has the advantage of leading to highly resolved 
classifications (i.e. 200 products by 163 sectors); on the other hand, such resolution builds 

on specific technical assumptions for which it is not clear the effect on the overall results 
and therefore uncertainty cannot be estimated. Nevertheless, EXIOBASE v3 provides SUT 

(Supply Use Tables) tables and I/O tables in physical extensions, which are of interest and 

relevance for use in the accounting of environmental impacts. 

The top-down approach has been already used by Huysman et al. (2016), who carried out 

an estimation of the environmental impacts of a European citizen by combining EXIOBASE 
v2 with ILCD recommended impact categories, focusing particularly on global warming. 

The main disadvantage of the approach was the fact that, out of the 15 midpoint impact 
categories recommended by the ILCD handbook (EC-JRC, 2011) only a limited number of 

impact categories (i.e. 10) were actually calculated because of the low level of 
compatibility between inventory and LCIA method (see also section 3.4). 

2.5 EU-27 apparent consumption 

In the same project presented in section 2.3 developed by EC-JRC, another approach to 

track the overall environmental impacts of the European Union and ultimately of each 
Member State is evaluated. According to this second approach, three different 

components, i.e. domestic, import and export, are identified and inventoried in order to 
quantify the environmental impacts associated with EU apparent consumption according 

to the following equation: 

Impacts due to Apparent Consumption = Impacts due to Imports + Impacts due to 

activities occurring within the Territorial boundary – Impacts due to Exports 

The ‘domestic’ component accounted for the environmental impacts associated with 
emissions and resource extraction occurring within a member state boundary. The 

domestic inventory was compiled through a systematized collection of emissions and 
extraction of resources occurring within the territorial boundaries of EU member states 

was carried out and classified according to ILCD nomenclature. As explained in Benini et 
al. (2014b), used data were from officially reported statistics on emissions into air, water 

and soil and resources extracted in EU-27 territory, relying on the data reported by 
Eurostat and other international and national statistical bodies. Specific choices made by 

dataset were the same discussed in Sala et al. (2015).  

The import and export components are taken into consideration in the accounting of 
environmental impacts associated with product’s supply chains. The sum of all of the 

environmental burdens associated with the entire volume of imported, or exported, goods 
led to the total environmental impact associated with import, or export. Trade statistics 

from Comext (Eurostat, 2016b) were used and a set of representative products was 

                                          
5 http://www.feem-project.net/exiopol/index.php 
6 http://creea.eu/ 
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selected by mass (15 products) and value (5 products). The selection procedure (Skenhall 

et al., 2015) was composed by the following steps: 

- Identification of the most relevant groups of imported (or exported) goods, 

classified according to the harmonized commodity description and coding system 
(HS) nomenclature, focusing on the 2-digits codes (HS2) out of 98 HS 2-digit 

groups by application of a (mass or value) selection rule (i.e. the selected HS2 
product groups must cover at least 80% of the imported goods in mass or value); 

- Within each of the selected HS2 categories, a representative product out of the 
Combined Nomenclature (CN) with 8 digits (i.e. one CN8 product) was identified. 

- A set of life-cycle inventories (LCI) was built so to approximate all the CN8 products 

selected (i.e. one for each HS 2-digits group). 
- The results of the LCI, which consist of a vector of resources in input and emissions 

in output which were associated to the production of the representative product, 
were scaled up to the total mass (or value) of the HS2 category to which it belongs 

to. 
- The HS2 categories selected were scaled up to the total mass (or value) of imported 

(or exported) goods. 
The selection of the representative products and the respective LCI inventories was based 

on 2010 statistics and technologies, whereas the changes observed for 2000 and 2005 

reflected only changes to the share of traded goods by HS2 product groups. 
In modelling the trade inventory, data on Land use was not available due to the fact that 

LCI datasets used for modelling the representative products do not provide information on 
land use. 

The potential impact for all the components above (domestic, import, export) was 
calculated using the 15 impact categories and related impact indicators currently 

recommended by the ILCD (EC-JRC, 2011; Sala et al., 2012). 

2.6 Planetary boundaries in LCA 

2.6.1 Estimated planetary boundaries in literature 

The Planetary Boundaries identified in 2009 by Rockström, presented in Table 7 with the 

associated ecological thresholds, are the following: (i) climate change; (ii) rate of 
biodiversity loss; (iii) nitrogen and phosporus cycle; (iv) stratospheric ozone depletion; 

(v) ocean acidification; (vi) global freshwater use; (vii) change in land use; (viii) 

atmospheric aerosol loading; and (ix) chemical pollution.  

Although PBs are chategorized as individual processes, they are tangled and interact from 

the local to the global scale. In fact, exceeding a boundary may imply that another one is 
put under risk. Particularly, overcoming the PBs means generating large-scale alterations 

of the planetary functions, leading to ecological collapse and increasing significantly the 
risks to socio-economic stability across the world (Rockström et al., 2009). 

Table 7: Overview of Planetary Boundaries proposed by Rockström et al. (2009). Boundaries for processes in orange 
have been already crossed. Source: Rockström et al. (2009). 

Earth system 

process 
Parameters 

Proposed 

boundary 

threshold 

Current 

status 

Pre-

industrial 

value 

Climate change 

Atmospheric carbon dioxide 

concentration (parts per million by 

volume) 

350 387 280 

Change in radiative forcing (watts per 

m2) 
1 1.5 0 

Rate of biodiversity 

loss 

Extinction rate (Number of species per 

million species per year) 
10 >100 0.1-1 
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Earth system 

process 
Parameters 

Proposed 

boundary 

threshold 

Current 

status 

Pre-

industrial 

value 

Nitrogen cycle (part of 

a boundary with the 

phosphorus cycle) 

Amount of N2 removed from the 

atmosphere for human use 

(millions of tonnes per year) 

35 121 0 

Phosphorus cycle (part 

of a boundary with 

nitrogen cycle) 

Quantity of phosphorus flowing into the 

oceans (millions of tonnes per year) 
11 8.5-9.5 -1 

Stratospheric ozone 

depletion 
Concentration of ozone (Dobson unit) 276 283 290 

Ocean acidification 
Global mean saturation state of 

aragonite in surface sea water 
2.75 2.90 3.44 

Global freshwater use 
Consumption of freshwater by humans 

(Km3 per year) 
4,000 2,600 415 

Change in land use 
Percentage of global land converted to 

cropland 
15 11.7 Low 

Atmospheric aerosol 

loading 

Overall particulate concentration in the 

atmosphere, on a regional basis 
To be determined 

Chemical pollution 

Amount emitted to, or concentration of 

persistent organic pollutants, plastics, 

endocrine disrupters, heavy metals 

and nuclear waste in the global 

environment or the effects on 

ecosystem and functioning of Earth 

system thereof 

To be determined 

 

Evidence reports that the threshold for at least three of these boundaries (i.e.climate 

change, rate of biodiversity loss and nitrogen cycle, in orange in table 7) have already 
been crossed due to massive human interventions, thus threatening socio-economic 

wellbeing worldwide. Therefore, the PB framework may represent a practical solution, 

raising important opportunities for governance and policy. In fact, these limits could be 
adopted to define goals at global level in order to reduce the human-driven environmental 

impacts (Sandin et al., 2015). However, due to their intertwisted nature, the PB framework 
requires the development of a novel governance approach at global, regional and local 

scales (Stockholm Resilience Centre, 2016). 

Recently, PBs have been updated (Steffen et al., 2015 – Table 8), confirming the original 

set of boundaries and providing updated quantification for several of them. Specifically, 
two boundaries, namely rate of biodiversity loss and chemical pollution, were re-named 

and their scope was re-set. Respectively, the updated “changes in biosphere integrity” 

focuses not only on biological diversity, but also on ecosystem functioning; whereas, the 
updated “release of novel entities” (previously, “chemical pollution”) reflects the need to 

cope with environmental emissions of potentially toxic chemical pollutants, as well as with 
other physical and biological interventions that can trigger global impacts.  

Table 8:  Planetary boundary framework, modified from Steffen et al. (2015). Boundaries for processes in orange have 
been already crossed. 

Planetary Boundaries Parameters 

Proposed 

boundary 

threshold 

Current 

status 

Climate change 
Atmospheric concentration of carbon 

dioxide (parts per million by volume) 
350 400 (rising) 

Loss of biosphere integrity 

(previously: biodiversity loss) 

Extinction rate (extinctions per million 

species-years) 
10 

about 1000 

(rising) 

Change to biochemical flows – 

Nitrogen and Phosphorus 

Quantity of nitrogen applied to land 

(millions of tonnes per year) 
62 

about 150 

(rising) 
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Planetary Boundaries Parameters 

Proposed 

boundary 

threshold 

Current 

status 

Quantity of phosphorus applied to land 

(millions of tonnes per year) 
6.2 

about 14 

(rising)  

Loss of stratospheric ozone 

(previously: stratospheric ozone 

depletion 

Concentration of ozone (Dobson unit) 
(no lower 

than) 276 

283 

(improving) 

Ocean acidification 
Global mean saturation state of aragonite 

in surface seawater (%) 

>80% of 

pre-

industrial 

level 

about 84% 

Freshwater abstraction (previously: 

global freshwater use) 

Annual consumption of freshwater (km3 

per year) 
4,000 2,600 

Land use change (previously: 

change in land use) 

Percentage of global forests converted to 

croplands, roads and cities 

(no less 

than) 75% 

biome 

intactness 

62% 

(shrinking) 

Atmospheric aerosol loading 

Particulate concentration in the 

atmosphere, measured as Aerosol 

Optical Depth. Regionally determined for 

South Asia. 

Regional 

threshold: 

0.25 

Regional 

status:  

0.30 

Release of novel entities 

(previously: chemical pollution) 

Multiple boundaries, yet to be 

determined 
To be determined 

On their attempt to quantify the global carrying capacity for each impact category, Bjørn 

and Hauschild (2015) translated the science-based thresholds proposed in literature for 
PB (such as critical loads for terrestrial eutrophication and acidification, 2°C global 

warming for climate change and the planetary boundary for stratospheric ozone depletion) 
in the metrics of the midpoint indicators, prioritizing those recommended by EC’s ILCD. As 

a result, they obtained the so-called global average carrying capacity-based normalisation 

references (Table 9) which are compatible with characterized indicators values at midpoint 
for 6 out of 15 impact categories, namely: climate change, ozone depletion, photochemical 

ozone formation, freshwater eutrophication and freshwater ecotoxicity. The authors 
estimated PB also for other four categories (i.e. terrestrial acidification, terrestrial 

eutrophication, land use and water depletion). However, the values for these indicators 
are not compliant with the normalisation factors calculated using ILCD methods since the 

models underpinning the calculations made by Bjørn and Hauschild are different.  

Table 9: Planetary Boundaries as reported in Bjørn and Hauschild (2015). 

Impact categories compliant 

with ILCD 
Unit 

PB estimates 

per person 

PB estimates 

total 

Climate change - GWP kg CO2 eq 9.85E+02 6.81E+12 

Ozone Depletion Potential kg CFC-11 eq 7.80E-02 5.39E+08 

Photochemical Ozone Formation kg NMVOC eq 3.80E+00 2.63E+10 

Freshwater Eutrophication kg P eq 8.40E-01 5.81E+09 

Marine Eutrophication kg N eq 2.90E+01 2.01E+11 

Freshwater Ecotoxicity [PAF]*m3*day 1.90E+04 1.31E+14 

Impact categories not 

compliant with ILCD 
   

Terrestrial Acidification mole H+ eq 1.45E+02 1.59E+13 

Terrestrial Eutrophication mole N eq 8.87E+02 1.94E+13 

Land Use, soil erosion Tonnes eroded soil 1.83E+00 1.24E+10 

Land Use, biodiversity m2*year 1.49E+04 1.03E+14 

Water Depletion m3 9.93E+01 1.04E+14 
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In order to monitor the current global situation, we adopted the set of ILCD compliant PBs 

per person proposed by Bjørn and Hauschild (2015) as literature reference to be compared 
to the normalisation factors we calculated under the previously described perspectives. In 

order to be consistent with the other calculations, we then multiplied these values for the 
world population according to Farago et al. (submitted), thus obtaining PB values 

significantly close to Bjørn and Hauschild’s total ones.  

Furthermore, for the other categories, PB values were recalculated following a procedure 

suggested by Bjørn (personal communication). The recalculations are based on a 
conversion factor corresponding to the ratios between the CFs applied in Bjørn and 

Hauschild (2015) and the ILCD recommended CFs. Given that this ratio varies across 

substances, an overall substance-generic conversion factor (from the normalisation 
references in Bjørn & Hauschild (2015) to ILCD compliant NFs) was estimated. This 

estimation derives from the weighted average of the substance-specific ratios, where the 
weights are based on each substance’s contribution to the impact score of the global 

inventory (resulting from EC-JRC calculations for 2010 reference year), according to the 
ILCD method. 

Concerning water depletion, two procedures were adopted, obtaining two different 
planetary boundaries for this category. Since the CF originally applied by Bjørn was a 

generic average for water consumption, a corresponding CF from ILCD should have been 

selected in order to obtain the abovementioned conversion factor. To be compliant with 
the previous work by Sala et al. (2015), the CF representing the average water scarcity in 

OECD countries was preliminarily taken from ILCD. This PB value for water depletion was 
used for comparing all the EU-27 and the I/O results. 

However, given that the characterization at global level in the present work was carried 
out with ILCD country-specific CFs, another CF was calculated as arithmetic average of all 

the country-specific CFs used in the LCIA step. This value was adopted when comparing 
PB with the global NFs by EC-JRC (see section 3.6.4). 

2.6.2 Proposal of additional Planetary Boundaries in literature 

Planetary Boundaries represent a concept still under development, in order to meet the 
goals of Sustainable Development, by identifying a safe space for humanity where 

developing without generating irreversible consequences for the whole planetary system’s 
functioning.  

To cover the conceptual and methodological gaps, several authors recently proposed 

additional PB or further improvements for the already existing ones.  

Whitmee et al. (2015) suggested the concept of Planetary Health, meaning social 

boundaries based on the understanding that human health relies on harmonized natural 
systems. Designed according to the priorities of the Sustainable Development Goals, this 

framework includes a social foundation of the use of resources, addressing both social 
needs (such as equal access to resources and protection for future generations) and 

environmental constraints. In fact, a fundamental principle for the improvement of human 
health boundaries is the development of more robust indicators of human welfare which 

account for the integrity of natural systems, thus translated into metrics comparable within 

the LCIA framework in order to quantitatively assess the sustainability of human 
intervention.  

Furthermore, in 2013, the methodological framework of One Planet Thinking (OPT) for the 
power sector was developed (Bijloo & Kerkhof, 2015) with the aim of measuring the 

threshold for mineral depletion within the boundaries of our planet. The OPT framework 
was built on the concept of preserving the same available amount of resources (i.e. copper, 

iron, nickel, manganese and tin, which are the most relevant minerals for the energy 
sector) for future generation. Therefore, the global boundary for mineral depletion (Table 

10) was estimated on the basis of the mineral reserves made available by improvement 

in technology and on the total quantity of minerals made available through recycling. 
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Table 10: Planetary Boundaries for resource depletion. Source: Bijloo & Kerkhof (2015). 

Mineral Global Boundary (Mton) Global Index 

Copper 29.5 0.83 

Iron 1530 0.87 

Nickel 1.85 0.98 

Manganese 28.7 0.73 

Tin 1.39 2.58 

 
The OPT methodology is still under development, involving the efforts of private companies 

and public institutions, such as ONG operating at global level and the academic 
community.  
 

More problematic is the issue about biodiversity loss related PB. Biodiversity is recognized 

as a complex concept, whose loss is associated with drivers and responses which are 
largely heterogeneous both on the temporal and spatial scales (Mace et al., 2014). 

Therefore, the proposal of Rockström and colleagues (2009), which measure biodiversity 
loss in terms of global species extinction rate, appears extremely simplified, for many 

reasons. Particularly, abundance of species and their functions miss to be accounted for, 
thus preventing this metric from successfully defining a safe operating space for human 

activities (Mace et al., 2014). The most recent proposals for a PBs around biodiversity loss 

come from Mace et al., (2014) and Wolff et al.(2016), which is still based on Mace et al. 
(2014) definitions (Figure 1). 

 

Figure 1: Biodiversity boundary and related system of impact drivers. Interacting nature of Planetary Boundaries, is shown. 
Modified from Mace et al. (2014).  

Mace and colleagues (2014) recognized the need of identifying novel and comprehensive 
approaches based on phylogenetic diversity, functional diversity and biome integrity. 

However, so far none of the proposed approaches contributes to give an operational 
definition of a global boundary for biodiversity loss. Moreover, Wolff et al. (2016) 

highlighted the need of taking into consideration the intertwisted nature of the other 
ecological planetary boundaries to secure biodiversity conservation. However, the step 

forward, to the inclusion of biodiversity loss boundary within the LCIA framework is not 
immediate. Accordingly, when coming to translate biodiversity loss according to the LCIA 

categories, it implies to be accounted as an endpoint because many of the other impact 

categories converge resulting in loss of biodiversity. 
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Further improvements in the field of chemical impact assessment within the PB framework 

were proposed by Sala and Goralczyk (2013). The authors presented a methodological 
framework, preliminarily applied at the macroscale for the European Union, for bridging 

life cycle assessment approach and planetary boundaries for chemical pollution. The 
definition of a threshold for global chemical pollution, that should not be exceeded to 

ensure a sustainable use of chemicals, is still ongoing. However, this study represents an 
important step that contributes to the widely open discussion on planetary boundaries. 

A potentially operational framework quantitatively assessing PBs, in parallel with the 
methodology developed by Bjørn and Hauschild (2016), has been recently proposed by 

Doka and other authors (2015) (Table 11). Accordingly, the PBA’05 (Planetary Boundary 

Allowance 05) approach translates PB into per-capita-allowances, namely the equitable 
annual allowance of environmental burden for each person. Characterization factors are 

given with a homogenized unit in terms of fraction of the per-capita-allowance for eight 
implemented planetary boundaries out of nine proposed by Rockström (2009). 

 
Table 11: Planetary boundaries as proposed by Doka et al. (2015), both in terms of per-capita and global allowance. 
Compatibility with ILCD impact categories is shown in the last column. 

Boundary Unit 
1 PBA 

value 

Global 

value  

ILCD compatible  

(Y or N) 

Climate change kg CO2/person 1.15E+03 1.15E+13 Y 

Biodiversity loss species*year/person*year 2.81E-05 2.81E+05 N 

N cycle kg N emission/person 3.50E+00 3.50E+10 Y 

P cycle g P*year/person 1.10E+00 1.10E+10 N 

Stratosferic ozone 

depletion 

kg ODP 

equivalent/person*year 
4.09E-02 4.09E+08 Y 

Ocean acidification - NA NA  - 

Land occupation m2 cropland*year/person 2.00E+03 2.00E+13 N 

Global freshwater 

consumption 
m3 blue water/person 4.00E+02 4.00E+12 Y 

Atmosferic aerosol 

loading 
kg PM10 equivalent/person 1.46E+00 1.46E+10 

Y (assuming that, within 

PM10 emissions, PM2.5 is 

the impacting fraction) 

Chemical pollution - NA NA - 
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3 Results and discussion  

Following the collection of data for building the European and global inventories and their 

translation into elementary flows according to the ILCD nomenclature, the inventories 
have been characterized, using ILCD CFs at midpoint (EC-JRC, 2011).  

According to the methodologies mentioned in section 2, different sets of normalisation 

factors have been calculated and reported in the following paragraphs for each system 
scale (EU-27 or global) and for each impact category. Unless some already stated and 

explained reasons has led to the selection of specific values as NF, in case more than one 
plausible data sources was available, we decided to apply a sort of precautionary principle, 

selecting the one with the highest value. 

Information on environmental emissions and resource extractions for the specific reference 

year 2010 were generally limited, namely in some cases they were only partially available 
in the form or at the geographical scale needed for this study. Therefore, data estimates 

were inevitably used, leading to the occurrence of uncertainties in the corresponding 

normalisation factors. Uncertainties in the calculation of the normalisation factors may be 
due to different sources, such as the selection of the sources of data among statistical 

database (Benini & Sala, 2016). The uncertainties related to the adopted extrapolation 
procedures are detailed for each impact category in the following paragraphs. 

3.1 EU-27 normalisation factors  

As presented in Sala et al. (2015), the NFs based on the characterized EU-27 domestic 
inventory for the year 2010 are reported in the following Table 12. 

Table 12: EU-27 normalisation factors for domestic emissions and resource extraction in 2010. The scoring is given from 
I: highest to III: lowest. Source: Sala et al. (2015). 

ILCD Impact category Unit NFs for EU-27 
Coverage 

completeness 
Robustness 
inventory 

Climate change kg CO2 eq 4.60E+12 I/II I 

Ozone depletion potential kg CFC-11 eq 1.08E+07 II III 

Human toxicity- cancer  CTUh 1.88E+04 III III 

Human toxicity- non cancer  CTUh 2.69E+05 II III 

Particulate matter/Respiratory 
inorganics 

kg PM2.5 eq 1.90E+09 I I/II 

Ionising radiations kBq U-235 eq 5.64E+11 I II 

Photochemical ozone formation kg NMVOC eq 1.58E+10 I II 

Acidification mol H+ eq 2.36E+10 I II 

Terrestrial eutrophication mol N eq 8.76E+10 I/II I 

Freshwater eutrophication kg P eq 7.41E+08 I/II II/III 

Marine eutrophication kg N eq 8.44E+09 II II 

Land use kg C deficit 3.78E+13 II/III II 
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ILCD Impact category Unit NFs for EU-27 
Coverage 

completeness 
Robustness 
inventory 

Freshwater ecotoxicity CTUe 4.46E+12 III III 

Water depletion m3 water eq 4.06E+10 III II 

Resource depletion - energy 
carriers, minerals and metals 

kg Sb eq 5.03E+07 II II 

 

The completeness of the coverage of datasets used for building the EU-27 inventories was 

evaluated by Sala et al. (2015). This coverage varies within a broad range, from minimum 
values (level I-lowest coverage according to table 12 associated to the categories human 

toxicity-cancer effects and freshwater ecotoxicity, to maximum values (level III-highest 
coverage according to table 12) for acidification, particulate matter, photochemical ozone 

formation and ionising radiation. Overall, the completeness of the EU-27 inventory 
coverage is affected by the availability of data in the original sources. 

The robustness of the inventory is based on the quality of data, depending for example on 

the variety of sources which the data come from and their combination in a single 
inventory, and on the robustness of the extrapolation strategies adopted for each impact 

category. In the calculation of the NF for EU-27, the impact categories showing the less 
robust inventories are those related to the toxicity impacts, i.e. human toxicity (both 

cancer and non-cancer effects) and ecotoxicity which are based on the same inventory. 
As already explained in Sala et al. (2015), the low robustness of this inventory mainly 

stemmed from the poor quality of data, associated to the high amount of extrapolation 
strategies (e.g. temporal data gap filling; spatial extrapolation across different countries) 

employed to cover a much broader range of flows. On the other hand, Climate change and 

terrestrial eutrophication categories present a high inventory robustness, when compared 
to all the other categories. 

Overall, as analysed in Benini & Sala (2016), uncertainties in the calculation of 
normalisation references for EU-27 in 2010 were due to several aspects, stemming from 

both the inventory data and the available characterization factors. In particular, 
uncertainties were mainly related to the selection for the sources of data among different 

statistical database (e.g. for NOx, SOx, NH3, CO, PM2.5/PM10 and water withdrawals), the 
classification of environmental statistics as ILCD elementary flows (e.g. mapping of NOx 

and SOx and inconsistence in the flow naming), the use of extrapolation procedures in 

order to fill the data gaps in the inventories (e.g. NMVOC breakdown for climate change 
and Photochemical Ozone Formation categories), the use of regionalized characterization 

factors for water depletion only and the lack of characterization factors for some measured 
flows, leading to the underestimation of NFs. Overall, a merely qualitative assessment of 

the uncertainty associated to the calculation of NFs for EU-27 was possible due to the 
diversity of sources of uncertainty and biases, which in many cases were not quantifiable. 

3.2 Global normalisation factors  

In the following sections, for each impact category, the results of the calculation of the 

NFs based on the global inventory are reported for the year 2010 and for each impact 
category. Each paragraph includes: (i) the coverage of the flows in the inventory with 

respect to the available flows in ILCD; (ii) the contribution of each flow to the final global 
impact; (iii) the main drivers of uncertainty; and (iv) the relationship between global NF 

2010 and the NFs calculated for EU-27 in 2010. 

The overall list of global NFs for 2010 is reported in table 13. The above-mentioned 

considerations related to coverage completeness and robustness of the inventory apply to 
the global estimates. However, in some cases, lower scores are attributed to global NF’s 

due to further limitation in the data coverage compared to EU-27 inventory.  
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Table 13: EC-JRC Global normalisation factors for emissions and resource extraction in 2010. 

ILCD Impact Category Unit 
Global NFs 

(2010) 

Range of variation (min-

max) or alternative results 

Coverage 

completeness 

Robustness 

inventory 

Climate change kg CO2 eq 4.81E+13 (8.40E+12; 5.09E+13) II I 

Ozone depletion potential kg CFC-11 eq. 1.34E+08 (alternative result:1.24E+08) III II 

Human toxicity, cancer 
effects 

CTUh 9.16E+04 (4.06E+04; 2.66E+05) III III 

Human toxicity, non-cancer 
effects 

CTUh 1.13E+06 (5.01E+05; 3.36E+06) III III 

Particulate 
matter/Respiratory 
inorganics  

kg PM2.5 eq 6.86E+10 
(alternative results: 
3.25E+09; 6.27E+0; 
9.49E+09; 4.68E+10) 

I I 

Ionising radiation kBq U-235 eq.  2.04E+12  II III 

Photochemical ozone 
formation 

kg NMVOC eq. 2.80E+11  III I/II 

Acidification mol H+ eq 3.83E+11 
(alternatives results: 
3.07E+11; 3.26E+11) 

II I/II 

Terrestrial eutrophication  mol N eq 1.22E+12 
(alternative results: 

7.55E+11; 8.68E+11) 
II I/II 

Freshwater eutrophication  kg P eq 1.76E+10  II III 

Marine eutrophication  kg N eq 1.95E+11 
(alternative results: 

1.99E+10; 3.14E+10; 
4.89E+10; 1.44E+11) 

II II/III 

Land use kg C deficit 1.00E+15  II I 

Ecotoxicity freshwater CTUe 2.75E+13 (4.06E+12; 8.15E+13) III III 

Water depletion m3 water eq 4.81E+13 
(alternative result from 
consumption inventory: 

6.80E+13) 
II II 

Resource depletion - energy 
carriers, minerals and metals 

kg Sb eq 3.70E+09  I I 

 

3.2.1 Climate change 

The calculation of the global NF for climate change led to four possible results, respectively 

based on (i) the single flows’ inventory, (ii) its variation with HCFCs data as results of 
temporal extrapolation, (iii) the already characterized GHG totals (aggregated value) 

according to both EDGAR v4.2 (EC-JRC & PBL, 2011b) and (iv) UNFCCC (2015). Results 
are reported in tables 14 and 15. 
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Table 14: Characterized inventory of single flows’ global emissions for Climate Change – GWP indicator, reference year: 
2010. 

ILCD elementary flows  

(EDGAR single flows’ values, 

GWP100 from IPCC 2007) 
Formula/abbr. 

Global 2010 (i) 

(kg CO2 eq) 

Global 2010 (ii) 

(kg CO2 eq) 

carbon dioxide CO2 3.36E+13 3.36E+13 

methane CH4 9.30E+12 9.30E+12 

nitrous oxide N2O 2.97E+12 2.97E+12 

HFC-116 C2F6  2.26E+10 2.26E+10 

perfluoropropane C3F8 3.35E+09 3.35E+09 

perfluorobutane C4F10 1.77E+08 1.77E+08 

dodecafluoropentane C5F12 8.49E+04 8.49E+04 

perfluorohexane C6F14 3.15E+09 3.15E+09 

FC-318 C4F8 2.08E+08 2.08E+08 

FC-14 CF4   1.17E+11 1.17E+11 

HFC-23 HFC-23 2.67E+11 2.67E+11 

HFC-32 HFC-32 2.58E+09 2.58E+09 

HFC-4310mee HFC-4310mee 5.01E+08 5.01E+08 

HFC-125 HFC-125 1.48E+11 1.48E+11 

HFC-134a HFC-134a 2.59E+11 2.59E+11 

1,1,1-trifluoroethane HFC-143a 1.82E+11 1.82E+11 

HFC-152a HFC-152a 4.28E+09 4.28E+09 

1,1,1,2,3,3,3-heptafluoropropane HFC-227ea 3.08E+10 3.08E+10 

HFC-236fa HFC-236fa 1.64E+09 1.64E+09 

HFC-245fa HFC-245fa 5.55E+09 5.55E+09 

HFC-365mfc HFC-365mfc 1.80E+09 1.80E+09 

sulfur hexafluoride SF6 1.59E+11 1.59E+11 

HCFC-22 HCFC-22 6.63E+11 6.63E+11 

HCFC-141b HCFC-141b - 5.58E+08 

HCFC-142b HCFC-142b - 1.43E+10 

CFC-11 CFC-11 3.33E+11 3.33E+11 

Halon-1211 Halon-1211 9.09E+09 9.09E+09 

nitrogen trifluoride  NF3 3.69E+09 3.69E+09 

 
total 4.81E+13 4.81E+13 
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Table 15: Characterized aggregated values for Climate Change – GWP indicator. 

ILCD elementary flows (EDGAR aggregated value; 

GWP100 from IPCC 1996) 
Global 2010 (iii) (kg CO2 eq) 

GHG total (CO2, CH4, N2O, F-gases) 5.09E+13 

ILCD elementary flows (UNFCCC aggregated value; 

GWP100 from IPCC 2007) 
Global 2010 (iv) (kg CO2 eq) 

GHG total (CO2, CH4, N2O, HFCs, PFCs, SF6, unspecified 

mix of HFCs and PFCs, and NF3 with emissions/removals 

from LULUC and forestry) 

8.40E+12 

 

Aggregated values were basically discarded. In fact, the aggregated GHG total value from 

EDGAR database (Global 2010 (iii); source: EC-JRC & PBL, 2011b) were excluded as 
potentially useful result, since their calculation is based on outdated CFs (i.e. from IPCC, 

1996). Whereas, although the aggregated value from UNFCCC (Global 2010 (iv)) is based 
on CFs which is in line with the ILCD recommendations for LCIA, it was considered 

unrepresentative of the world situation, since many important GHG emission contributors 
such as USA and Japan were not included and the value is, therefore, too close to the EU 

27 reference. As a confirmation, 25 out of 30 parties providing data on which the UNFCCC 

aggregated value are EU-27 countries. 

Considering the single flows’ alternatives (i and ii), no relevant difference was outlined in 

the results, due to the inclusion of two additional flows namely HCFC 141b and HCFC142b. 
In fact, the result remained basically unchanged. The two inventories can be, therefore, 

considered comparable. 

The most representative reference for the global impact is represented by EDGAR single 

flows’ (Global 2010 (i)) characterized inventory of emissions, including HCFCs data. It 
covers 28 substances out of 101 for which a CF is available in ILCD.  

According to the single flows’ characterized inventory, three substances dominate the 

overall impact, namely: CO2 (nearly 70%), CH4 (19%) and N2O (6%). The remaining 25 
mapped substances contribute to 5% of the total world impact.  

Mixing reported data from different datasets e.g. bottom-up modelling exercises (EDGAR) 
and extrapolations from CSIRO model (Fraser et al., 2014), may lead to uncertainties. 

Particularly, the NF for climate change derived from the single flows’ inventory is likely to 
be slightly underestimated with respect to the aggregated value due to missing data for 

some substances, such as HFCs, and due to the exclusion of biomass burning emissions 
(such as forest fires, post-burn decay, peat fires and decay of drained peatlands).  

Robustness of the climate change-related inventory for the world 2010 appears to be 

relatively high in comparison to other impact categories, according to the good quality of 
data (EDGAR is at the second place when referring to the hierarchy for sources selection) 

and with the lack of extrapolation strategies adopted for building the inventory. 

3.2.2 Ozone depletion potential 

The calculation of the global normalisation factor for ozone depletion led to two results, 

depending on the use of halons single flows (Global 2010 (i) in table 16) or halons total 
aggregated value (Global 2010 (ii)). 

Single flows’ inventory data are available for seven flows out of 23 for which there is a CF 
in the ILCD. Of these seven flows, four are originally from 2010, while the remaining three 

were extrapolated from 2008 as explained in the relative methodology (section 2.2.2).  
Different sources were available for HCFCs, namely CSIRO data (Fraser et al. 2013) and 

EDGAR v.4.2 (EC-JRC & PBL, 2011a). To be compliant with the hierarchy we proposed (i.e. 
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in case of temporal extrapolation, preferring data from a year which is different from the 

reference, but coming from the primary source), we took 2008 data from CSIRO 
estimations, instead of using HCFC data from EDGAR as done for GWP. 

According to the approach beneath Global 2010 (i) with only single flows, the normalisation 
factor for this impact category stands at 1.34E+08 kg CFC-11 equivalent. The highest 

contributor to this figure is CFC-11 flow, which is responsible for 52% of the global impact. 
This is followed by Halon-1211 and HCFC-22 which cover about 22% and 14% of the 

overall impact, respectively. HCFC-140, halon-1001 and the other HCFCs exert the minor 
role, accounted at less than 12%).  

Considering the alternative inventory option, where halon total is used as aggregated flows 

excluding halon-1001 and halon-1211 single flows, the normalisation factor for this impact 
category slightly change, standing at a value of 1.24E+08 kg CFC-11 equivalent. This may 

be due to the use of an average CF value for characterizing halon flows. The order of 
contributor flows to the overall impact remains unchanged, with CFC-11 covering the 

overwhelming majority of the total impact (57%), followed by Halons (21%) and HCFC-
22 (15%).  

According to the procedure stated in section 2, we decide to select as NF for ozone 
depletion category the Global 2010 (i) final score, since according to the precautionary 

principle it is likely to cover the impacts and the related uncertainties of Global 2010 (ii). 

Table 16:  Characterized inventories of global emissions for Ozone Depletion Potential indicator. 

ILCD elementary flows  
Global 2010 (i)  

(kg CFC-11 eq) 

Global 2010 (ii) 

(kg CFC-11 eq) 

CFC-11 7.00E+07 7.00E+07 

HCFC-22  1.83E+07 1.83E+07 

HCFC-140 5.52E+05 5.52E+05 

HCFC-141b 6.60E+06(*) 6.60E+06(*) 

HCFC-142b 2.80E+06(*) 2.80E+06(*) 

Halon-1001  6.84E+06(*) - 

Halon-1211 2.89E+07 - 

Halon totals - 7.40E+06 

Total:  1.34E+08 1.24E+08 

(*) Extrapolated values from EDGAR v.4.2, year 2008 

 

Uncertainties in the estimation of the global NF for ozone depletion category are considered 
quite high, mostly because the majority of the substances contributing to ozone depletion 

impacts are not accounted in the inventory, leading to a very low coverage completeness. 
In fact, limited data on ozone depleting substances are available in the scientific literature. 

Furthermore, the application of extrapolation strategies for filling the temporal data gap 

led to a rather low robustness of the inventory for this category.  

3.2.3 Human toxicity (cancer, non-cancer) and freshwater ecotoxicity 

A series of eight alternative options for the calculation of the global reference for each 
toxicity-related impact category was possible, depending on the calculation strategy 

applied according to section 2.2.3. The results are presented in table 17. 
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Table 17: Final impact scores for toxicity-related categories, based on data from Cucurachi et al. (2014). 

 

 
GLOBAL (years between 2008 and 2013), based on: 

 

Units AVG 

AVG -

adjust

ed 

CO2 
CO2 -

adjusted 
GDP 

GDP -

adjusted 
Hg 

Hg - 

adjusted 

HTOXC CTUh 
2.03E+

04 

9.16E+

04 
1.58E+04 7.12E+04 

9.01E+0

3 
4.06E+04 5.89E+04 2.66E+05 

HTOXNC CTUh 
1.16E+

06 

1.13E+

06 
9.00E+05 8.77E+05 

5.14E+0

5 
5.01E+05 3.36E+06 3.27E+06 

FRWTOX CTUe 
9.25E+

12 

2.75E+

13 
7.12E+12 2.12E+13 

4.06E+1

2 
1.21E+13 2.74E+13 8.15E+13 

 

Three out of eight global normalisation references (namely CO2, GDP, Hg, as referred to 
in table 17) for each toxicity-related impact category were directly taken from the 

publication of Cucurachi et al. (2014). Additionally, following the methodology described 
in section 2.2.3, for each category we calculated (i) the global average (AVG), as geometric 

mean of the above-mentioned extrapolated global references; (ii) the adjusted global 
average (AVG-adjusted) and (iii) the adjusted global references for CO2, GDP and HG 

emissions (namely CO2-adjusted, GDP-adjusted, Hg-adjusted). 

Human toxicity-cancer effects and freshwater ecotoxicity present the same scheme: each 
adjusted value is pretty higher than their relative reference, due to the fact that the ratio 

between EU-27 value from Sala et al (2015) and EU value from Cucurachi et al. (2014), 
on which the calculation of the adjusted values is based, is greater than one.  The 

divergence between the two European values is linked to the different underpinning 
inventories. For instance, the top contributor substances which affect these two categories 

do not match, when comparing the European inventories. 

However, the EU reference value from Cucurachi et al. (2014) is calculated not only on 

the toxic emissions of the 27 European Member States, but also on the emission releases 

from Norway, Switzerland, Iceland and Serbia. Therefore, as the sources for EU-27 
Member States are shared by both the authors and a greater number of countries 

contribute to the emissions for the EU reference of Cucurachi et al. (2014), this latter value 
should be higher than or at least or at least close to the value calculated by Sala et al. 

(2015). The top contributors and their relative impacts (i.e. zinc and mercury) are 
comparable across both the characterized inventories. 

Based on the abovementioned considerations, the AVG-adjusted values has been selected 
as global reference for all the toxicity-related impact categories. Cucurachi et al. (2014) 

were not recommending any of the three options. Indeed, they stated that the three 

estimators used for calculated the global references were not representative of the global 
situation, although a strong correlation was found between CO2 and GDP. Furthermore, as 

a support of the selection made, the values of the AVG-adjusted, at least in the cases of 
human toxicity-non cancer effects and ecotoxicity, approach the geometric and arithmetic 

mean of the series if eight extrapolations proposed in this section. 

Generally, according to Cucurachi et al. (2014), the inventory used for extrapolating both 

human toxicity (cancer and non-cancer effects) and freshwater ecotoxicity are 
characterized by a high level of uncertainties, especially due to the large use of 

extrapolation strategies and the relative low coverage of the substances emitted into the 

environmental compartments, leading to over- and under-estimations of the final global 
figures. 
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3.2.4 Particulate matter/Respiratory inorganics 

According to the broad variety of sources retrieved, several potential combinations of data 
are possible to define the global inventory for RIPM impact category. The results of the 

characterized inventories are presented in table 18. 

Table 18: Characterized inventories of global emissions for Particulate matter/Respiratory inorganics category. 

 
 Global 2010 (kg PM2.5 eq) 

ILCD elementary 

flows 

elementar

y flows 

EDGAR 

v.4.3.1 

ECCAD  

v.6.6.3 

Winijkul 

et al. 

(2015) 

Oita et al. 

(2016) 

Klimont et 

al. (2013) 

nitrogen oxides 
NOx (as 

NO2) 
8.15E+08 5.11E+08 - 2.53E+08 - 

sulfur dioxide SO2 6.26E+09 5.97E+09 - - 6.27E+09 

ammonia NH3 3.65E+09 2.80E+09 - 3.00E+09 - 

particles (PM10) PM10 1.48E+10 - 1.02E+10 - - 

particles (PM2.5) PM2.5 4.28E+10 - 3.66E+10 - - 

carbon monoxide CO 2.21E+08 2.08E+08 - - - 

 Total 6.86E+10 9.49E+09 4.68E+10 3.25E+09 6.27E+09 

 

EDGAR (EC-JRC & PBL, 2016) has been selected as unique source of data for this impact 
category, mainly due to better completeness and robustness of the inventory. EDGAR 

dataset is widely considered a reliable and authoritative source of data, even if it is not 
characterized by periodical checks. Furthermore, it shows a higher coverage of flows when 

compared with the other sources. In fact, inventory data stemming from EDGAR database 
are available for 6 out of 9 flows for which there is a CF in the ILCD. Additionally, as 

explained in section 2, EDGAR database cover emissions coming from a broader range of 
sectors.  

Although ECCAD dataset v. 6.6.3 (GEIA, 2016) presents a medium-high inventory 

coverage, it resulted to be less complete than EDGAR, needing the application of 
extrapolation procedures to be complemented.  The inventories built on data from Winijkul 

et al. (2015), Oita et al. (2016) and Klimont et al. (2013) were discarded since they 
present a comparatively poor coverage, dealing with just two or three flows out of the 

total.  

Overall, figures provided by all the sources appear to be consistent with each other. 

Specifically, in some cases, e.g. SO2 and CO flows, values are very close one to the other. 

According to the characterized inventory built on EDGAR data, the highest contributor to 

this impact category is CO covering 62% of the overall impact, distantly followed by NO2 

(11%). Generally, emissions deriving from manure and fertilizers’ applications are 
indirectly accounted for as NH3 emissions, as already mentioned by Sala et al. (2015) for 

EU-27 reference. 

3.2.5 Ionising radiation 

In order to obtain the global reference for ionising radiation impact category, some 

assumptions were made, especially with respect to the characterization step: 

● CF “emissions to air, unspecified” and “to water, unspecified” were adopted. 

● in order to raise the coverage level, emissions of “U-235 + U-236” to liquid 
effluents for France and Russia were characterized by using the CF of U-235 to 

water, unspecified; no CF is available in ILCD for U-236. 
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● With the same purpose, emissions of “U-233 + U-234” for France and Russia, 

were characterized by using the CF of U-234; no CF is available in ILCD for U-
233. 

● “Uranium” flows for the UK and India were characterized by using the CF of U-
235, which is the reference elementary flow for ionising radiation category. 

● In order to cover a higher number of flows, the aggregated flow of “Pu-238 + Pu-
239 + Pu-240” to airborne effluents was characterized by using the CF available for 

“plutonium, to air unspecified”). 

Inventory data at country level (Table 19) were available for the emissions due to nuclear 
spent fuel reprocessing activities. They were available for 21 flows out of 42 for which 

there is a CF in ILCD, contributing to a good (medium-high) inventory coverage. 

Table 19: Characterized inventory of country-based emissions of radionuclides from nuclear spent-fuel reprocessing.  

Country Type of Emission Nuclide kBq U-235 eq 

DE Airborne C-14 1.60E+08 

RU Airborne C-14 3.76E+10 

IN Airborne C-14 3.75E+08 

UK Airborne C-14 2.73E+09 

JP airborne C-14 6.23E+08 

FR Airborne C-14 1.60E+11 

RU Liquid Co-58 3.30E+06 

FR Liquid Co-58 2.01E+02 

RU Airborne Co-60 9.67E+04 

RU Liquid Co-60 3.54E+09 

IN Liquid Co-60 2.79E+07 

UK Liquid Co-60 2.03E+08 

FR Airborne Co-60 5.72E+03 

FR Liquid Co-60 1.34E+08 

RU Airborne Cs-134 6.94E+04 

RU Liquid Cs-134 1.16E+10 

IN Liquid Cs-134 1.03E+08 

UK Airborne Cs-134 3.55E+02 

UK Liquid Cs-134 7.47E+08 

FR Airborne Cs-134 2.96E+03 

FR Liquid Cs-134 5.12E+08 

RU Airborne Cs-137 7.83E+04 

RU Liquid Cs-137 1.34E+10 

IN Airborne Cs-137 8.16E+03 

IN Liquid Cs-137 5.24E+09 

UK Airborne Cs-137 1.18E+03 

UK Liquid Cs-137 4.05E+07 

UK Airborne Cs-137 5.93E+04 

UK Liquid Cs-137 3.81E+10 

FR Airborne Cs-137 2.78E+03 

FR Liquid Cs-137 8.49E+09 
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Country Type of Emission Nuclide kBq U-235 eq 

DE Airborne H-3 1.29E+06 

DE Liquid H-3 1.84E+03 

RU Airborne H-3 9.07E+06 

RU Liquid H-3 5.01E+07 

IN Airborne H-3 9.11E+06 

IN Liquid H-3 4.09E+06 

UK Airborne H-3 1.77E+05 

UK Liquid H-3 1.95E+03 

UK Airborne H-3 6.63E+07 

UK Liquid H-3 2.97E+07 

JP airborne H-3 1.19E+06 

JP liquid H-3 2.32E+05 

FR Airborne H-3 3.86E+07 

FR Liquid H-3 2.13E+08 

DE Airborne I-129 7.09E+04 

RU Airborne I-129 4.73E+07 

RU Liquid I-129 8.05E+09 

IN Airborne I-129 5.87E+07 

IN Liquid I-129 1.77E+08 

UK Airborne I-129 2.93E+06 

UK Airborne I-129 4.27E+08 

UK Liquid I-129 1.29E+09 

JP airborne I-129 4.37E+05 

JP liquid I-129 3.91E+04 

FR Airborne I-129 2.01E+08 

FR Liquid I-129 6.45E+09 

DE Airborne I-131 8.57E+00 

RU Airborne I-131 8.79E+02 

RU Liquid I-131 4.03E+07 

IN Airborne I-131 3.69E+02 

UK Airborne I-131 9.07E+01 

UK Airborne I-131 2.68E+03 

FR Airborne I-131 1.73E+03 

FR Liquid I-131 2.74E+05 

RU Airborne I-133 5.45E+01 

FR Airborne I-133 7.44E+01 

RU Airborne Kr-85 3.50E+08 

IN Airborne Kr-85 4.14E+07 

UK Airborne Kr-85 0.00E+00 

UK Airborne Kr-85 3.01E+08 

JP airborne Kr-85 2.18E+05 

FR Airborne Kr-85 1.49E+09 

RU Liquid Mn-54 2.56E+07 
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Country Type of Emission Nuclide kBq U-235 eq 

FR Liquid Mn-54 3.05E+04 

IN Airborne Pu-238+Pu-239+Pu-240 1.06E+04 

UK Airborne Pu-238+Pu-239+Pu-240 7.70E+04 

RU Liquid U-233+U-234 4.37E+05 

FR Liquid U-233+U-234 1.39E+05 

RU Liquid U-235+U-236 3.84E+06 

FR Liquid U-235+U-236 2.71E+05 

RU Liquid U-238 4.10E+05 

FR Liquid U-238 3.72E+04 

IN Liquid Uranium  3.47E+07 

UK Liquid Uranium 2.52E+08 

  Emission - totals: 3.03E+11 

 

In this case, the major contributors to the global impact due to reprocessing activities 
were the emissions to air of C-14 (nearly 53%) from La Hague, French reprocessing plant; 

followed by C-14 emitted to air by Russian reprocessing structures and Cs-137 to liquid 

effluents from UK which stand at approximately 13% out of the overall impact.  

Generally, energy production from nuclear sources contributes the most top the overall 

global impact, when compared with reprocessing (Table 20). 

Table 20: Nuclear energy production and nuclear spent-fuel reprocessing contribution to ionising radiation global 
impacts. 

Radiative emission type kBq U-235 eq Percentage 

Global Radiative emissions to air and water from energy 
production (nuclear) - 2010  

1.74E+12 85% 

Global Radiative emissions to air and water from nuclear spent-
fuel reprocessing - 2010 

3.04E+11 15% 

Uncertainties in the calculation of the global reference for ionising radiation may derive 
from the selection of characterization factors; the extrapolation of Indian and Russian 

emission profiles; the inclusion of Japanese emissions which are not updated; the lack of 
accounting for the emissions from non-nuclear activities (radio-chemicals production and 

research facilities), the discharge of radionuclides from oil and gas industry and the 

emissions to air and water from the end-of-life scenario of gypsum boards (taken into 
consideration for the EU-27 reference). 

3.2.6 Photochemical ozone formation 

The global normalisation factor for photochemical ozone formation was built on the data 

collected from EDGAR v.4.3.1 (EC-JRC & PBL, 2016) and presented in table 21. Inventory 

data are available for four flows out of 132 for which there is a CF in the ILCD. Values for 
single NMVOC flows are missing in the current literature. Overall, this led to a very low 

completeness of inventory coverage. 
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Table 21: Characterized inventory of global emissions for photochemical ozone formation. 

ILCD elementary flows 
Formula/abbreviations 

 

Global 2010  

(kg NMVOC eq) 

non-methane volatile 

organic compounds 
NMVOC 1.35E+11 

methane CH4 3.76E+09 

nitrogen oxides NO2 1.13E+11 

carbon monoxide CO 2.83E+10 

 Total 2.80E+11 

The NF for photochemical ozone formation presents a relative contribution as follows: 48% 
NMVOC, which is the major contributor to the overall impact, followed by NO2 (40%), CO 

(10) and CH4 (less than 2%). 

3.2.7 Acidification 

The calculation of the global normalisation factor for acidification led to three results, 

respectively built on the inventories taken from EDGAR v.4.3.1 (EC-JRC & PBL, 2016), 
ECCAD v.6.6.3 (GEIA, 2016) and Oita et al. (2016). In ILCD NOx flows are mapped as 

NO2, i.e. they share the same CF. We decided to map the flows of NOx and NO2 as NO2, 

since the ratio between NO and NO2 is unknown from the statistics. The results are 
reported in table 22. 

Table 22: Characterized inventories of global emissions for Acidification category.  

 
 Global 2010 (mol H+ eq) 

ILCD elementary flows formula 
EDGAR 

v.4.3.1 

ECCAD 

v.6.6.3 

Oita et al. 

(2016) 

nitrogen oxides NOx (as NO2) 8.35E+10 5.24E+10 2.59E+10 

sulfur dioxides SO2 1.34E+11 1.28E+11 1.64E+11 

ammonia NH3 1.65E+11 1.27E+11 1.36E+11 

 Total 3.83E+11 3.07E+11 3.26E+11 

 

Comparing the alternative inventories, they all cover the same number and type of flows, 
appearing complete in terms of the three flows found for this impact category. In fact, 

inventory data are available for three flows out of six for which there is a CF in the ILCD. 
The flows of nitrogen monoxide (NO), sulfur trioxide (SO3) and sulfur oxides (SOx) were 

missing for each inventory, mainly because no statistics on these compounds were 
available in the current literature.  

According to the hierarchical approach proposed in section 2, each inventory is based on 

a reliable source, thus the characterized inventories can be considered as comparable. 
However, comparing the figures across the characterized single flows (see table 23), the 

corresponding substances do not contribute with the same magnitude to the overall 
impact. For instance, for each characterized inventory NO2 represents the minor 

contributor as acidifying substance, although figures vary within a range from 8% to 22%. 
SO2 and NH3, instead, represent the first or the second most important contributor to 

acidification depending on the source taken into account. 
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Table 23: Contribution (%) of each flow to the relative global impact, according to each data source adopted. 

ILCD elementary 

flows 
formula EDGAR v.4.3.1 ECCAD v.6.6.3. Oita et al. (2016) 

nitrogen oxides NOx (as NO2) 22% 17% 8% 

sulfur dioxides SO2 35% 42% 50% 

ammonia NH3 43% 41% 42% 

 total 100% 100% 100% 

 

In order to overcome these discrepancies and to be consistent with the previous choices 

made for other impact categories dealing with the same substances, we decided to adopt 
EDGAR as unique source of data. The reason of this choice refers to the fact that EDGAR 

characterized total score for the acidification global reference is the highest, compared 
with the other figures, thus avoiding underestimation of the overall impact. It is relevant 

to note that this choice may generate a certain level of uncertainty (e.g. over-estimation) 
of the global normalisation factor for acidification category. 

It is important to highlight that the ILCD method does not include characterization factors 
for acidifying substances emitted to soil, such as manure and fertilizers. Their impact, as 

previously mentioned in section 2, is accounted as emissions into air of NH3 from 

secondary volatilization after their application to soil. Together with the uncertainties 
associated to the selection of the inventory source, this may be an additional source of 

uncertainty, affecting the calculation of normalisation factor in terms of underestimation 
of the global impacts due to acidifying substances. Also the choice underlying the use of 

characterization factors, e.g. for NOx mapped as NO2, may potential generate uncertainty, 
lowering the robustness of the inventory.  

3.2.8 Terrestrial eutrophication 

The calculation of the global reference for terrestrial acidification led to three possible 
results, respectively built on the inventories taken from EDGAR v.4.3.1 (EC-JRC & PBL, 

2016), ECCAD v.6.6.3 (GEIA, 2016) and Oita et al. (2016). NOx was retrieved as both NOx 
and NO2, and mapped into NO2 since these flows have the same CF in ILCD and statistics 

do not provide detailed information on the amount of NO and NO2. Then, as for the other 
categories dealing with NOx, the corresponding characterization factor was used for 

calculating the midpoint impact indicator. The results are reported in table 24. 

Table 24: Characterized inventories of global emissions for Terrestrial eutrophication category.  

  Global 2010 (mol N eq.) 

ILCD elementary 

flows emission formula  EDGAR v.4.3.1 ECCAD v.6.6.3 
Oita et al. 

(2016) 

ammonia NH3 (to air) 7.38E+11 5.66E+11 6.06E+11 

nitrogen oxides NOx (as NO2, to air) 4.81E+11 3.02E+11 1.49E+11 

 Total 1.22E+12 8.68E+11 7.55E+11 

All the options for the inventory cover the same number and type of flows, appearing 
complete in terms of the two flows found for this impact category, although the coverage 

is relatively low for each inventory option. In fact, inventory statistics are available for two 
flows out of six for which there is a CF in the ILCD.  

The flows of nitrogen monoxide (NO), nitrate (NO3
-), nitrite (NO2

-) and ammonium (NH4
+) 

were not included within the inventories, as that no statistics on these compounds were 

available in the literature.  
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According to the hierarchical approach proposed in section 2, each inventory is based on 

a reliable source providing estimations of atmospheric emissions coming from 
governmental or national research institutions. Additionally, comparing the figures across 

the characterized single flows of NH3 and NOx (see table 25), corresponding substances in 
at least two out of three characterized inventories (i.e. EDGAR v.4.3.1 and ECCAD v.6.6.3) 

approximately contribute with the same magnitude to the overall impact, thus these 
characterized inventories can be considered as comparable. For instance, NH3 represents 

the major contributor to terrestrial eutrophication-related impacts; while, NOx, as NO2, 
represents the substance that less contribute to the overall impact. 

Table 25: Contribution (%) of each flow to the relative global impact, according to each data source adopted 

ILCD 

elementary 

flows 

emission formula  EDGAR v.4.3.1 ECCAD v.6.6.3. Oita et al. (2016) 

ammonia NH3 (to air) 61% 65% 80% 

nitrogen oxides NOx (as NO2, to air) 39% 35% 20% 

 Total 100% 100% 100% 

 

However, as explained in section 2, EDGAR database cover emissions coming from a 

broader range of sectors, when compared with the other data sources. Therefore, for the 
sake of inventory completeness and to be consistent with the previous choices made for 

other impact categories dealing with the same substances (e.g. acidification and 
particulate matter/respiratory inorganics), we chose of using EDGAR as unique source of 

data. The reason behind this decision is due even to the fact that EDGAR total score for 
the global reference is the highest, compared with the other figures, thus avoiding 

underestimation of the overall impact. Nevertheless, it is relevant to highlight that this 

choice may generate a certain level of uncertainty (e.g. over-estimation) of the global 
normalisation factor for terrestrial eutrophication category. 

Uncertainty may derive also from the fact that characterisation factors are provided for 
deposition from air and not for emissions into soil. Additionally, the choice underlying the 

use of characterization factors, e.g. for NOx mapped as NO2, may potential generate 
uncertainty, lowering the robustness of the inventory. 

Generally, although the pretty good quality of data, the robustness of the inventories is to 
be considered medium-high due to the uncertainties stemming from the limited 

completeness of the inventory and the characterization factors, as mentioned above. 

3.2.9 Freshwater eutrophication 

The global reference for 2010 for freshwater eutrophication (table 26) has been built on 

inventory data available for two flows out of six for which ILCD provides a CF in the 
freshwater eutrophication impact category. Values for phosphate and phosphoric acid, 

both to water and to soil, are missing in the available statistics and literature, limiting the 

completeness of the inventory. 

Global P budget (i.e. the difference between inputs from the application of fertilizer and 

manure, and the loss through crop harvesting, grazing or grass mowing) and global P 
runoff (i.e. the only pathway which is assumed to move P to water sources), were mapped 

into ILCD elementary flows as “Phosphorus, total (to soil)” and “Phosphorus, total (to 
water)”, respectively. No details about specific emissions, such as phosphate and 

phosphoric acid, were found.  
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Table 26: Characterized inventory of global emissions for Freshwater eutrophication category. 

ILCD elementary flows   
Global 2010 (kg P eq) 

Bouwman et al., 2013 

Phosphorus, total (to soil) 1.32E+10 

Phosphorus, total (to water) 4.40E+09 

Total 1.76E+10 

 

Approximately 75% of the eutrophication impact on freshwater is due to emissions of 
phosphorous to soil, predominantly following the application of fertilizers and animal 

manure. The remaining impact derives from phosphorous emissions to water. In fact, it is 
worth noting that the global reference calculated on the data from Bouwman et al. (2013) 

cover the impacts associated to the agricultural systems, including both crop production 
and livestock. This may lead to a potential underestimation of the overall figure for 

freshwater eutrophication category, thus, limiting the robustness of the normalisation 

factor.  

3.2.10 Marine eutrophication 

The calculation of the global reference for marine eutrophication is based on the inventory 
deriving from the combination of statistics that proceed from different sources, as 

presented in table 27. In ILCD, NOx flows are mapped as NO2, i.e. they are characterized 

by the same CF. Both for this reason and for the fact that the NO2 and NO amounts are 
unknown from the statistics, we mapped the flows of NOx and NO2 as NO2. Subsequently, 

the corresponding characterization factor was used for calculating the midpoint impact 
indicator.  

Table 27: Characterized inventories of global emissions for Marine eutrophication category. 

  
Global 2010 (Kg N eq) 

ILCD 

elementary 

flows 

formula/abbr. 
EDGAR 

v.4.3.1 

ECCAD 

v.6.6.3 

Bouwman 

et al. 

(2013) 

Oita et al. 

(2016) 

Global 

combined 

inventory 

nitrogen, total 

(excluding N2) 

N total 

(excluding N2) 
- - 1.44E+11 - 1.44E+11(*) 

nitrogen 

oxides 
NOx (as NO2) 4.39E+10 2.75E+10 - 1.36E+10 4.39E+10(**) 

ammonia NH3 5.04E+09 3.87E+09 - 4.14E+09 5.04E+09(**) 

nitrate NO3- - - - 2.10E+09 2.10E+09(***) 

 total 4.89E+10 3.14E+10 1.44E+11 1.99E+10 1.95E+11 

(*) values from Bouwman et al., 2013; (**) values from EDGAR v.4.3.1; (***) values from Oita et al., 2016 

 

Three out of four data sources retrieved for building the inventory for marine 

eutrophication, i.e. EDGAR v.4.3.1 (EC-JRC & PBL, 2016), ECCAD v.6.6.3 (GEIA, 2016) 
and Oita et al. (2016), cover the same type of flows, namely NOx (mapped as NO2, 

according to the methodology presented in section 2) and NH3. Oita et al., (2016) covered 

also the nitrate flow, appearing to be the most complete data source. However, as 
explained in section 2, EDGAR database covers emissions coming from a broader range of 

sectors, when compared with the other data sources. Therefore, according to that and to 
be consistent with the previous choices made for the other impact categories dealing with 

these flows, we decided to use EDGAR v.4.3.1 as main source of data, although it is not 
the most complete dataset in terms of number of covered flows. In order to build a more 

comprehensive and robust inventory for the calculation of global NF for marine 
eutrophication, we filled the gaps with data from the other reliable sources. In fact, we 

included in the final inventory the value of N total from Bouwman et al. (2014) and the 
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figure associated to nitrate flow from Oita et al. (2016). These values are comparable with 

the others from EEDGAR v.4.3.1 in terms of their magnitude; hence, we used them to 
complement the inventory.  

According to the inventory built on EDGAR, data were available for four flows out of 10 for 
which there is a CF in the ILCD for marine eutrophication. The flows of nitrogen monoxide 

(NO), nitrite (NO2
-) and ammonium (NH4

+) were not accounted within the inventories, as 
no statistics on these compounds were found in the current literature. Generally, emissions 

deriving from manure and fertilizers’ applications are indirectly accounted as NH3 
emissions, as already mentioned by Sala et al. (2015) for EU-27 reference. 

Within the characterized combined inventory, the highest contributor to this impact 

category is N total covering 74% of the overall impact, distantly followed by NOx (as NO2) 
(22%). NH3 and nitrate, summed together cover less than 5% of the global impact. 

3.2.11 Land use 

The results for Land use impact category are reported in table 28. 

Table 28: Characterized global inventory for Land use category. 

ILCD elementary flow - aggregated  
Global 2010 

(Farago et al., submitted) 

Land Use / Soil quality 1.00E+15 

 

The impact assessment model (Mila i Canals, 2007) provides only few characterization 

factors (9 for occupation, 21 for transformation – from and to). Actually, all the macro-
classes of Land use mapped by Milà i Canals (2007) are covered by an inventory value, 

however, for the additionally differentiated classes (e.g. irrigated vs non-irrigated 
agricultural systems), was not possible to find a match from the inventory side. Concerning 

country-specific data, complete unavailability occurs only in few cases, i.e. 13 – 26 
countries out of 208, with the exception of some transformation flows and fallow land, 

whose data are mostly missing. Nevertheless, all the land use flows for which inventory 

data are available are mapped, with a final coverage of >99% at global scale. This leads 
to a significant global representativeness. In order to evaluate the robustness and 

accuracy of the current results, a number of comparisons with other inventories or data 
sources is reported in Farago et al. (submitted). 

Additionally, a contribution analysis highlights urban land transformation (38%), 
permanent meadows occupation (17%), grassland occupation (14%), arable land 

occupation (13%) and urban land occupation (8%) as the most contributing flows (Laurent 
et al., submitted).  

It is important to highlight that the necessary extrapolation carried out in order to fill the 

data gaps related to transformation flows could reduce the robustness of the inventory, as 
already explained in section 2.2.11. This could constitute a bias in the calculation of the 

final normalisation reference. 

3.2.12 Water depletion 

Results for the water depletion impact category are reported in table 29. 

Differently from Sala et al. (2015), a specific CF was assigned to every country without 
taking an average one, although in this way the calculation for this indicator could not be 

in line with the ones built for the other impact categories. The rationale was to avoid 
additional underestimations of the impact. Furthermore, the LCIA guidelines (EC-JRC 

2012) and the underpinning model (Frischknecht and Büsser Knöpfel, 2013) suggest a 
scheme providing country-specific CFs based on the scarcity ratio of each country. In this 

work we adopted the abovementioned scheme and the scarcity ratio reported in 
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Frischknecht and Büsser Knöpfel (2013). In order not to limit the coverage, some 

approximations were made: 

● CFs for Bosnia & Herzegovina, Serbia and Montenegro were based on Albania 

scarcity ratio. 

● CF for Singapore was based on Malaysia scarcity ratio. 

● CFs for San Marino and Vatican City were assumed to be the same as for Italy. 

Concerning withdrawal-based calculation, the robustness of the inventory is strongly 

undermined by the poor coverage of the inventory: only 79 countries, i.e. 37%, out of a 
list of 215 countries originally selected (namely, a summary of all the countries reported 

in the consulted databases), were associated to an inventory value referred to the 2008-

2014 timespan taken into account. However, for each of these inventory values, a country-
specific CF was available. The final calculation returned a very high contribution 

respectively by India (53%), Pakistan (14%) and China (13%). 

On the other hand, by using the consumption-based inventory, a global very high coverage 

is reached throughout the inventory: 212 countries out of 215 were associated to an 
inventory value. Despite that, from the impact assessment side the coverage was poor: 

by adopting the current ILCD method, it was possible to calculate a CF just for 54% of the 
countries’ list, i.e. 157 out of 212. The most significant contributors were, respectively, 

India (35%) and Egypt, Pakistan and Iran (all covering 10% of the total impact), followed 

by China contributing for 7%. 

Table 29: Country-based characterized inventory (withdrawal and consumption of blue water) for Water depletion 
category. Sources: Aquastat (2016), Eurostat (2016), OECD (2016), WaterGAP (Müller Schmied et al., 2014). 

Country 

Water depletion 

withdrawal data 

(m3 water eq) 

Water depletion 

consumption data 

(m3 water eq) 

Afghanistan  1.80E+12 

Albania  9.52E+09 

Algeria 3.38E+10 7.52E+10 

Angola  3.98E+07 

Argentina 1.51E+09 8.67E+08 

Armenia 1.08E+11 1.33E+11 

Australia 5.39E+08 1.26E+09 

Austria 4.19E+07 1.21E+07 

Azerbaijan 4.41E+11 7.36E+11 

Bahrain  5.90E+09 

Bangladesh 1.32E+10 2.34E+10 

Barbados  4.24E+08 

Belarus 5.57E+08 2.95E+08 

Belgium 1.69E+10 6.19E+09 

Belize  3.38E+06 

Benin  5.16E+06 

Bhutan 1.35E+07 1.80E+07 

Bolivia 8.35E+07 3.97E+07 

Bosnia & Herzegovina  9.60E+08 

Botswana  6.71E+06 

Brazil 2.99E+09 8.22E+08 

Bulgaria 2.19E+11 5.16E+11 
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Country 

Water depletion 

withdrawal data 

(m3 water eq) 

Water depletion 

consumption data 

(m3 water eq) 

Burkina Faso  1.08E+08 

Burundi  5.13E+07 

Cambodia  1.51E+08 

Cameroon  2.61E+07 

Canada 1.55E+09 4.42E+08 

Chad  2.39E+07 

Chile  1.61E+09 

China 6.19E+12 4.64E+12 

Colombia 4.71E+08 2.03E+08 

Comoros  6.24E+04 

Congo  1.08E+06 

Congo, DRC  9.88E+06 

Costa Rica 3.14E+02 2.84E+08 

Croatia 2.70E+07 4.66E+07 

Cuba 7.22E+10 7.76E+10 

Cyprus 7.39E+09 1.07E+11 

Czech Republic 1.21E+09 8.34E+08 

Denmark 4.81E+08 2.41E+09 

Djibouti  1.47E+08 

Dominican Republic 7.42E+10 3.71E+10 

Ecuador  1.57E+09 

Egypt 2.87E+12 6.75E+12 

El Salvador  4.78E+08 

Equatorial Guinea  3.60E+05 

Eritrea  2.65E+09 

Estonia 6.78E+08 1.45E+08 

Ethiopia  4.90E+09 

Finland  5.93E+07 

France 1.75E+10 2.03E+08 

French Guiana  9.36E+06 

Georgia 6.71E+08 7.26E+08 

Germany 5.03E+10 1.17E+10 

Ghana  1.36E+07 

Greece  1.04E+10 

Guatemala  3.80E+08 

Guinea  1.42E+07 

Guinea-Bissau  7.75E+06 

Guyana 5.78E+07 4.99E+07 

Haiti 5.82E+09 7.87E+09 

Honduras  2.79E+07 

Hungary 4.78E+08 1.24E+08 

Iceland 2.94E+08 4.24E+06 

India 2.80E+13 2.38E+13 
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Country 

Water depletion 

withdrawal data 

(m3 water eq) 

Water depletion 

consumption data 

(m3 water eq) 

Indonesia  8.95E+10 

Iran  6.49E+12 

Iraq  2.30E+12 

Ireland 6.06E+06 7.42E+06 

Israel 4.93E+10 3.27E+11 

Italy 4.68E+10 5.98E+10 

Jamaica  5.36E+08 

Japan 5.59E+10 2.70E+10 

Jordan  8.47E+10 

Kazakhstan 7.78E+11 1.23E+12 

Kenya 1.29E+10 6.01E+09 

Kuwait  2.29E+10 

Kyrgyzstan  5.63E+11 

Laos  4.92E+07 

Latvia 1.10E+07 1.40E+07 

Lebanon  2.58E+11 

Lesotho  1.04E+07 

Liberia  1.91E+06 

Libya 2.15E+11 6.20E+11 

Lithuania 2.98E+09 1.48E+09 

Luxembourg 1.35E+08 6.19E+08 

Macedonia (The former Yugoslav Republic of) 1.55E+09 4.69E+09 

Madagascar  4.35E+08 

Malawi  2.99E+08 

Malaysia  2.51E+09 

Mali  3.90E+09 

Malta 1.51E+09 1.24E+09 

Mauritania  2.54E+10 

Mauritius  6.62E+08 

Mexico 3.75E+10 3.63E+10 

Moldova (Republic of)  3.13E+10 

Mongolia 2.20E+07 3.32E+07 

Montenegro 2.37E+08 6.94E+08 

Morocco 4.19E+10 1.58E+11 

Mozambique  4.30E+07 

Myanmar  4.67E+09 

Namibia  9.75E+06 

Nepal  1.51E+10 

Netherlands 1.35E+09 4.89E+08 

New Zealand 5.20E+06 5.32E+06 

Nicaragua 6.18E+07 5.98E+07 

Niger  9.87E+08 

Nigeria 4.59E+09 1.03E+09 
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Country 

Water depletion 

withdrawal data 

(m3 water eq) 

Water depletion 

consumption data 

(m3 water eq) 

North Korea  1.16E+10 

Norway  1.41E+06 

Oman  1.49E+11 

Pakistan 6.75E+12 6.47E+12 

Panama 4.15E+07 2.08E+07 

Paraguay 9.65E+07 1.54E+07 

Peru 5.46E+08 1.19E+09 

Philippines 8.46E+11 2.31E+11 

Poland 1.31E+10 3.82E+09 

Portugal  7.08E+09 

Puerto Rico 4.31E+10 4.08E+09 

Qatar  2.28E+10 

Romania 2.29E+09 5.66E+09 

Russia 2.44E+09 1.67E+09 

Rwanda  3.07E+06 

San Marino  9.90E+07 

Saudi Arabia  1.11E+12 

Senegal  4.79E+09 

Serbia 5.74E+09 2.92E+09 

Sierra Leone  7.95E+06 

Singapore  5.07E+07 

Slovakia 2.40E+07 4.32E+07 

Slovenia 3.70E+07 3.65E+07 

Somalia  1.56E+11 

South Africa 6.22E+10 1.01E+11 

South Korea  2.74E+09 

South Sudan 2.64E+09 0.00E+00 

Spain 5.90E+10 1.07E+11 

Sri Lanka  6.25E+11 

Sudan 1.08E+11 1.03E+11 

Suriname  1.91E+07 

Swaziland  9.30E+09 

Sweden 1.36E+07 1.05E+07 

Switzerland 7.42E+07 3.39E+07 

Syria  1.20E+12 

Tajikistan  1.27E+11 

Thailand  2.67E+11 

Togo  3.97E+06 

Trinidad & Tobago 5.66E+08 2.27E+08 

Tunisia 1.33E+10 5.32E+10 

Turkey 1.73E+10 4.72E+10 

Turkmenistan  1.25E+12 

Uganda 2.55E+07 8.28E+06 
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Country 

Water depletion 

withdrawal data 

(m3 water eq) 

Water depletion 

consumption data 

(m3 water eq) 

Ukraine 5.47E+11 1.39E+12 

United Arab Emirate  3.50E+11 

United Kingdom 5.70E+08 6.12E+08 

United States 1.95E+11 1.49E+11 

Uruguay  6.47E+08 

Uzbekistan  2.23E+12 

Vatican City  1.03E+08 

Venezuela  3.10E+08 

Vietnam  1.06E+11 

Yemen  4.87E+11 

Zambia  1.82E+07 

Zimbabwe  4.25E+10 

TOTAL 4.81E+13 6.80E+13 

3.2.13 Resource depletion - Energy carriers, mineral and metals 

Concerning minerals and metals, an inventory value was associated to 66 out of 73 ILCD 
elementary flows, reported in table 30. This means that the coverage is very high (i.e. 

nearly 90%), which positively contributed to the overall robustness of the calculated NF. 

Table 30: Characterized inventory of global inventories (minerals and metals and energy carriers) for Resource depletion 
category. 

ILCD elementary flows 

(minerals and metals) 
GLOBAL 2010 (kg Sb eq) 

Rare earths (excluding Yttrium) 9.44E+04 

aluminum 1.05E+06 

antimony 1.35E+08 

arsenic 4.95E+07 

bauxite 2.07E+03 

beryllium 7.51E+05 

bismuth 3.41E+07 

boron 2.87E+06 

cadmium 2.45E+07 

carbon 4.88E+05 

chromium 3.58E+01 

cobalt 2.25E+06 

copper 4.06E+07 

fluorspar 1.41E+07 

gallium 6.68E+02 

garnet, industrial 6.20E+06 

germanium 2.34E+09 

gold 8.99E+07 

indium 3.65E+08 
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ILCD elementary flows 

(minerals and metals) 
GLOBAL 2010 (kg Sb eq) 

iodine 6.44E+01 

iron 2.14E+06 

lead 6.15E+07 

lithium 3.36E+05 

magnesium 1.88E+00 

manganese 3.54E+06 

mercury 5.14E+06 

molybdenum 1.66E+07 

nickel 6.48E+06 

niobium 4.13E+06 

palladium 1.84E+06 

perlite 6.44E+04 

phosphorus 7.59E+05 

platinum 1.66E+06 

potassium 1.17E+05 

rhenium 1.53E+06 

selenium 1.66E+07 

silver 1.87E+08 

sodium chloride 1.50E+05 

sodium sulfate 5.95E+04 

strontium 7.44E+07 

sulfur 2.66E+07 

talc 2.35E+06 

tantalum 7.73E+06 

tellurium 6.41E+05 

thallium 2.98E+07 

tin 3.01E+07 

titanium 3.37E+06 

tungsten 1.55E+07 

vanadium 2.76E+05 

ulexite 4.53E+06 

yttrium 7.26E+06 

zinc 4.38E+07 

zirconium 1.95E+07 

Total (minerals and metals) 3.68E+09 

ILCD elementary flows 

(energy carriers) 
GLOBAL 2010 (kg Sb eq) 

hard coal (26.3 MJ/kg) 6.4E+05 



 

51 
 

ILCD elementary flows 

(minerals and metals) 
GLOBAL 2010 (kg Sb eq) 

brown coal (11.9 MJ/kg) 2.9E+05 

peat (8.4 MJ/kg) 8.9E+04 

crude oil (42.3 MJ/kg) 1.4E+06 

natural gas (44.1 MJ/kg) 8.5E+05 

uranium 1.2E+07 

Total (energy carriers) 1.5E+07 

Total Resources 3.70E+09 

 

It should be noticed that the extrapolation strategy necessarily adopted when the data 

retrieved were associated to an oxide compound of the element instead of the element 
itself, could influence the reliability of the results. Nevertheless, this strategy was used 

only in a few cases, namely six out of 60, and the extrapolated fraction (kg) out of the 
total amount of minerals and metals was very low (1%). The largest contributors to the 

overall characterized result were germanium (64%) and indium (10%). These two 
elements, together with a few other (i.e. silver, antimony, lithium, strontium and lead), 

contribute to the 90% of the impact derived from mineral and metals only. 

From the energy carriers inventory side, there is a full coverage (i.e. 100%) since all the 

ILCD elementary flows are associated to an inventory value. However, some criticalities 

could derive from the different reference year used to calculate the inventory amounts. 
This aspect could affect the robustness of the inventory itself and the accuracy of the 

overall result. From the characterization point of view, uranium leads the total impact for 
energy carriers by contributing to 78% whereas each other flow covered a <10% fraction. 

3.2.14 EU-27 vs Global normalisation factors 

A straightforward ratio EU-27 to World was calculated (table 31) in order to understand 
how the environmental pressures are distributed between the two areas. This ratio clearly 

shows the EU-27 fraction of the impacts with respect to the global scale. 

As reported in the table below, the EU-27 share of impacts does not generally exceed 30% 

of world impacts. The most significant fractions are registered in ionising radiation (nearly 
28%) and the toxicity-related categories (respectively, 21% in Human toxicity cancer, 

24% in Human toxicity non-cancer and 16% in Freshwater ecotoxicity). It is worth noting 
that these categories are the ones with the highest level of uncertainty on the inventory 

side, thus influencing the results. 

On the other hand, all the remaining impact categories present a share of global impacts 
that is below 10%. In particular, water depletion value is substantially low (i.e >1%). In 

fact, as reported in section 3.2.12, most of impact for this category is due to water 
withdrawal in extra-EU countries, namely India, Pakistan and China. Even the EU-27 

fraction for resource depletion is considerably low (i.e. < 2%), likely due to the relatively 
poor extraction activities taking place within EU-27 territory (Sala et al., 2015). 

Table 31: Comparison between global and EU-27 normalisation references for each impact category. 

Impact category 

(abbr.) 
EU-27 NFs Global NFs 

Share of the EU-27 over the 

global impact 

GWP 4.60E+12 4.81E+13 9.56% 

ODP 1.08E+07 1.34E+08 8.06% 

HTOXC 1.88E+04 9.16E+04 20.52% 

HTOXNC 2.69E+05 1.13E+06 23.81% 
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Impact category 

(abbr.) 
EU-27 NFs Global NFs 

Share of the EU-27 over the 

global impact 

RIPM 1.90E+09 6.86E+10 2.77% 

IR 5.64E+11 2.04E+12 27.65% 

POF 1.58E+10 2.80E+11 5.64% 

AC 2.36E+10 3.83E+11 6.16% 

EUTT 8.76E+10 1.22E+12 7.18% 

EUTF 7.41E+08 1.76E+10 4.21% 

EUTM 8.44E+09 1.95E+11 4.33% 

LU 3.78E+13 1.00E+15 3.78% 

FRWTOX 4.46E+12 2.75E+13 16.22% 

WD 4.06E+10 4.81E+13 0.08% 

RD-E-MM 5.03E+07 3.70E+09 1.36% 

 

To further explain the ratios reported above, we selected a number of human development 

indicators focusing on socio-economic aspects (e.g. population statistics from FAOstat and 
UNDESA (2011), gross national income from UNDP). By calculating similar ratios EU-

27/World (table 32), we highlighted the possible correlations with the results reported in 
table 31. For instance, CO2 emission totals for EU-27/World are comparable with GWP EU-

27 share calculated in this paragraph. The overall majority of EU-27 countries lay in the 
group representing the highest level of human development (see table 33). However, 

according to table 31, only 10% of global GWP is attributed to EU-27. An hypothetical 
explanation may be related to the fact that, in addition to the emissions at global level 

from other well developed countries (such as USA and Japan), EU-27 improved reducing 

emissions strategies by adopting specific programs (as Horizon 2020). Furthermore, the 
average European share of impacts is in line with the EU-27 population fraction. 

Table 32: Human development indicators (for EU-27 and World) referred to 2010. 

Socio-economic indicator EU-27 World Ratio Source: 

Population 5.00E+08 6.90E+09 7.26% UNDESA 2011  

Population 4.98E+08 6.93E+09 7.18% 
FAOstat 2016 (227 world 

countries) 

Urban population 3.7E+08 4.27E+09 8.67% 

FAOstat 2016 (227 world 

countries), data from 

UNDESA 

Gross Domestic Product (GDP) 

totals ($) 
1.69E+13 6.52E+13 25.90% 

FAOstat 2016 (227 world 

countries) 

CO2 emissions totals (kg) 3.57E+12 4.30E+13 8.30% 
FAOstat 2016 (227 world 

countries) 

Agricultural area (ha) 1.87E+08 5.38E+09 3.47% 
FAOstat 2016 (227 world 

countries) 
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Table 33: Number of countries per human development achievement categories (for EU-27 and World).  Source: Human 
report, statistical annex (UNDP, 2015).  

 Countries 

 EU-27  

World (188 

countries) 

Very High Human Development  25 93% 49 26% 

High Human Development 2 7% 56 30% 

Medium Human Development 0 0% 39 21% 

Low Human Development 0 0% 44 23% 

totals 27 100% 188 100% 

3.3 Normalisation factors based on EU-27 Basket of products for 

selected final consumption categories 

Table 34 presents the results of the BoP indicators for food, mobility and housing, 

expressed as totals for the entire EU-27 population, for the considered impact categories. 
Results of the BoP are based on an improvement of those calculated by Dewulf et al. 

(2014) and Notarnicola et al. (2017). 

Table 34:  Characterized results for BoP baseline (total EU-27). Source: Sala et al. (2016) . 

ILCD Impact Category Unit Food Housing Mobility Total BoP 

Climate change kg CO2 eq 7.81E+11 1.10E+12 1.38E+12 3.26E+12 

Ozone depletion potential kg CFC-11 eq 7.56E+05 1.45E+05 2.37E+05 1.14E+06 

Human toxicity, cancer effects CTUh 9.86E+03 1.05E+05 1.57E+04 1.31E+05 

Human toxicity, non-cancer 

effects 

CTUh 
7.01E+05 1.60E+04 1.31E+05 8.48E+05 

Particulate 

matter/Respiratory inorganics 
kg PM2.5 eq 3.60E+08 1.06E+09 6.86E+08 2.10E+09 

Ionising radiation kBq U-235 eq  1.73E+10 8.91E+10 8.76E+10 1.94E+11 

Photochemical ozone 

formation 
kg NMVOC eq 1.26E+09 2.53E+09 5.05E+09 8.84E+09 

Acidification mol H+ eq 1.26E+10 5.66E+09 5.60E+09 2.39E+10 

Eutrophication terrestrial mol N eq 5.40E+10 7.76E+09 1.54E+10 7.72E+10 

Eutrophication freshwater kg P eq 2.05E+08 6.31E+07 4.07E+07 3.09E+08 

Eutrophication marine kg N eq 5.60E+09 7.06E+08 1.56E+09 7.87E+09 

Land use kg C 7.71E+12 1.96E+12 7.41E+12 1.71E+13 

Ecotoxicity freshwater CTUe 1.93E+12 4.92E+11 9.21E+11 3.34E+12 

Water depletion m3 water eq 3.17E+10 6.55E+10 1.37E+11 2.34E+11 

Resource depletion - energy 

carriers, minerals and metals 
kg Sb eq 1.40E+07 5.40E+07 1.62E+08 2.30E+08 
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Interpretation of the results in the table revealed that the production and use phases 

dominate the impacts with an average contribution of 51.8 and 45.6%, respectively, 
whereas EoL was much less contributing. With respect to the production phase, relative 

contributions to the overall life cycle impacts were the highest for human toxicity (cancer 
effects) (89.2%) and terrestrial eutrophication (82.8%), moderate for impacts like climate 

change (31.9%) and low for ozone depletion (15.1%). By analyzing the relative 
contribution of the use phase to the total life cycle impacts, ozone depletion (85.7%), 

photochemical ozone formation (71.9%) and climate change (69.8%) emerged as the 
most significantly impacted categories whereas human toxicity (non-cancer effects) was 

instead poorly impacted (13.4%). The role of the three BoPs could be analyzed in the 

production phase. On average, food production contributed 54.5% to the total impact by 
production, mobility 34.3%, and shelter 11.2%. Analyzing the impacts of the different 

BoPs at the use phase, on average it turns out that it is dominated by housing (51.8%) 
and mobility (45.9%), while food only accounts for 2.2%. With respect to EoL, impacts 

are dominated by mobility: 90.6% on average. Contributions of food is 9.5%, whereas 
housing is negligible with -0.1% on average. Further refinements of the results are ongoing 

in the context of LC-IND 2 project (EC-JRC, 2016). 

3.4 Normalisation factors based on input/output (I/O) approach 

As already mentioned, the impacts estimation through the combination of EXIOBASE v. 
3.3.8 (Merciai & Schmidt, 2016) and ILCD (EC-JRC, 2011) presents some important issues. 

For instance, Huysman et al. (2016) reported that ionising radiation could not be calculated 

as completely missing from EXIOBASE, toxicity-related categories had insufficient 
elementary flows for making an adequate assessment and resource depletion could not be 

assessed as elementary flows are at a very high level of aggregation. For these reasons, 
a systematic classification of the additional EXIOBASE v. 3.3.8 environmental extensions 

to the ILCD nomenclature was required in the present work. We made some extrapolations 
in order to obtain a CF for most of EXIOBASE environmental extensions, even the 

aggregated ones. This aspect could affect the robustness of the impact assessment. 

The final classification is available upon request; the main criteria are listed below. 

Extrapolation hierarchy in assigning a CF: 

5. Weighted average CF: in EXIOBASE emissions in air are aggregated. In ILCD a 
characterization factor for a number of CFCs and HCFCs is provided as well as their 

quantities in our EU-27 inventory (Sala et al., 2015). In these cases, a weighted 

average CF is adopted. The CF is obtained by summing up the characterized value for 
each substance member of the aggregated group (i.e. the inventory amount multiplied 

by the CF) and then dividing this sum by the sum of the inventory amounts: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔 𝐶𝐹 =
∑ 𝑋𝑖 ∗ 𝐶𝐹𝑖

𝑖=1
𝑛

∑ 𝑋𝑖
𝑖=1
𝑛

 

Where: Weighted Avg CF is the calculated characterization factor, Xi is the inventory 

amount referred to the substance i and CFi is the characterization factor provided by 

ILCD method for the substance i. 

6. Average CF: this assumption is adopted especially for some metal emissions, i.e. 

chromium and arsenic. EXIOBASE does not provide any speciation referred to the metal 
emission (namely, metal or ion form) whereas ILCD CFs are calculated for almost three 

forms. In this case, an average CF calculated on the available ones is taken. 

7. Proxy CF: when ILCD does not provide CF for one or more specific EXIOBASE 
substances, a proxy substance (e.g. same chemical group, i.e. dioxins, or same 

pollutant group, i.e. POPs, PBTs) is adopted for extrapolating a CF. 

a. Missing substances: when no proxies are available, the inventory amount of the 

substance is reported anyway. 
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Main assumptions in the classification: 

● Dinitrogen oxide in air: the CF value from UNFCCC (2016) has been adopted. 

● HFCs and PFCs in air: in EXIOBASE these emissions in air are aggregated as well as in 

our EU-27 inventory (Sala et al., 2015) because data on HFCs and PFCs are provided 
by UNFCCC (2016) as aggregates and expressed in kg of CO2 equivalents. In order to 

estimate their equivalent aggregate mass, average characterization factors with 100 
years horizon were applied (GWP100 = 2.53E+03 for HFCs and 7.61E+03 for PFCs). For 

reasons of consistency with the data source, the average is calculated on the basis of 
characterization factors as reported by UNFCCC (2016). The average CF as calculated 

starting from UNFCCC (2016) set is used for GWP. 

● Minerals and metals: in order to extrapolate a robust weighted average CF for the 
EXIOBASE aggregated environmental extensions concerning mineral and metal 

resources, all the ILCD mineral and metal flows have been mapped to one of the 
aggregated EXIOBASE resources flows. 

 Bauxite and aluminium: in EXIOBASE this represents a unique environmental 
extension. Since the metal content of this extension refers 100% to aluminium, the 

selected ILCD CF is the one referring to aluminium. 

● Land use: EXIOBASE provides environmental extensions only focused on the 

occupation. Transformation is, therefore, excluded from the calculation. 

Results coming from the final calculation carried out using EXIOBASE v. 3.3.8 inventory 
data is reported in table 35. 

Table 35: Impact scores associated to World consumption according to EXIOBASE inventory. 

Impact category Unit 
Global NFs based on 

EXIOBASE 

Climate change kg CO2 eq 4.48E+13 

Ozone depletion potential kg CFC-11 eq NA 

Human toxicity, cancer effects CTUh 1.94E+05 

Human toxicity, non-cancer effects CTUh 9.70E+06 

Particulate matter/Respiratory 

inorganics 
kg PM2.5 eq 4.78E+11 

Ionising radiation kBq U-235 eq NA 

Photochemical ozone formation kg NMVOC eq 7.89E+11 

Acidification mol H+ eq 4.76E+11 

Eutrophication terrestrial mol N eq 1.27E+12 

Eutrophication freshwater kg P eq 4.74E+10 

Eutrophication marine kg N eq 8.70E+09 

Ecotoxicity freshwater CTUe 2.43E+12 

Land use kg C deficit 3.84E+14 

Water depletion m3 water eq 4.35E+11 

Resource depletion - energy carriers, 

minerals and metals 
kg Sb eq 1.47E+05 
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3.5 Normalisation factors based on EU-27 apparent consumption  

The results related to EU-27 apparent consumption are reported in table 36. 

Table 36: Impact scores associated to EU-27 apparent consumption (domestic + trade). Source: Sala et al. (2016). 

ILCD Impact Category Unit 
EU27 NFs based on 

apparent consumption 

Climate change kg CO2 eq 4.87E+12 

Ozone depletion potential kg CFC-11 eq 1.14E+07 

Human toxicity, cancer effects CTUh NA 

Human toxicity, non-cancer effects CTUh NA 

Particulate matter/Respiratory 

inorganics 
kg PM2.5 eq 2.68E+09 

Ionising radiation kBq U-235 eq 9.02E+12 

Photochemical ozone formation kg NMVOC eq 2.09E+10 

Acidification mol H+ eq 3.55E+10 

Eutrophication terrestrial mol N eq 1.01E+11 

Eutrophication freshwater kg P eq 6.01E+08 

Eutrophication marine kg N eq 8.76E+09 

Ecotoxicity freshwater CTUe NA 

Land use kg C deficit NA 

Water depletion m3 water eq 3.73E+10 

Resource depletion - energy carriers, 

minerals and metals 
kg Sb eq 5.40E+07 

 

As reported in Sala et al. (2016), the uncertainty associated with the domestic inventory 
is related to several critical aspects: i) the quality of the statistical datasets used, ii) the 

robustness of the estimation techniques adopted and iii) the classification of environmental 
statistics into elementary flows consistent with the ILCD format (EC-JRC, 2011). Benini 

and Sala (2016) estimated the errors due to methodological choices in the calculation of 
six indicators of impact category (acidification, terrestrial eutrophication, marine 

eutrophication, photochemical ozone formation, particulate matter, water depletion) for 

the EU-27 year 2010. The uncertainty and sensitivity related to methodological 
assumptions were analysed for those substances and resources contributing the most to 

the abovementioned indicators (i.e. NOx, SOx, NH3, CO, PM2.5/PM10 and water 
withdrawals). The following uncertainty sources were identified: i) selection of the sources 

of data amongst statistical database; ii) classification of environmental statistics as ILCD 
elementary flows; iii) specification of the emission sources. The most uncertain impact 

categories turned to be particulate matter and water depletion, whereas the others showed 
less variability. Other sources of uncertainty, such as input data quality and modelling 

choices, may play even a bigger role. However, both of them were only estimated by 

means of qualitative judgement, due to the difficulties in getting information related to the 
probability distributions associated to the original data sources. 

Sala et al. (2016) performed a critical analysis of the trade inventory by means of a 
sensitivity audit i.e. by detecting, investigating and discussing the most sensitive 
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assumptions that are likely to affect the most the results, both from qualitative and 

quantitative perspectives. Since the environmental impacts associated to apparent 
consumption for the toxicity-related impact categories revealed negative values, their 

reliability was questioned, as by definition the environmental impacts associated to total 
export cannot be higher than the sum of the environmental impacts stemming from 

imported goods and domestic activities. Such inconsistency could be explained by the high 
sensitivity of the results to the selection of the HS2 categories, their representative 

products and the quality of the LCI datasets. For these reasons, the results for the toxicity-
related impact categories have been not taken into account. 

In addition, even from a comparison of results with environmentally extended input/output 

tables, the robustness of the currently available bottom-up estimations associated with 
trade was questioned. Some already well-known issues related to the use of the bottom-

up emerged, particularly on (i) technological representativeness, (ii) high sensitivity to 
specific LCI datasets parameters, (iii) allocation of environmental burdens and (iv) 

completeness. In order to evaluate the robustness of this calculation, the comparison of 
results with environmentally extended input/output tables reported in Sala et al. (2016) 

is presented (table 37). The comparison included three different methodologies: i) multi-
regional input output tables, ii) single region input output table and iii) up-scaling from 

bottom-up LCI modelling either conducted within the work by Sala et al. (2016) and from 

Oliveira et al. (2014). The three methodologies are based on different approaches, as 
explained in EC-JRC (2010). A wide range of results was observed across impact 

categories. For instance, concerning ‘climate change’ impact category, the ratio between 
import and domestic differed substantially across the studies reviewed, ranging from 0.63 

(EC-JRC, 2012) to 0.07 (bottom-up modelling, method A v2); this means that, according 
to EC-JRC (2012), in addition to every kg of CO2 eq. generated domestically within the 

EU-27 other 0.63 kg of CO2 eq. are imported. The results estimated by means of input-
output tables (both multi-regional and single region) presented a higher contribution from 

imports than the bottom-up LCI modelling for acidification and photochemical ozone 

formation. However, in the case of the method used by Skenhall et al. (2015), the figures 
tended to be much closer, at least for climate change and acidification. Concerning water 

resources, the three methodologies differed dramatically. Finally, regarding ‘Resource 
depletion – energy carriers, minerals and metals’, it could be argued that the two bottom-

up estimations differ substantially and that the method by Skenhall et al. (2015) was the 
one closer to MRIOT’s result. 

Such results raised questions on the robustness of the currently available bottom-up 
estimations associated with trade. The bottom-up LCI modelling can be considered a 

powerful technique when the sample of products used for modelling trade can be seen as 

representative of the basket of products imported into an economy. In order to reach such 
representativeness a high number of products combined with a high representativeness of 

those products for the traded goods is required. In the current version, only a limited 
number of products could be included in the analysis; hence, it is likely that the set of 

products would not be sufficiently representative of the imports that occur within the EU 
27. This might explain why the bottom-up exercises reported in the table are always 

underestimating the contribution of trade if compared to the input output tables. Another 
possible source of difference is the completeness of the LC inventories used for modelling 

the products in import, possibly due to the low level of technological, time and 

geographical representativeness of the inventory. 
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Table 37: Comparison of import and domestic inventories with EEIOTs studies. Modified from Sala et al. (2016) 

Impact 

category 
Methodology additional details 

Unit of the 

indicator 

Embodied 

emissions (or 

resources) in 

import 

Domestic 

emissions (or 

resources 

extraction) 

Ratio: 

Embodie

d in 

Import 

/ 

Domestic 

Year Coverage Data source 

Economic 

accounts 

European System of 

Accounts - ESA 2010 

Current prices, 

EU28 

Million euros 4,836,617.3 7 

 

12,688,244.4 8 

 

0.38 2010 EU-28 Eurostat (2016b) 

Emissions          

Climate change Multi-Regional 

Env.Ext. Input 

Output table  

  kg CO2 eq. 3.21E+12 5.08E+12 0.63 2008 EU-27 WIOD EC-JRC (2012e) 

Multi-Regional 

Env.Ext. Input 

Output table  

only CO2 kg CO2 1.17E+12 3.96E+12 0.30 2008 EU-27 Peters et al. (2011) 

bottom-up LCI and 

upscaling 

import - method C kg CO2 eq. 9.20E+11 4.60E+12 0.20 2010 EU-27 Skenhall et al., (2015) 

bottom-up LCI and 

upscaling 

import - method B kg CO2 eq. 9.40E+11 4.60E+12 0.20 2010 EU-27 EC-JRC, (2012a) 

bottom-up LCI and 

upscaling 

import - method 

Av2 

kg CO2 eq. 3.12E+11 4.60E+12 0.07 2010 EU-27 JRC estimations, as 

reported in Benini et al. 

(2014) 

Acidification Multi-Regional 

Env.Ext. Input 

Output table  

  kt acid-eq 6.01E+02 7.24E+02 0.83 2008 EU-27 EC-JRC (2012e) 

                                          
7 Value of imports of goods and services 
8 Value of final consumption expenditure and gross capital formation, which is composed in turn by: household and non-profit institutions serving households final expenditure, 

government final consumption expenditure, gross fixed capital formation, changes in inventories, acquisition less disposal of valuables. 
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Impact 

category 
Methodology additional details 

Unit of the 

indicator 

Embodied 

emissions (or 

resources) in 

import 

Domestic 

emissions (or 

resources 

extraction) 

Ratio: 

Embodie

d in 

Import 

/ 

Domestic 

Year Coverage Data source 

bottom-up LCI and 

upscaling 

import - method C mol H+ eq 1.66E+10 2.36E+10 0.70 2010 EU-27 Skenhall et al., (2015) 

bottom-up LCI and 

upscaling 

import - method B mol H+ eq 1.12E+10 2.36E+10 0.47 2010 EU-27 EC-JRC, (2012a) 

bottom-up LCI and 

upscaling 

import - method 

Av2 

mol H+ eq 3.76E+09 2.36E+10 0.16 2010 EU-27 JRC estimations, as 

reported in Benini et al. 

(2014) 

Photochemical 

ozone formation  

Multi-Regional 

Env.Ext. Input 

Output table  

  kt NMVOC-eq 3.22E+04 2.90E+04 1.11 2008 EU-27 WIOD EC-JRC (2012e) 

bottom-up LCI and 

upscaling 

import - method C kg NMVOC eq 7.44E+09 1.59E+10 0.47 2010 EU-27 Skenhall et al., (2015) 

bottom-up LCI and 

upscaling 

import - method B kg NMVOC eq 3.72E+09 1.59E+10 0.23 2010 EU-27 EC-JRC, (2012a) 

bottom-up LCI and 

upscaling 

import - method 

Av2 

kg NMVOC eq 1.88E+09 1.59E+10 0.12 2010 EU-27 JRC estimations, as 

reported in Benini et al. 

(2014) 

Resources 

 

    

     

  

Land Use Multi-Regional 

Env.Ext. Input 

Output table  

  1000 km2 4.77E+03 3.04E+03 1.57 2008 EU-27 WIOD (EC-JRC, 2012e) 

bottom-up LCI and 

upscaling 

import - method B kg C deficit n.a. 3.74E+13 n.a. 2010 EU-27 EC-JRC, (2012a) 
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Impact 

category 
Methodology additional details 

Unit of the 

indicator 

Embodied 

emissions (or 

resources) in 

import 

Domestic 

emissions (or 

resources 

extraction) 

Ratio: 

Embodie

d in 

Import 

/ 

Domestic 

Year Coverage Data source 

bottom-up LCI and 

upscaling 

import - method 

Av2 

kg C deficit 4.88E+12 

 

3.74E+13 0.13 2010 EU-27 JRC estimations, as 

reported in Benini et al. 

(2014) 

Water Use Multi-Regional 

Env.Ext. Input 

Output table  

  km3 8.02E+02 7.32E+02 1.10 2008 EU-27 WIOD (EC-JRC, 2012e) 

bottom-up LCI and 

upscaling 

import - method C m3 water eq 6.75E+11 4.06E+10 16.6 2010 EU-27 Skenhall et al., (2015) 

bottom-up LCI and 

upscaling 

import - method 

Av2 

m3 water eq 3.81E+08 4.06E+10 0.01 2010 EU-27 JRC estimations, as 

reported in Benini et al. 

(2014) 

Material 

extraction 

Multi-Regional 

Env.Ext. Input 

Output table  

  Mt 4.99E+03 6.99E+03 0.71 2008 EU-27 WIOD (EC-JRC, 2012e) 

Single region 

Env.Ext. Input 

Output table 

Energy carriers 

only 

t 1.63E+09 8.12E+08 2.01 2010 EU-27 Schoer et al.(2012a), 

Eurostat (2013a) 

Single region 

Env.Ext. Input 

Output table 

Metals only  t 1.30E+09 1.55E+08 8.39 2010 EU-27 Schoer et al.(2012a), 

Eurostat (2013a) 

Single region 

Env.Ext. Input 

Output table 

All materials t 3.52E+09 5.93E+09 0.59 2010 EU-27 Schoer et al.(2012a), 

Eurostat (2013a) 

Resource 

depletion – 

energy carriers, 

Single region 

Env.Ext. Input 

Output table 

Energy carriers 

only 

kg Sb eq. 3.96E+06 2.14E+05 18.5 2010 EU-27 EC-JRC estimates on Schoer 

et al. (2012a) 
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Impact 

category 
Methodology additional details 

Unit of the 

indicator 

Embodied 

emissions (or 

resources) in 

import 

Domestic 

emissions (or 

resources 

extraction) 

Ratio: 

Embodie

d in 

Import 

/ 

Domestic 

Year Coverage Data source 

minerals and 

metals Single region 

Env.Ext. Input 

Output table 

Metals only kg Sb eq. 1.03E+08 3.36E+07 3.1 2010 EU-27 EC-JRC estimates on Schoer 

et al. (2012a) 

Single region 

Env.Ext. Input 

Output table 

All materials kg Sb eq. 1.07E+08 3.38E+07 3.07 2010 EU-27 EC-JRC estimates on Schoer 

et al. (2012a) 

bottom-up LCI and 

upscaling 

import - method C kg Sb eq. 9.98E+09 5.03E+07 198 2010 EU-27 Skenhall et al., (2015) 

bottom-up LCI and 

upscaling 

import - method 

Av2 

kg Sb eq. 1.48E+06 5.03E+07 0.03 2010 EU-27 JRC estimations, as 

reported in Benini et al. 

(2014) 
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3.6 Comparison of normalisation factors with Planetary Boundaries  

The final scores obtained applying different options for assessing the level of 

environmental impacts due to human interventions are summarized in Table 38 and Figure 
2, together with the Planetary Boundaries, calculated according section 2.6.1.  

Table 38: Overview of the five different perspectives adopted for calculating total NFs, together with the Planetary 
Boundaries. 

ILCD 

impact 

category 

Unit 
EC-JRC  

EU-27  

EU-27 

BoP  

EU-27 

Apparent 

consumption  

EC-JRC 

Global  
Global  I/O  

Planetary 

Boundaries 

GWP kg CO2 eq 4.60E+12 3.26E+12 4.87E+12 4.81E+13 4.48E+13 6.79E+12 

ODP kg CFC-11 eq. 1.08E+07 1.14E+06 1.14E+07 1.34E+08 NA 5.38E+08 

HTOXC CTUh 1.88E+04 1.31E+05 NA 9.16E+04 1.94E+05 NA 

HTOXNC CTUh 2.69E+05 8.48E+05 NA 1.13E+06 9.70E+06 NA 

RIPM kg PM2.5 eq 1.90E+09 2.10E+09 2.68E+09 6.86E+10 4.78E+11 NA 

IR kBq U-235 eq. 5.64E+11 1.94E+11 9.02E+12 2.04E+12 NA NA 

POF kg NMVOC eq. 1.58E+10 8.84E+09 2.09E+10 2.80E+11 7.89E+11 2.62E+10 

AC mol H+ eq 2.36E+10 2.39E+10 3.55E+10 3.83E+11 4.76E+11 9.99E+11 

EUTT mol N eq 8.76E+10 7.72E+10 1.01E+11 1.22E+12 1.27E+12 6.12E+12 

EUTF kg P eq 7.41E+08 3.09E+08 6.01E+08 1.76E+10 4.74E+10 5.79E+09 

EUTM kg N eq 8.44E+09 7.87E+09 8.76E+09 1.95E+11 8.70E+09 2.00E+11 

LU kg C deficit 3.78E+13 1.71E+13 NA 1.00E+15 3.84E+14 1.37E+14 

FRWTOX CTUe 4.46E+12 3.34E+12 NA 2.75E+13 2.43E+12 1.31E+14 

WD m3 water eq 4.06E+10 2.34E+11 3.73E+10 4.81E+13 4.35E+11 6.85E+11 

RD-E-MM kg Sb eq 5.03E+07 2.30E+08 5.40E+07 3.70E+09 1.47E+05 NA 
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Figure 2: Overview of the five different accounting perspectives adopted for calculating total NFs, displayed in logarithmic 
scale. 

In order to identify whether the framework of emissions and resource use for each applied 
approach lies within the PBs, we preferred to estimate the allowance per person for each 

impact category (see table 39 and figure 3) and compare the results with the PBs for a 
single world citizen. Therefore, the NFs referred to the EU-27 territory, namely EU-27 

domestic, BoP and apparent consumption references, were divided by the EU-27 population 
in 2010 to obtain the European citizen’s allowance for each boundary. The EU-27 

population’s value that we used was taken from Farago et al. (submitted), based on the 

estimation of the United Nations Department of Economic and Social Affairs (UNDESA, 
2011). This value stands at 500.443 million people. 

The same procedure was applied to the NFs at global level (i.e. EC-JRC Global NF and the 
normalisation factor based on I/O approach). In this case, the NF for each impact category 

was divided by the global population (UNDESA, 2011), thus obtaining the allowance per 
person on a global scale. Global population in 2010 stands at 6,895,889,018 people. 

PB values per person for climate change, ozone depletion, photochemical ozone formation, 
freshwater eutrophication and freshwater ecotoxicity were directly retrieved from Bjørn 

and Hauschild (2015). As already mentioned in section 2.6.1, PB values for terrestrial 

acidification, terrestrial eutrophication, land use and water depletion were recalculated by 
EC-JRC.  

 

Table 39: NFs per person calculated according to the five different accounting perspectives, to be compared with the per 
capita allowance of Planetary Boundaries according to Bjørn and Hauschild (2015), complemented by EC-JRC 
recalculations. 

ILCD 

impact 

category 

Unit 
EC-JRC 

EU-27 

EU-27 

BoP 

EU-27 

Apparent 

consumption 

EC-JRC 

Global 

Global 

I/O 

Planetary 

Boundaries 

GWP kg CO2 eq/pers. 9.22E+03 6.51E+03 9.73E+03 6.98E+03 6.49E+03 9.85E+02 

ODP 
kg CFC-11 

eq/pers. 
2.16E-02 2.28E-03 2.28E-02 1.94E-02 NA 7.80E-02 

HTOXC CTUh/pers. 3.77E-05 2.62E-04 NA 1.33E-05 2.82E-05 NA 

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08
1.00E+09
1.00E+10
1.00E+11
1.00E+12
1.00E+13
1.00E+14
1.00E+15

total Normalisation Factors (log scale)

EC-JRC EU27 EU-27 BoP EU-27 Apparent consumption EC-JRC Global Global I/O
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ILCD 

impact 

category 

Unit 
EC-JRC 

EU-27 

EU-27 

BoP 

EU-27 

Apparent 

consumption 

EC-JRC 

Global 

Global 

I/O 

Planetary 

Boundaries 

HTOXNC CTUh/pers. 5.39E-04 1.69E-03 NA 1.64E-04 1.41E-03 NA 

RIPM 
kg PM2.5 

eq/pers. 
3.80E+00 4.20E+00 5.36E+00 9.95E+00 6.93E+01 NA 

IR 
kBq U-235 

eq/pers. 
1.13E+03 3.88E+02 1.80E+04 2.96E+02 NA NA 

POF 
kg NMVOC 

eq/pers. 
3.17E+01 1.77E+01 4.18E+01 4.06E+01 1.14E+02 3.80E+00 

AC mol H+ eq/pers. 4.73E+01 4.78E+01 7.09E+01 5.55E+01 6.90E+01 1.45E+02 

EUTT mol N eq/pers. 1.76E+02 1.54E+02 2.02E+02 1.77E+02 1.85E+02 8.87E+02 

EUTF kg P eq/pers. 1.48E+00 6.17E-01 1.20E+00 2.55E+00 6.87E+00 8.40E-01 

EUTM kg N eq/pers. 1.69E+01 1.57E+01 1.75E+01 2.83E+01 1.26E+00 2.90E+01 

LU 
kg C 

deficit/pers. 
7.58E+04 3.42E+04 NA 1.45E+05 5.57E+04 1.99E+04 

FRWTOX CTUe/pers. 8.94E+03 6.67E+03 NA 3.99E+03 3.53E+02 1.90E+04 

WD 
m3 water 

eq/pers. 
8.14E+01 4.68E+02 7.45E+01 6.98E+03 6.31E+01 9.93E+01 

RD-E-MM kg Sb eq/pers. 1.01E-01 4.60E-01 1.08E-01 5.37E-01 2.14E-05 NA 

 

 

Figure 3: NFs per person, expressed as logarithmic scale, calculated according to the five different accounting perspectives. 
Some categories (i.e. ODP, HTOXC, HTOXNC and RD-E-MM) are not displayed in the graph, due to the application of the 
log scale.  

According to the methodology adopted for calculating the set of NFs, these estimates are 
affected by significant uncertainties. The improvement of the estimation is of upmost 

importance to detect and prioritize the impact categories on which focusing the efforts for 
reducing the environmental impacts from an absolute sustainability viewpoint.  

In the following sub-sections, a comparison between the per capita NFs calculated through 

each approach and the per capita PBs is presented and discussed. 

 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

Normalisation Factors per person (log scale)

EC-JRC EU-27 EU-27 BoP EU-27 Apparent consumption EC-JRC Global Global I/O
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3.6.1 EU-27 normalisation factors vs Planetary Boundaries 

Table 40 and figure 4 report the share of impacts covered by each person in the EU-27 
countries with respect to the PBs. It is possible to note that the majority of the European 

impact scores are far below the planetary limits, showed in green and yellow in figure 4 
(i.e. respectively the safe operating space and the critical area, as defined by Rockström). 

However, climate change, photochemical ozone formation and land use categories 
considerably overcome the corresponding PBs, respectively more than nine, eight and 

three times. These categories are followed by freshwater eutrophication, which slightly 

surpasses the threshold of its safe operating space, remaining within the critical area. 

Table 40: Share of EC-JRC EU-27 impact scores with respect to Planetary boundaries, calculated for each impact category 
for which a planetary boundary score is available. 

ILCD impact 

category 

Ratio EU-27 to PB (per 

person) 

GWP 9.36E+00 

ODP 2.77E-01 

POF 8.34E+00 

AC 3.27E-01 

EUTT 1.98E-01 

EUTF 1.76E+00 

EUTM 5.83E-01 

LU 3.80E+00 

FRWTOX 4.71E-01 

WD 8.20E-01 

 

 

 

Figure 4: Comparison between EU-27 impact scores and Planetary boundaries as calculated by Bjørn and Hauschild 
(personal communication based on their 2015 publication) and complemented by EC-JRC. 
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3.6.2 Normalisation factors based on EU-27 Basket of Products vs 
Planetary Boundaries 

According to the BoP accounting approach, a few impact categories, namely climate 

change, photochemical ozone formation and land use overcome the proposed PBs (see 

table 41 and figure 5).  

Table 41: Share of EU-27 Basket of Products’ impact scores with respect to Planetary boundaries, calculated for each 
impact category for which a planetary boundary score is available. 

ILCD impact 

category 

Ratio EU-27 BoP to 

PB (per person) 

GWP 6.61E+00 

ODP 2.92E-02 

POF 4.65E+00 

AC 3.30E-01 

EUTT 1.74E-01 

EUTF 7.35E-01 

EUTM 5.42E-01 

LU 1.71E+00 

FRWTOX 3.51E-01 

WD 4.71E+00 

 

 

Figure 5: Comparison between BoP impact scores and Planetary boundaries  as calculated by Bjørn and Hauschild, (2015) 
and complemented by EC-JRC. 

The indicators that surpass the safety space for humanity are the same identified in the 
previous analysis (section 3.6.1), namely GWP, POF and LU. The applied methods account 

for different typologies of emissions: EU-27 domestic inventory takes into consideration 

direct emissions and extraction of resources occurring within territorial boundaries; while 
BoP inventory accounts for direct emissions and extraction of resources occurring within 

territorial boundaries as well as indirect ones, both modelled as products’ supply chains for 
three main sectors. Despite this feature, it is possible to highlight such a convergence for 
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the EU-27 territory. In this case, the abovementioned categories exceed the green line of 
more than six, four and two times respectively.  

Even water depletion category presents a higher impact score than the relative PB, nearly 

fivefold as greater as its PB. On the other hand, the remaining categories lie within the 
safe operating space, delimited by the green line in figure 5. 

3.6.3 Normalisation factors based on EU-27 apparent consumption vs 
Planetary Boundaries 

The approach based on the apparent consumption, that tracks the overall environmental 

impacts both in the EU-27 territory and the pressures associated with imports and exports, 
lacks of a NF for two important categories, i.e. land use and freshwater toxicity. These 

impact categories, especially land use which generally has been shown to be critical 
according to the other applied approach, were considered not enough robust in terms of 

their underpinning model. 

However, according to the previously presented accounting perspectives for EU-27, climate 
change and photochemical ozone formation still represent the categories that more 

frequently overcome the critical threshold of the PBs. The ratio with their related PBs stand 
at nearly ten and eleven, respectively (see table 42 and figure 6). 

Even freshwater eutrophication represents a worth noting category, whose value is not 
negligible. In fact, it slightly exceeds its PB threshold, posing a potentially serious risk to 

human well-being on Earth. 

Table 42: Share of Eu-27 apparent consumption impact scores with respect to Planetary boundaries, calculated for each 
impact category for which a planetary boundary score is available. 

ILCD impact 

category 

Ratio EU-27 

apparent 

consumption NF to 

PB (per person) 

GWP 9.88E+00 

ODP 2.92E-01 

POF 1.10E+01 

AC 4.90E-01 

EUTT 2.28E-01 

EUTF 1.43E+00 

EUTM 6.04E-01 

LU NA 

FRWTOX NA 

WD 7.51E-01 
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Figure 6: Comparison between EU-27 apparent consumption impact scores and Planetary boundaries as calculated by Bjørn 
and Hauschild, (2015) and complemented by EC-JRC. 

 

3.6.4 Global normalisation factors vs Planetary Boundaries 

According to the global territorial perspective, the situation with respect to the proposed 

PBs appears more complex and dramatic (see table 43 and figure 7). In fact, almost half 
categories, namely climate change, photochemical ozone formation, freshwater 

eutrophication and land use, overcome the critical thresholds, posing a high risk to global 
health and well-being. As for other applied approaches, the highest score is given by 

photochemical ozone formation, whose value is nearly eleven times as greater as its related 
PB. This indicator is followed by land use, climate change and freshwater eutrophication.  

It is important to highlight that the inventory underneath the PB value could influence the 
result reported by land use category. In fact, this inventory is relatively poor (i.e. four land 

uses, occupation flows only) compared to the one built by Farago et al. (submitted), which 

include both occupation and transformation flows as well as more land use classes. This 
difference could lead to an underestimation of the planetary boundary. 

In general terms, the global situation appears under a relatively higher pressure when 
considering the fact that marine eutrophication reference score is closely approaching the 

critical area for human well-being.  

Finally, it is worth noting the twofold result for water depletion category due to the different 

procedures for recalculating the PB (see section 2.6.1). By calculating the PB with the 
country-based CFs, the global impact score is within the critical area. On the other hand, 

by using the OECD average CF, the score becomes critically higher with respect to the 

related PB, which is seventyfold overcome. As for land use category, these considerably 
different outcomes should be further investigated by improving the procedure underneath 

PB recalculation. 

 

 

0
1
2
3
4
5
6
7
8
9

10
GWP

ODP

POF

AC

EUTT

EUTF

EUTM

WD

Ratio EU-27 apparent consumption NF to PB (per person)

Safe operating space

critical area



 

69 
 

Table 43: Share of EC-JRC global impact scores with respect to Planetary Boundaries, calculated for each impact category 
for which a planetary boundary score is available. 

ILCD impact 

category 

Ratio Global NF to 

PB (per person) 

GWP 7.08E+00 

ODP 2.49E-01 

POF 1.07E+01 

AC 3.84E-01 

EUTT 1.99E-01 

EUTF 3.04E+00 

EUTM 9.75E-01 

LU 7.27E+00 

FRWTOX 2.10E-01 

WD (country-based) 1.62E+00 

WD (OECD average) 7.03E+01 

 
 

 

Figure 7: Comparison between global impact scores and Planetary boundaries as calculated by Bjørn and Hauschild, 
(2015) and complemented by EC-JRC. 

 

3.6.5 Global normalisation factors based on input/output (I/O) approach 
vs Planetary Boundaries 

According to the I/O accounting approach, based on the contribution of specific sectors to 

the environmental impact and on the supply chains underneath global final consumption, 
photochemical ozone formation still represents one of the most seriously impacting 

categories, thirtyfold overcoming the threshold of the critical area of PB. This indicator is 
far followed by a few impact categories, namely freshwater eutrophication and climate 

change, whose related impacts are respectively seven and eight times over the proposed 

PBs (see table 44 and figure 8). According to this approach, land use represents the fourth 
influent category, which slightly overcome the critical area threshold.  
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Table 44: Share of global I/O impact scores with respect to Planetary Boundaries, calculated for each impact category for 
which a planetary boundary score is available. 

ILCD impact 

category 

Ratio I/O global NF 

to PB (per person) 

GWP 6.60E+00 

ODP NA 

POF 3.01E+01 

AC 4.77E-01 

EUTT 2.08E-01 

EUTF 8.18E+00 

EUTM 4.35E-02 

LU 2.79E+00 

FRWTOX 1.85E-02 

WD 6.35E-01 

 

 
Figure 8: Comparison between global impact scores and Planetary boundaries  as calculated by Bjørn and Hauschild, 
(2015) and complemented by EC-JRC. 
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4 Conclusions 

The knowledge of planetary boundaries can improve environmental policy relevance, by 

measuring the sustainability gap between current human-driven impacts and their related 
carrying capacity thresholds. A crucial point is usually linked to the difficulties and the 

consequent uncertainties in defining a boundary, due to the underpinning ecological and 
environmental complexity of their evaluation. Those boundaries should be set in order to 

compare the current level of human-driven pressure on the environment with a reference 
state representing an ecological threshold. In fact, defining an unequivocal level of pressure 

due to human activities may be also difficult as it is usually the result of emission 

accounting (often incomplete) or of modelling exercise (bringing with it the clear limitations 
that any modelling effort may involve) 

The present report focuses primarily on the provision of global estimate of environmental 
impacts to be compared to planetary boundaries and to be used as normalisation factors 

in LCA. The global inventory, which refers to the year 2010, is based on a vast data 
collection, covering the emissions into the environmental compartments (i.e. air, water 

and soil) and resource extracted at the global scale. When relevant data were missing, 
specific extrapolation procedures were adopted to fill the data gaps, according to specific 

methodologies for extrapolation. When different data sources were available, all the 

retrieved data have been reported in order to allow a qualitative evaluation of the 
uncertainties associated to the global inventory estimates. Applying a sort of precautionary 

principle, when different sources where available and their robustness comparable, we 
selected the highest value. 

Moreover, different sets of NFs have been calculated following different methodologies to 
highlight the pros and cons associated to the methodological choices. 

The results of the estimates allow the identification of several research needs, reported as 
follows. In fact, further research is needed in order to overcome the uncertainties and the 

limitation of the global normalisation factors, both at the inventory level and LCIA step, 

and to improve their completeness of the global NFs.  

Just to name few aspects, more robust inventories for the impact categories should be set, 

focusing on their completeness. Global inventories of emissions and resource use are 
generally affected by limited availability of data from the original sources, especially 

officially reported data based on accepted models. Specifically for chemicals, too few 
estimates are available to consider the toxicity related inventories well covered. For several 

impact categories, the global estimates derived from different sources span over one order 
of magnitude. This may lead to inconsistency in the way impacts are prioritised. 

In our work, we took into consideration the emissions in a defined reference year, namely 

2010. However, it could be worthy to analyse the impact trends throughout a temporal 
series of data. In other cases, a combined inventory was needed to improve the coverage 

of emissions, as for marine eutrophication.  

Regarding the characterisation of the impacts, global normalisation factors may be 

calculated with new recommended impact assessment models for the environmental 
footprint (Sala et al., 2016). Moreover, the normalisation factors were estimated with 

generic default characterisation factors a part from water depletion. However, for several 
impact categories country-specific CFs are available and a sensitivity assessment of the 

results could be conducted. 

Regarding the use of different approaches for estimating the normalisation factors, 
currently, the territorial approach to global estimate seems the more robust and 

transparent. Every approach applied for estimating the magnitude of impacts to the 
environment may have strengths and weaknesses. Nevertheless, it is worth noting that 

there is convergence of the results when comparing the NFs calculated according to 
different perspectives with the available planetary boundaries.  
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For some impact categories, the differences between the set of normalisation factors are 
relatively limited. Nevertheless, the different approaches rely on underpinning inventories 

with a level of completeness not always satisfactory. Based on the considerations made for 

the methodology for planetary boundaries estimation and in the comparison “Global NFs 
vs Planetary boundaries”, there is the need to further investigate and improve the 

procedure to calculate the PBs in the LCA framework, since the comparability of the results 
is not always easy to be ensured.  

In spite of that, there is a clear convergence in the comparison between the different LCA- 
based approaches and the planetary boundaries. With all the approaches, the estimated 

impact related to climate change and photochemical ozone formation are overcoming up 
to 10 times the safe operating space. The global normalisation set reports also an 

overcoming in land use and freshwater eutrophication (seven and three times 
respectively). These impact categories were also popping up in the EU-27 domestic set and 

in the global set calculated with the extended environmental I/O approach.  

Notwithstanding the current exercise could be considered just a preliminary attempt to 
quantify, in an LCA framework, the extent to which planetary boundaries are exceed, this 

is anyway an important step toward the identification of the main knowledge gaps towards 
a more robust quantification thereof. 

 

  



 

73 
 

References 

Benini L., Sala S., Manfredi S., Goralczyk M. (2014a). Overall environmental impact 

indicators. Deliverable 3 of the Administrative Arrangement “Scientific support for 

screening and development of potential resource efficiency and product-group indicators 

as well as targets for the reduction of the overall environmental impact of EU consumption”. 

DG ENV (N0 07.0307/2013/666404/SER/A.l). 

Benini L., Mancini L., Sala S., Manfredi, S., Schau E.M., Pant R. (2014b). Normalisation 

method and data for Environmental Footprints. European Commission, Joint Research 

Center, Institute for Environment and Sustainability, Publications Office of the European 

Union, Luxemburg, ISBN: 978-92-79-40847-2 

Benini L., Sala S. (2016). Integrated assessment of environmental impact of Europe in 

2010: uncertainty and sensitivity of the normalisation factors to methodological 

assumptions. Int J Life Cycle Assess 21(2):224-236 

Bijloo M. & Kerkhof A. (2015). One Planet Thinking – Mineral depletion. ECOFYS 

Netherlands B.V. © by order of: Eneco. 

Bjørn, A., & Hauschild, M. Z. (2013). Absolute versus relative environmental sustainability. 

J Ind Ecol 17(2), 321-332. 

Bjørn, A., & Hauschild, M. Z. (2015). Introducing carrying capacity-based normalisation in 

LCA: framework and development of references at midpoint level. Int J Life Cycle Assess 

20(7):1005-1018. 

Bouwman L., Goldewijk K. K., Van Der Hoek K. W., Beusen A. H., Van Vuuren D. P., Willems 

J., Rufino M., Stehfest E. (2013). Exploring global changes in nitrogen and phosphorus 

cycles in agriculture induced by livestock production over the 1900–2050 period. 

Proceedings of the National Academy of Sciences 110(52):20882-20887. 

Castellani V., Benini L., Sala S., Pant R. (2016) A distance-to-target weighting method for 

Europe 2020. Int J Life Cycle Assess 21(8):1159-1169.  

CEC (2011). A resource-efficient Europe—flagship initiative under the Europe 2020 

Strategy. Communication from the Commission to the European Parliament, the Council, 

the European Economic and Social Committee and the Committee of the Regions. 

COM(2011) 21 final. 

CIESIN (2016). Gridded Population of the World, Version 4 (GPWv4): Population Density 

Adjusted to Match 2015 Revision UN WPP Country Totals. Center for International Earth 

Science Information Network, Columbia University, CA, US. Available at: 

http://doi.org/http://dx.doi.org/10.7927/H4HX19NJ. Accessed 14/08/2016. 

Cucurachi S., Sala S., Laurent A., Heijungs R. (2014). Building and characterizing regional 

and global emission inventories of toxic pollutants. Environ Sci Technol 48(10):5674-5682. 

Dewulf J., Manfredi S., Sala S., Castellani V., Goralczyk M., Notarnicola B, Tassielli G, 

Renzulli P, Ferrão P, Pina A, Baptista P, Lavagna M. (2014). Indicators and targets for the 

reduction of the environmental impact of EU consumption: Basket-of-products indicators 

and prototype targets for the reduction of environmental impact of EU consumption 

(Deliverable 5 AA LC-IND with DG ENV). European Commission, Joint Research Centre. 

JRC92892 

http://doi.org/http:/dx.doi.org/10.7927/H4HX19NJ
http://eplca.jrc.ec.europa.eu/uploads/JRC92892_qms_h08_lcind_deliverable5_final_20141125.pdf
http://eplca.jrc.ec.europa.eu/uploads/JRC92892_qms_h08_lcind_deliverable5_final_20141125.pdf
http://eplca.jrc.ec.europa.eu/uploads/JRC92892_qms_h08_lcind_deliverable5_final_20141125.pdf
http://eplca.jrc.ec.europa.eu/uploads/JRC92892_qms_h08_lcind_deliverable5_final_20141125.pdf


 

74 
 

Doka, G. (2015). Combining life cycle inventory results with planetary boundaries: the 

planetary boundary allowance impact assessment method PBA'05. Doka Life Cycle 

Assessment, Zürich. 

EC (2013). General Union Environment Action Programme to 2020 - Living well, within the 

limits of our planet. 

EC-JRC (2010). Evaluation of environmental life cycle approaches for policy and decision 

making support in micro and macro level applications. JRC Scientific and Technical reports. 

European Commission, Joint Research Centre, Institute for Environment and Sustainability. 

ISBN 978-92-79-17201-4. 

EC-JRC (2011). Recommendations based on existing environmental impact assessment 

models and factors for life cycle assessment in European context. Luxembourg: 

Publications Office of the European Union. EUR24571EN. ISBN 978-92-79- 17451–3. 

Available at http://eplca.jrc.ec.europa.eu/ 

EC-JRC, Institute for Environment and Sustainability (2012a). Characterisation factors of 

the ILCD Recommended Life Cycle Impact Assessment methods. Database and Supporting 

Information. First edition. February 2012. EUR 25167. Luxembourg. Publications Office of 

the European Union. 

EC-JRC (2012b). Life cycle indicators Basket-of-products: development of life cycle based 

macro-level monitoring indicators for resources, products and waste for the EU-27. 

Luxembourg: Publications Office of the European Union. EUR 25466 EN, ISBN 978-92-79-

25937. Available at 

http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/31346/1/lbna2546

6enn.pdf 

EC-JRC (2016) Indicators and Assessment of the Environmental Impact of EU (LC-IND). 

AA DG-ENV and JRC, available at http://eplca.jrc.ec.europa.eu/?page_id=1517. Accessed 

in November 2016. 

EC-JRC, Institute for Environment and Sustainability (2013). Characterisation factors of 

the ILCD Recommended Life Cycle Impact Assessment methods. Database and Supporting 

Information. First edition. February 2012. EUR 25167. Luxembourg. Publications Office of 

the European Union. 

EC-JRC & PBL (2011a). Emission Database for Global Atmospheric Research (EDGAR). 

Global Emissions EDGAR v4.2. Available at: 

http://edgar.jrc.ec.europa.eu/overview.php?v=42 Accessed in October 2016. 

EC-JRC & PBL (2011b). Emission Database for Global Atmospheric Research (EDGAR). GHG 

(CO2, CH4, N2O, F-gases) emission time series 1990-2012 per region/country. Available at: 

http://edgar.jrc.ec.europa.eu/overview.php?v=GHGts1990-2012 Accessed in August 

2016. 

EC-JRC & PBL (2013). Emission Database for Global Atmospheric Research (EDGAR). 

Global Emissions EDGAR v4.2 FT2010. Available at: 

http://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010 Accessed in October 2016.  

EC-JRC & PBL (2016). Emission Database for Global Atmospheric Research (EDGAR), 

release version 4.3.1. Available at: http://edgar.jrc.ec.europa.eu/overview.php?v=431. 

Accessed in October 2016. 

EEA (2015). The European environment — state and outlook 2015: synthesis report, 

European Environment Agency, Copenhagen. 

http://eplca.jrc.ec.europa.eu/
http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/31346/1/lbna25466enn.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/31346/1/lbna25466enn.pdf
http://eplca.jrc.ec.europa.eu/?page_id=1517
http://edgar.jrc.ec.europa.eu/overview.php?v=42
http://edgar.jrc.ec.europa.eu/overview.php?v=GHGts1990-2012
http://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010
http://edgar.jrc.ec.europa.eu/overview.php?v=431


 

75 
 

ENTRANZE (2014). Policies to Enforce the TRAnsition to Nearly Zero Energy buildings in 

the EU-27. IEE Project 2012-2014. Available at: http://www.entranze.eu. Accessed in 

November 2016. 

Eurostat (2015). Country Raw Material Equivalents model handbook. Available at: 
http://ec.europa.eu/eurostat/documents/1798247/6874172/Handbook-country-RME-

tool/ 

Eurostat (2016a). Annual freshwater abstraction by source and sector [env_wat_abs]. 

Available at: http://ec.europa.eu/eurostat/web/products-datasets/-/env_wat_abs. 

Accessed in November 2016. 

Eurostat (2016b) ComExt - Eurostat's reference database for detailed statistics on 

international trade in goods. Available at http://ec.europa.eu/eurostat/web/international-
trade-in-goods/data/focus-on-comext. Accessed in December 2016. 

Fang, K., Heijungs, R., & De Snoo, G. R. (2015). Understanding the complementary 

linkages between environmental footprints and planetary boundaries in a footprint–

boundary environmental sustainability assessment framework. Ecol Econ 114:218-226. 

FAOstat (2016). Food Agriculture Organization of the United Nations – Statistics Division. 

Available at: http://faostat3.fao.org/download/R/RL/E. Accessed in August 2016. 

FAO-Aquastat (2016). Aquastat. Available at: 

http://www.fao.org/nr/water/aquastat/water_use/index.stm#db. Accessed in November 

2016. 

Farago M., Benini L., Sala S., Secchi M., Laurent A. (submitted). National inventories of 

land occupation and transformation flows in the world for land use impact assessment. Sci 

Total Environ. 

Fraser P., Dunse B., Krummel P., Steele L., Derek N. (2013). Australian Atmospheric 

Measurements & Emissions Estimates of Ozone Depleting Substances and synthetic 

Greenhouse Gases. Report prepared for Department of the Environment, CSIRO Marine 

and Atmospheric Research, Centre for Australian Weather and Climate Research, 

Aspendale, Australia, iv, 42pp. Available at: 

https://www.environment.gov.au/system/files/resources/b8436f38-c581-4fec-bc9f-

999b2bd3ec90/files/australian-ods-sgg-emissions.pdf 

Fraser P., Dunse B., Krummel P., Steele L., Derek N. (2014). Australian & Global Emissions 

of Ozone Depleting Substances. Report prepared for Department of the Environment, 

CSIRO Marine and Atmospheric Research, Centre for Australian Weather and Climate 

Research, Aspendale, Australia, iii, 29 pp. Available at: 

http://www.environment.gov.au/system/files/resources/2034127c-b031-4adc-8210-

c3c7f630a5f1/files/australian-global-emissions-ods.pdf 

Fraser P., Dunse B., Krummel P., Steele L., Derek N. (2015). Australian & Global Emissions 

of Ozone Depleting Substances.Report prepared for Department of the Environment, 

CSIRO Oceans and Atmosphere Flagship, Collaboration for Australian Weather and Climate 

Research, Aspendale, Australia, iii, 29pp. Available at: 

https://www.environment.gov.au/system/files/resources/1b3c0ae6-e2ec-440a-b147-

4d868f0da01f/files/australian-global-emissions-ods-2015.pdf 

Frischknecht, R., Steiner, R., Jungbluth, N. (2009). The Ecological Scarcity Method – Eco-

Factors 2006. A method for impact assessment in LCA (Methode der ökologischen 

Knappheit–Ökofaktoren 2006-Methode für die Wirkungsabschätzung in Ökobilanzen). 

http://www.entranze.eu/
http://ec.europa.eu/eurostat/web/products-datasets/-/env_wat_abs
http://ec.europa.eu/eurostat/web/international-trade-in-goods/data/focus-on-comext
http://ec.europa.eu/eurostat/web/international-trade-in-goods/data/focus-on-comext
http://faostat3.fao.org/download/R/RL/E
http://www.fao.org/nr/water/aquastat/water_use/index.stm#db
https://www.environment.gov.au/system/files/resources/b8436f38-c581-4fec-bc9f-999b2bd3ec90/files/australian-ods-sgg-emissions.pdf
https://www.environment.gov.au/system/files/resources/b8436f38-c581-4fec-bc9f-999b2bd3ec90/files/australian-ods-sgg-emissions.pdf
http://www.environment.gov.au/system/files/resources/2034127c-b031-4adc-8210-c3c7f630a5f1/files/australian-global-emissions-ods.pdf
http://www.environment.gov.au/system/files/resources/2034127c-b031-4adc-8210-c3c7f630a5f1/files/australian-global-emissions-ods.pdf
https://www.environment.gov.au/system/files/resources/1b3c0ae6-e2ec-440a-b147-4d868f0da01f/files/australian-global-emissions-ods-2015.pdf
https://www.environment.gov.au/system/files/resources/1b3c0ae6-e2ec-440a-b147-4d868f0da01f/files/australian-global-emissions-ods-2015.pdf


 

76 
 

Frischknecht Rolf, Büsser Knöpfel Sybille (2013). Swiss Eco-Factors 2013 according to the 

Ecological Scarcity Method. Methodological fundamentals and their application in 

Switzerland. Environmental studies no. 1330. Federal Office for the Environment, Bern. 

254 pp. 

GEIA (2016). Emissions of atmospheric Compounds & Compilation of Ancillary Data 

(ECCAD). ECCAD v.6.6.3, MACCity Emission dataset. Available at 

http://eccad.sedoo.fr/eccad_extract_interface/JSF/page_login.jsf. Accessed in October 

2016. 

Huysman S., Schaubroeck T., Goralczyk M., Schmidt J., Dewulf J. (2016). Quantifying the 

environmental impacts of a European citizen through a macro-economic approach, a focus 

on climate change and resource consumption. J Clean Prod 124:217-225. 

IAEA-PRIS (2016). Nuclear Power Capacity Trend. Available at: 

https://www.iaea.org/PRIS/WorldStatistics/WorldTrendNuclearPowerCapacity.aspx. 

Accessed in November 2016. 

IEA (2014). Key world energy statistics. 80 pp. Available at: 

http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf 

IPCC (1996). Revised 1996 Guidelines for National Greenhouse Gas Inventories. Available 

at: http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html. 

IPCC (2007). IPCC Climate Change Fourth Assessment Report: Climate Change 2007. 

Available at: http://www.ipcc.ch/ipccreports/assessments-reports.htm 

ISO (2006) Environmental management— life cycle assessment. Requirements and 

guidelines. ISO 14044, Geneva. 

Klimont, Z., Smith, S. J., Cofala, J. (2013). The last decade of global anthropogenic sulfur 

dioxide: 2000–2011 emissions. Environ Res Lett 8(1):014003. 

Laurent A. & Hauschild M. Z. (2014). Impacts of NMVOC emissions on human health in 

European countries for 2000–2010: Use of sector-specific substance profiles. Atmos 

Environ 85:247-255. 

Laurent A., Farago M., Benini L., Secchi M., Sala S. (submitted). Globally-differentiated 

land use flow inventories for life cycle impact assessment. Abstract SETAC Europe, May 

2017. 

Lenzen, M., Moran, D., Kanemoto, K., Geschke, A. (2013) Building Eora: A global multi-

region input-output database at high country and sector resolution. Econ Syst Res 25:20–

49. 

Mace G. M., Reyers B., Alkemade R., Biggs R., Chapin F. S., Cornell S. E., Dìaz S., Jennings 

S., Leadley P., Mumby P. J., Purvis A., Scholes R. J., Seddon A. W.R., Solan M., Steffen 

W., Woodward G. (2014). Approaches to defining a planetary boundary for biodiversity. 

Glob Environ Chang 28:289-297. 

Merciai S. & Schmidt J. (2016). Methodology for the construction of global multi-regional 

hybrid supply and use tables for the EXIOBASE database. Submitted to J Ind Ecol (Special 

Issue on Circular Economy). 

Milà i Canals L. (2007). LCA methodology and modeling considerations for vegetable 

production and consumption. Centre for Environmental Strategy, University of Surrey. 

http://eccad.sedoo.fr/eccad_extract_interface/JSF/page_login.jsf
https://www.iaea.org/PRIS/WorldStatistics/WorldTrendNuclearPowerCapacity.aspx
http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf
http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html
http://www.ipcc.ch/ipccreports/assessments-reports.htm


 

77 
 

Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M., Portmann, F. T., Flörke, M.,  

Döll, P. (2014). Sensitivity of simulated global-scale freshwater fluxes and storages to input 

data, hydrological model structure, human water use and calibration. Hydrol Earth Syst Sci 

18(9):3511-3538. 

Narayanan G., Badri A.A., McDougall R. (2014). Global Trade, Assistance, and Production: 

The Gtap 8 Data Base. Available at: 

https://www.gtap.agecon.purdue.edu/databases/v8/v8_doco.asp. Accessed in May 2016. 

Notarnicola B., Tassielli G., Renzulli P.A., Castellani V., Sala S. (2017). Environmental 

impact of food consumption in Europe. J Clean Prod 140(2):753-765 

OECD (2016). Water withdrawal data. Available at: https://data.oecd.org/water/water-

withdrawals.htm Accessed in November 2016. 

Oita, A., Malik, A., Kanemoto, K., Geschke, A., Nishijima S., Lenzen M. (2016). Substantial 

nitrogen pollution embedded in international trade. Nat Geosci 9(2):111-115. 

Oliveira, C., Coelho, D., Antunes, C. H. (2014). Coupling input–output analysis with 

multiobjective linear programming models for the study of economy–energy–

environment–social (E3S) trade-offs: a review. Ann Oper Res: 1-32. 

Pizzol M., Laurent A., Sala S., Weidema B., Verones F., Koffler C. (2016). Normalisation 

and weighting in life cycle assessment: Quo Vadis?. Int J Life Cycle Assess: 1-14. 

RADD (2016). European Commission Radioactive Discharges Database. Available at: 

http://europa.eu/radd/. Accessed in April 2016. 

Rigby M., Prinn R., O'Doherty S., Montzka S., McCulloch A., Harth C., Mühle J., Salameh 

P., Weiss R., Young D., Simmonds P., Hall B., Dutton G., Nance D., Mondeel D., Elkins J., 

Krummel P., Steele P. Fraser P. (2013). Re-evaluation of the lifetimes of the major CFCs 

and CH3CCl3 using atmospheric trends. Atmos Chem Phys 13:1-11. 

Rockström, J., W. Steffen, K. Noone, Persson A., Chapin F. S., III, Lambin E., Lenton T. 

M., Scheffer M., Folke C., Schellnhuber H., Nykvist B., De Wit C. A., Hughes T., van der 

Leeuw S., Rodhe H., Sorlin S., Snyder P. K., Costanza R., Svedin U., Falkenmark M, 

Karlberg L., Corell R. W., Fabry V. J., Hansen J., Walker B., Liverman D., Richardson K., 

Crutzen P. and Foley J. (2009). Planetary boundaries: exploring the safe operating space 

for humanity. Ecol Soc 14(2):32.  

Sala S., Goralczyk M. (2013). Chemical footprint: A methodological framework for bridging 

life cycle assessment and planetary boundaries for chemical pollution. Integr Environ 

Assess Manag 9(4):623-632. 

Sala, S., Wolf, M.A., Pant, R (2012). Characterisation factors of the ILCD Recommended 

Life Cycle Impact Assessment methods. Database and Supporting Information. First edition 

EUR25167EN. ISBN 978-92-79-22727.Luxembourg: Publications Office of the European 

Union. Available at http://eplca.jrc.ec.europa.eu/uploads/2014/01/LCIA-characterization-

factors-of-the-ILCD.pdf 

Sala S., Benini L. Mancini L., Ponsioen T., Laurent A., Zelm R., Van R., Stam G. (2014). 

Methodology for Building LCA-compliant National Inventories of Emissions and Resource 

Extraction. European Commission, Joint Research Centre, Institute for Environment and 

Sustainability. ISBN 978-92-79-43263-7. 96 pp. Publications Office of the European Union, 

Luxembourg, LU. 

https://www.gtap.agecon.purdue.edu/databases/v8/v8_doco.asp
https://data.oecd.org/water/water-withdrawals.htm
https://data.oecd.org/water/water-withdrawals.htm
http://europa.eu/radd/
http://eplca.jrc.ec.europa.eu/uploads/2014/01/LCIA-characterization-factors-of-the-ILCD.pdf
http://eplca.jrc.ec.europa.eu/uploads/2014/01/LCIA-characterization-factors-of-the-ILCD.pdf


 

78 
 

Sala S., Benini L., Mancini L., Pant R. (2015). Integrated assessment of environmental 

impact of Europe in 2010: data sources and extrapolation strategies for calculating 

normalisation factors. Int J Life Cycle Assess 20(11):1568-1585 

Sala S., Baldassarri C., Benini L., Castellani V., Fusi A., Nita V., Secchi M., Zampori L. 

(2016). Indicators and assessment of the environmental impact of EU consumption. JRC 

technical report. JRC102202. 

Sandin, G., Peters, G. M., Svanström, M. (2015). Using the planetary boundaries 

framework for setting impact-reduction targets in LCA contexts. Int J Life Cycle Assess 

20(12):1684-1700. 

Saltelli, A., & Funtowicz, S. (2014). When all models are wrong. Issues Sci Technol 

30(2):79-85. 

Skenhall S., Oliveira F., Harris S., Rydberg T. (2015). Resource efficiency life cycle 

indicators, Contract no: 389793 – Final technical report. Commissioned by European 

Commission DG Joint Research Centre. IVL – Swedish Environmental Research Institute. 

Available upon request to EC-JRC. 

Sleeswijk, A. W., van Oers, L. F., Guinée, J. B., Struijs, J., Huijbregts, M. A. (2008). 

Normalisation in product life cycle assessment: An LCA of the global and European 

economic systems in the year 2000. Sci Total Environ 390(1):227-240. 

Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, 

R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. 

M., Persson, L. M., Ramanathan, V., Reyers, B., Sörlin, S. (2015). Planetary boundaries: 

Guiding human development on a changing planet. Science 347(6223), 1259855. 

Stockholm Resilience Centre (2016). Planetary boundaries are valuable for policy. Available 

at: http://www.stockholmresilience.org/research/research-news/2012-07-02-planetary-

boundaries-are-valuable-for-policy.html. Accessed in November 2016. 

UNDESA (2011). World Population Prospects: The 2010 Revision, DVD Edition – Extended 

Dataset (United Nations publication, Sales No. E.11.XIII.7). 

UNDP, 2015. Human Development Reports – Working for Human Development. Statistical 

annex. Available at: 
http://hdr.undp.org/sites/default/files/hdr_2015_statistical_annex.pdf . Accessed in 

December 2016. 

UNFCCC (2013). United Nations Convention on Climate Change. GHG data time series 

Annex I. Available at: 

http://unfccc.int/ghg_data/ghg_data_unfccc/time_series_annex_i/items/3814.php 

(Accessed in December 2013). 

UNFCCC (2015). National greenhouse gas inventory data for the period 1990–2013. Report 

on national greenhouse gas inventory data from Parties included in Annex I to the 

Convention for the period 1990–2013. FCCC/SBI/2015/21. Available at: 

http://unfccc.int/resource/docs/2015/sbi/eng/21.pdf 

UNFCCC (2016). Global Warming Potential referenced to the updated decay response for 

the Bern carbon cycle model and future CO2 atmospheric concentrations held constant at 

current levels. Available at: https://unfccc.int/ghg_data/items/3825.php 

UNSCEAR (2016). Collection of national and regional data on ionising radiation. Releases 

from nuclear fuel cycle reprocessing plants in airborne and liquid effluents. Available at: 

http://www.survey.unscear.org/doku.php. Accessed in April 2016.  

http://www.stockholmresilience.org/research/research-news/2012-07-02-planetary-boundaries-are-valuable-for-policy.html
http://www.stockholmresilience.org/research/research-news/2012-07-02-planetary-boundaries-are-valuable-for-policy.html
http://hdr.undp.org/sites/default/files/hdr_2015_statistical_annex.pdf
http://unfccc.int/ghg_data/ghg_data_unfccc/time_series_annex_i/items/3814.php
http://unfccc.int/resource/docs/2015/sbi/eng/21.pdf
https://unfccc.int/ghg_data/items/3825.php
http://www.survey.unscear.org/doku.php


 

79 
 

UN-SDG (2016). Available at:  http://www.un.org/sustainabledevelopment/sustainable-

development-goals/. Accessed in October 2016. 

USGS (2011a). Mineral commodity summaries 2011: U.S. Geological Survey, 198 p. 

Available at:  http://minerals.usgs.gov/minerals/pubs/mcs/2011/mcs2011.pdf. Accessed 

in November 2016. 

USGS (2011b). Mineral Yearbook 2011, Vol . I, Metals & Minerals. Available at: 

http://minerals.usgs.gov/minerals/pubs/commodity/myb/. Accessed in November 2016. 

Whitmee, S., Haines, A., Beyrer, C., Boltz, F., Capon, A. G., de Souza Dias, B. F., Ezeh, 

A., Frumkin, H., Gong, P., Peter Head, Horton, R., Mace, G. M., Marten, R., Myers, S. S., 

Nishtar, S., Osofsky, S. A., Pattanayak, S. K., Pongsiri, M. J., Romanelli, C., Soucat, A., 

Vega, J., Yach, D. (2015). Safeguarding human health in the Anthropocene epoch: report 

of The Rockefeller Foundation–Lancet Commission on planetary health. The Lancet, 

386(10007), 1973-2028. 

Winijkul, E., Yan, F., Lu, Z., Streets, D. G., Bond T. C., Zhao Y. (2015). Size-resolved global 

emission inventory of primary particulate matter from energy-related combustion sources. 

Atmos Envir 107:137-147. 

Wolff, A., Gondran, N., Brodhag, C. (2016). A proposal to assess ecological sustainability 
of the pressures exerted by livestock on biodiversity. 22nd SETAC Europe LCA Case Study 

Symposium, Montpellier (FR), 20-22 September 2016 

Wood, R., Stadler, K., Bulavskaya, T., Lutter, S., Giljum, S., de Koning, A., Kuenen, J., 
Schütz, H., Acosta-Fernández, J., Usubiaga, A., Simas, M., Ivanova, O., Weinzettel, J. 

Schmidt, J.H., Merciai, S., Tukker, A. (2015), Global Sustainability Accounting—Developing 
EXIOBASE for Multi-Regional Footprint Analysis, Sustainability 7(1):138-163. 

WNA (2016a). World commercial reprocessing capacity, from "Processing of Used Nuclear 

Fuel". Available at: http://www.world-nuclear.org/information-library/nuclear-fuel-

cycle/fuel-recycling/processing-of-used-nuclear-fuel.aspx (Accessed in November 2016). 

WNA (2016b). World uranium mining production. Available at: http://www.world-

nuclear.org/info/Nuclear-Fuel-Cycle/Mining-of-Uranium/World-Uranium-Mining-

Production/. Accessed in March 2016. 

  

http://www.un.org/sustainabledevelopment/sustainable-development-goals/
http://www.un.org/sustainabledevelopment/sustainable-development-goals/
http://minerals.usgs.gov/minerals/pubs/mcs/2011/mcs2011.pdf
http://minerals.usgs.gov/minerals/pubs/commodity/myb/
http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/processing-of-used-nuclear-fuel.aspx
http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/fuel-recycling/processing-of-used-nuclear-fuel.aspx
http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Mining-of-Uranium/World-Uranium-Mining-Production/
http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Mining-of-Uranium/World-Uranium-Mining-Production/
http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Mining-of-Uranium/World-Uranium-Mining-Production/


 

80 
 

List of abbreviations and definitions 

 

7th EAP   7th Environmental Action Programme   
AC   Acidification 

AGAGE   Advanced Global Atmospheric Gases Experiment 
BoP   Basket of Products 

CF(s)   Characterisation Factor(s) 
CIENSIN  Center for International Earth Science Information Network 

CN   Combined Nomenclature 

CSIRO   Commonwealth Scientific and Industrial Research Organisation 
CTUe/CTUh  Comparative Toxic Unit (ecotoxicity and human toxicity) 

EC-JRC  European Commission’s Joint Research Centre 
ECCAD   Emissions of atmospheric Compounds and Compilation of 

Ancillary Data 
EDGAR   Emission Database for Global Atmospheric Research 

EEA   European Environment Agency 
EU-27   European Union 27 Member States 

EUTF   Freshwater EUTrophication 

EUTM   Marine EUTrophication 
EUTT   Terrestrial EUTrophication 

FAO   The Food and Agriculture Organization of the United Nations 
FRWTOX  FReshWater ecotoxicity 

GEIA   Global Emissions InitiAtive 
GDP    Gross Domestic Product  

GHG   GreenHouse Gas 
GTAP   Global Trade Analysis Project 

GWP   Global Warming Potential 

HDI   Human Development Index 
HFCs   Hydrofluorocarbures 

HS   Harmonized commodity description and coding System 
HMs   Heavy Metals  

HTOXC   Human TOXicity, Cancer effects 
HTOXNC  Human TOXicity, Non-Cancer effects 

IAEA-PRIS  International Atomic Energy Agency’s Power Reactor  
Information System 

IEA   International Energy Agency 

IFA   International Fertilizer Association 
ILCD   International Reference Life Cycle Data System 

IR   Ionising Radiation 
I/O   Input/Output tables 

ISO   International Standard Organisation 
LCA   Life Cycle Assessment 

LCI   Life Cycle Inventory 
LCIA   Life Cycle Impact Assessment 

LU   Land Use 

LULUCF   Land Use, Land-Use Change and Forestry  
MFH    Multi-Family House 

MREEIOT   Multi-Regional Environmental Extended Input Output Tables  
NASA   National Aeronautics and Space Administration 

NF(s)   Normalisation Factor(s) 
NMVOC  Non-Metal Volatile Organic Compounds 

NOx   Nitrogen Oxides 
NR   Normalisation Reference 

ODP   Ozone Depletion Potential 

OECD   Organization for Economic Co-operation and Development 
OPT   One Planet Thinking 



 

81 
 

PBs   Planetary Boundaries 
PBL   Planbureau voor de Leefomgeving (Netherlands Environmental 

Assessment Agency) 

PFCs   Perfluorocarbons 
POF   Photochemical Ozone Formation 

POP   Persistent Organic Pollutant 
RD-E-MM  Resources Depletion, Energy carriers, Mineral and Metals 

RADD   RAdioactive Discharges Database  
RIPM   Particulate Matter and Respiratory Inorganics  

SETAC   Society for Environmental Toxicology and Cchemistry 
SFH   Single Family House 

UNDESA  United Nations Department of Economic and Social Affairs 
UNDP   United Nations Development Programme 

UNEP   United Nations Environment Programme 

UNEP/SETAC LCI UNEP/SETAC Life Cycle Initiative 
UNFCCC  United Nations Framework Convention on Climate Change 

UNSCEAR  United Nations Scientific Committee on the Effects of Atomic 
Radiation 

UN-SDG  United Nations Sustainable Development Goals  
UN WPP  United Nations World Population Prospects 

USGS   United States Geological Survey 
WD   Water Depletion 

WNA   World Nuclear Association 

  



 

82 
 

List of figures 

Figure 1: Biodiversity boundary and related system of impact drivers. Interacting nature 

of Planetary Boundaries, is shown. Modified from Mace et al. (2014). ........................ 27 

Figure 2: Overview of the five different accounting perspectives adopted for calculating 

total NFs, displayed in logarithmic scale. ................................................................ 63 

Figure 3: NFs per person, expressed as logarithmic scale, calculated according to the five 

different accounting perspectives. Some categories (i.e. ODP, HTOXC, HTOXNC and RD-
E-MM) are not displayed in the graph, due to the application of the log scale. ............. 64 

Figure 4: Comparison between EU-27 impact scores and Planetary boundaries as 

calculated by Bjørn and Hauschild (personal communication based on their 2015 
publication) and complemented by EC-JRC. ............................................................ 65 

Figure 5: Comparison between BoP impact scores and Planetary boundaries  as 
calculated by Bjørn and Hauschild, (2015) and complemented by EC-JRC. .................. 66 

Figure 6: Comparison between EU-27 apparent consumption impact scores and Planetary 
boundaries as calculated by Bjørn and Hauschild, (2015) and complemented by EC-JRC.

 ....................................................................................................................... 68 

Figure 7: Comparison between global impact scores and Planetary boundaries as 

calculated by Bjørn and Hauschild, (2015) and complemented by EC-JRC. .................. 69 

Figure 8: Comparison between global impact scores and Planetary boundaries  as 
calculated by Bjørn and Hauschild, (2015) and complemented by EC-JRC. .................. 70 

  



 

83 
 

List of tables 

Table 1: Different approaches and perspectives for the estimate of pressure and impact 

on the environment. ............................................................................................. 5 

Table 2: Data sources used to compile the EU-27 domestic inventory. Source: Sala et al., 

2015. ................................................................................................................. 7 

Table 3: Data sources used to compile the global inventory for the reference year 2010.

 ....................................................................................................................... 10 

Table 4: Product groups in the BoP food and related quantities (per-capita consumption 

in one year). Source: Sala et al. (2016). ................................................................ 19 

Table 5: Composition of the residential building stock. Average floor area per dwelling 
type, by climate zone and by period of construction in EU-27 and relative number of 

dwellings and dwellers. Source: Sala et al. (2016). ................................................. 20 

Table 6: Products in the BoP Mobility: EU28 fleet composition, vehicle-km and passenger-

km travelled. Source: Sala et al. (2016). ............................................................... 21 

Table 7: Overview of Planetary Boundaries proposed by Rockström et al. (2009). 

Boundaries for processes in orange have been already crossed. Source: Rockström et al. 
(2009). ............................................................................................................. 23 

Table 8:  Planetary boundary framework, modified from Steffen et al. (2015). Boundaries 

for processes in orange have been already crossed. ................................................ 24 

Table 9: Planetary Boundaries as reported in Bjørn and Hauschild (2015). .................. 25 

Table 10: Planetary Boundaries for resource depletion. Source: Bijloo & Kerkhof (2015).
 ....................................................................................................................... 27 

Table 11: Planetary boundaries as proposed by Doka et al. (2015), both in terms of per-
capita and global allowance. Compatibility with ILCD impact categories is shown in the 

last column. ...................................................................................................... 28 

Table 12: EU-27 normalisation factors for domestic emissions and resource extraction in 

2010. The scoring is given from I: highest to III: lowest. Source: Sala et al. (2015). ... 29 

Table 13: EC-JRC Global normalisation factors for emissions and resource extraction in 
2010. ............................................................................................................... 31 

Table 14: Characterized inventory of single flows’ global emissions for Climate Change – 
GWP indicator, reference year: 2010. .................................................................... 32 

Table 15: Characterized aggregated values for Climate Change – GWP indicator. ......... 33 

Table 16:  Characterized inventories of global emissions for Ozone Depletion Potential 

indicator. .......................................................................................................... 34 

Table 17: Final impact scores for toxicity-related categories, based on data from 

Cucurachi et al. (2014). ...................................................................................... 35 

Table 18: Characterized inventories of global emissions for Particulate matter/Respiratory 
inorganics category. ........................................................................................... 36 

Table 19: Characterized inventory of country-based emissions of radionuclides from 
nuclear spent-fuel reprocessing. ........................................................................... 37 

Table 20: Nuclear energy production and nuclear spent-fuel reprocessing contribution to 
ionising radiation global impacts. .......................................................................... 39 

Table 21: Characterized inventory of global emissions for photochemical ozone formation.
 ....................................................................................................................... 40 

Table 22: Characterized inventories of global emissions for Acidification category. ....... 40 



 

84 
 

Table 23: Contribution (%) of each flow to the relative global impact, according to each 
data source adopted. .......................................................................................... 41 

Table 24: Characterized inventories of global emissions for Terrestrial eutrophication 

category. .......................................................................................................... 41 

Table 25: Contribution (%) of each flow to the relative global impact, according to each 

data source adopted ........................................................................................... 42 

Table 26: Characterized inventory of global emissions for Freshwater eutrophication 

category. .......................................................................................................... 43 

Table 27: Characterized inventories of global emissions for Marine eutrophication 

category. .......................................................................................................... 43 

Table 28: Characterized global inventory for Land use category. ............................... 44 

Table 29: Country-based characterized inventory (withdrawal and consumption of blue 
water) for Water depletion category. Sources: Aquastat (2016), Eurostat (2016), OECD 

(2016), WaterGAP (Müller Schmied et al., 2014). .................................................... 45 

Table 30: Characterized inventory of global inventories (minerals and metals and energy 
carriers) for Resource depletion category. .............................................................. 49 

Table 31: Comparison between global and EU-27 normalisation references for each 
impact category. ................................................................................................ 51 

Table 32: Human development indicators (for EU-27 and World) referred to 2010. ...... 52 

Table 33: Number of countries per human development achievement categories (for EU-

27 and World).  Source: Human report, statistical annex (UNDP, 2015). .................... 53 

Table 34:  Characterized results for BoP baseline (total EU-27). Source: Sala et al. 

(2016) . ............................................................................................................ 53 

Table 35: Impact scores associated to World consumption according to EXIOBASE 
inventory. ......................................................................................................... 55 

Table 36: Impact scores associated to EU-27 apparent consumption (domestic + trade). 
Source: Sala et al. (2016). .................................................................................. 56 

Table 37: Comparison of import and domestic inventories with EEIOTs studies. Modified 
from Sala et al. (2016) ....................................................................................... 58 

Table 38: Overview of the five different perspectives adopted for calculating total NFs, 
together with the Planetary Boundaries. ................................................................ 62 

Table 39: NFs per person calculated according to the five different accounting 

perspectives, to be compared with the per capita allowance of Planetary Boundaries 
according to Bjørn and Hauschild (2015), complemented by EC-JRC recalculations. ..... 63 

Table 40: Share of EC-JRC EU-27 impact scores with respect to Planetary boundaries, 
calculated for each impact category for which a planetary boundary score is available. . 65 

Table 41: Share of EU-27 Basket of Products’ impact scores with respect to Planetary 
boundaries, calculated for each impact category for which a planetary boundary score is 

available. .......................................................................................................... 66 

Table 42: Share of Eu-27 apparent consumption impact scores with respect to Planetary 

boundaries, calculated for each impact category for which a planetary boundary score is 

available. .......................................................................................................... 67 

Table 43: Share of EC-JRC global impact scores with respect to Planetary Boundaries, 

calculated for each impact category for which a planetary boundary score is available. . 69 

Table 44: Share of global I/O impact scores with respect to Planetary Boundaries, 

calculated for each impact category for which a planetary boundary score is available. . 70 



85 

Europe Direct is a service to help you find answers 

to your questions about the European Union. 

Freephone number (*): 

00 800 6 7 8 9 10 11 
(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may 

charge you). 

More information on the European Union is available on the internet (http://europa.eu). 

HOW TO OBTAIN EU PUBLICATIONS 

Free publications: 

• one copy:

via EU Bookshop (http://bookshop.europa.eu);

• more than one copy or posters/maps:

from the European Union’s representations (http://ec.europa.eu/represent_en.htm);

from the delegations in non-EU countries (http://eeas.europa.eu/delegations/index_en.htm);

by contacting the Europe Direct service (http://europa.eu/europedirect/index_en.htm) or

calling 00 800 6 7 8 9 10 11 (freephone number from anywhere in the EU) (*).

(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

Priced publications: 

• via EU Bookshop (http://bookshop.europa.eu).

X
X
-N

A
-x

x
x
x
x
-E

N
-N

 

X
X
-N

A
-x

x
x
x
x
-E

N
-C

 

http://europa.eu.int/citizensrights/signpost/about/index_en.htm#note1#note1
http://europa.eu/
http://bookshop.europa.eu/
http://ec.europa.eu/represent_en.htm
http://eeas.europa.eu/delegations/index_en.htm
http://europa.eu/europedirect/index_en.htm
http://europa.eu.int/citizensrights/signpost/about/index_en.htm#note1#note1
http://bookshop.europa.eu/


L
B
-N

A
-2

8
3
7
1
-E

N
-N

 

doi:10.2788/64552 

ISBN 978-92-79-64667-6 


