Serena Ceola

Serena Ceola
University of Bologna | UNIBO · Department of Civil, Chemical, Environmental and Materials Engineering DICAM

PhD

About

50
Publications
10,905
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
940
Citations
Additional affiliations
June 2009 - December 2012
École Polytechnique Fédérale de Lausanne
Position
  • PhD Student

Publications

Publications (50)
Article
Full-text available
Artificial intelligence can enhance our ability to manage natural disasters. However, understanding and addressing its limitations is required to realize its benefits. Here, we argue that interdisciplinary, multistakeholder, and international collaboration is needed for developing standards that facilitate its implementation.
Article
Full-text available
River floods are one of the most devastating extreme hydrological events, with oftentimes remarkably negative effects for human society and the environment. Economic losses and social consequences, in terms of affected people and human fatalities, are increasing worldwide due to climate change and urbanization processes. Long-term dynamics of flood...
Chapter
A timely identification and monitoring of flood events by means of Earth Observation (EO) data is, nowadays, increasingly feasible thanks to recent advances achieved in remote sensing and hydrological process simulations. Despite the notable progress in these fields, a considerable effort will still be required to reduce the intrinsic inaccuracies...
Article
Full-text available
Human pressures on river systems pose a major threat to the sustainable development of human societies in the twenty-first century. Previous studies showed that a large part of global river systems was already exposed to relevant anthropogenic pressures at the beginning of this century. A relevant question that has never been explained in the liter...
Article
Full-text available
Human pressures on river systems pose a major threat to the sustainable development of human societies in the twenty first century, with severe implications for anthropogenic activities and river ecosystems. Previous studies showed that a large part of the global population was exposed to relevant threats to water security already at the beginning...
Article
Full-text available
Confounding factors like urbanization and land-use change could introduce uncertainty to the estimation of global temperature trends related to climate change. In this work, we introduce a new way to investigate the nexus between temporal trends of temperature and urbanization data at the global scale in the period from 1992 to 2013. We analyze air...
Article
Full-text available
River networks play a key role in the spatial organization of human settlements. Both river networks and human settlements have been found to exhibit regular self-similar patterns, but little is known about the generalized spatial patterns of human settlements embedded within river networks. Here based on night light data, we find a universal fract...
Article
Anthropogenic activities along streams and rivers may be of major concern for fluvial ecosystems, e.g. abstraction and impoundment of surface water resources may profoundly alter natural streamflow regimes. An established approach aimed at preserving the behavior and distribution of fluvial species relies on the definition of ecological flows (e-fl...
Article
This study analyses the differences in significant trends in magnitude and frequency of floods detected in annual maximum flood (AMF) and peak over threshold (POT) flood peak series, for the period 1965–2005. Flood peaks are identified from European daily discharge data using a baseflow-based algorithm and significant trends in the AMF series are c...
Presentation
Full-text available
The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally c...
Article
Full-text available
In Canada, flood analysis and water resource management, in general, are tasks conducted at the provincial level; therefore, unified national-scale approaches to water-related problems are uncommon. In this study, a national-scale flood risk assessment approach is proposed and developed. The study focuses on using global and national datasets avail...
Article
Full-text available
In Canada, flood analysis and water resource management, in general, are tasks conducted at the provincial level; therefore, unified national-scale approaches to water-related problems are uncommon. In this study, a national-scale flood risk assessment approach is proposed and developed. The study focuses on using global and national datasets avail...
Article
We explore how to address the challenges of adaptation of water resources systems under changing conditions by supporting flexible, resilient and low-regret solutions, coupled with on-going monitoring and evaluation. This will require improved understanding of the linkages between biophysical and social aspects in order to better anticipate the pos...
Article
Full-text available
Understanding how human settlements and economic activities are distributed with reference to the geographical location of streams and rivers is of fundamental relevance for several issues, such as flood risk management, drought management related to increased water demands by human population, fluvial ecosystem services, water pollution and water...
Article
In this Commentary, we argue that it is possible to improve the physical realism of hydrologic models by making better use of existing hydrologic theory. We address the following questions: (1) what are some key elements of current hydrologic theory; (2) how can those elements best be incorporated where they may be missing in current models; and (3...
Article
The human presence close to streams and rivers is known to have consistently increased worldwide, therefore introducing dramatic anthropogenic and environmental changes. However, a spatiotemporal detailed analysis is missing to date. In this paper, we propose a novel method to quantify the temporal evolution and the spatial distribution of the anth...
Article
Full-text available
Reproducibility and repeatability of experiments are the fundamental prerequisites that allow researchers to validate results and share hydrological knowledge, experience and expertise in the light of global water management problems. Virtual laboratories offer new opportunities to enable these prerequisites since they allow experimenters to share...
Article
Full-text available
Reproducibility and repeatability of experiments are the fundamental prerequisites that allow researchers to validate results and share hydrological knowledge, experience and expertise in the light of global water management problems. Virtual laboratories offer new opportunities to enable these prerequisites since they allow experimenters 5 to shar...
Article
River floods claim thousands of lives every year, but effective and high-resolution methods to map human exposure to floods at the global scale are still lacking. We use satellite nightlight data to prove that nocturnal lights close to rivers are consistently related to flood damages. We correlate global data of economic losses caused by flooding e...
Article
Full-text available
In this study we propose a novel method for the estimation of ecological indices describing the habitat suitability of brown trout (Salmo trutta). Traditional hydrological tools are coupled with an innovative regional geostatistical technique, aiming at the prediction of the brown trout habitat suitability index where partial or totally ungauged co...
Article
Full-text available
The paper presents an overview of the activity of Panta Rhei, the research decade launched in 2013 by the International Association of Hydrological Sciences. After one year of activity Panta Rhei has already stimulated several initiatives and a worldwide involvement of researchers in hydrology and sister disciplines. Providing an overview of the st...
Article
Full-text available
Recent studies highlight linkages among the architecture of ecological networks, their persistence facing environmental disturbance, and the related patterns of biodiversity. A hitherto unresolved question is whether the structure of the landscape inhabited by organisms leaves an imprint on their ecological networks. We analyzed, based on pyroseque...
Article
Full-text available
In an attempt to provide a unified scheme for the simulation of changing behaviors of hydrological systems, a theoretical framework for stationary and non-stationary modeling is presented. The main triggers for hydrological change are reviewed, their impact on the long-term properties of the inherent system are analyzed, and theoretical solutions a...
Article
We run a comparative study of the results of flume experiments and several dynamic models reproducing the effects of streamflow variability on biofilm (i.e. periphyton) temporal dynamics. During the experiment, two contrasting flow regimes, characterised by a constant and a time-varying discharge temporal sequence, and four different light conditio...
Article
Streamflow variability is a major determinant of basin-scale distributions of benthic invertebrates. Here we present a novel procedure based on a probabilistic approach aiming at a spatially explicit quantitative assessment of benthic invertebrate abundance as derived from near-bed flow variability. Although the proposed approach neglects ecologica...
Article
This paper addresses the signatures of catchment geomorphology on base flow recession curves. Its relevance relates to the implied predictability of base flow features, which are central to catchment-scale transport processes and to ecohydrological function. Moving from the classical recession curve analysis method, originally applied in the Finger...
Article
Full-text available
The temporal variability of streamflow is known to be a key feature structuring and controlling fluvial ecological communities and ecosystem processes. Although alterations of streamflow regime due to habitat fragmentation or other anthropogenic factors are ubiquitous, a quantitative understanding of their implications on ecosystem structure and fu...
Data
Correlations among light-driven, flow-driven and potentially grazing-associated shifts of autotrophic community composition of benthic biofilms. Each axis represents one canonical dimension identified by canonical analysis of principal coordinates run on the Bray-Curtis dissimilarity matrix with flow and light or grazing rate as constraint(s). (TIF...
Data
Grazing rate estimation. Blue triangles and light blue circles represent measured biomass values from the stochastic discharge treatments under ungrazed and grazed conditions, respectively. The slope of the blue line represents the growth rate, while the slope of the light blue line represents the difference between the growth rate and the grazing...
Data
Biofilm OM [mg cm−2] temporal dynamics (mean ± SD). Left panels refer to the tochastic discharge treatment. (a), (b), (c), (d), refer to 90%, 65%, 50% and 27% transmission of incident light, respectively. Dark blue triangles and solid lines, and light blue circles and dashed lines represent biomass under ungrazed and grazed conditions, respectively...
Data
Sections of the experimental setup. (a) Section A–A; (b) Section B–B. (TIF)
Data
Header tank: particular. (a) Portion from Section A–A; (b) Section C–C; (c) Section D–D; (d) Section E–E; (e) Section F–F. (TIF)
Data
Plan of the experimental setup. For this experiment we used 24 out of 36 flumes (12 for each discharge treatment). (TIF)
Data
Small tank and flumes: particular. (a) Portion from Section A–A; (b) Section G–G; (c) Section H–H; (d) Section L–L. (TIF)
Data
Biofilm growth rate estimation. Blue circles and red triangles represent measured biomass values from stochastic and constant discharge treatments, respectively. Light blue circle and orange triangle represent the average value of triplicate biomass measurements on September 1st for stochastic and constant discharge treatments, respectively. The sl...
Data
Biofilm Chl-a [g cm−2] temporal dynamics (mean ± SD). Left panels refer to the stochastic discharge treatment. (a), (b), (c), (d), refer to 90%, 65%, 50% and 27% transmission of incident light, respectively. Dark blue triangles and solid lines, and light blue circles and dashed lines represent biomass under ungrazed and grazed conditions, respectiv...
Data
Biofilm algal cell abundance and community composition for each discharge and light treatment. (TIF)
Data
Ecdyonurus grazing rate on biofilm Chl-a [d−1] for each discharge and light treatment (mean ± SD). Two-way ANOVA on log-transformed data: discharge F1,16 = 9.64, P = 0.007; light F3,16 = 3.92, P = 0.028; discharge×light F3,16 = 2.31, P = 0.116. Blue and red bars refer to stochastic and constant discharge treatments, respectively. (TIF)
Article
Among all abiotic controlling factors, hydrology and light availability are the key drivers that influence and affect space and time organization, structure and function of stream ecosystems. To analyze from both an experimental and a modeling perspective the coupled effect of light and flow variability on the interactions between stream biofilm (i...
Article
Full-text available
Abstract The temporal variability of streamflow is known to be a key feature structuring and controlling fluvial ecological communities and ecosystem processes. Although alterations of streamflow regime due to habitat fragmentation or other anthropogenic factors are ubiquitous, a quantitative understanding of their implications on ecosystem structu...
Article
Understanding the dynamics of fluvial ecosystems linked to hydrology is one of the most important challenges of ecohydrology. In fact, streamflow, which chiefly relies on rainfall, climate, land use and geomorphologic properties, plays a fundamental role in sustaining and regulating fluvial ecosystem integrity. To analyze possible implications of h...
Article
A comprehensive probabilistic characterization of streamflow variability in river basins has noteworthy scientific and social implications due to the relevant impacts on in-stream biogeochemical processes, human exploitations of stream water and ecological services of riparian and riverine environments. To this aim, a comparative study of ecohydrol...
Article
Recent works at the interface of hydrology, geomorphology and ecology under an integrated framework of analysis will be reviewed with a view to a general theory for reactive transport on networks. A number of related topics will be reviewed, linked by the characters of stochastic transport, and the networked environmental matrix (including biodiver...
Article
Full-text available
We run a comparative study of ecohydrological models of streamflow probability distributions (pdfs), p(Q), derived by Botter et al. (2007a, 2009), against field data gathered in different hydrological contexts. Streamflows measured in several catchments across various climatic regions of northeastern Italy and the United States are employed. The re...

Network

Cited By