About
33
Publications
4,953
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
679
Citations
Introduction
I currently work at the School of Medicine, University of Alabama at Birmingham. I am interested in the function of several transcription factors, protein-protein interaction and miRNA action on the relationship between metabolic syndrome, inflammation and energy homeostasis. In addition, I would study for the dysfunction of transcription factors including nuclear receptors in chronic metabolic diseases using my experiences and techniques.
Additional affiliations
January 2020 - present
April 2015 - December 2019
September 2014 - March 2015
Education
August 2009 - August 2014
August 2005 - August 2008
Publications
Publications (33)
Glucagon-like peptide 1 receptor (GLP1R) agonists are widely used to treat diabetes. However, their function is dependent on adequate GLP1R expression, which is downregulated in diabetes. GLP1R is highly expressed on pancreatic beta cells and activation by endogenous incretin or GLP1R agonists increases cAMP generation, which stimulates glucose-ind...
Glucagon-like peptide 1 receptor (GLP-1R) is a G protein-coupled receptor that is highly expressed on pancreatic beta-cells and activated by endogenous incretins or antidiabetic GLP-1R agonist drugs. GLP-1R function is important in maintaining glucose homeostasis and involves stimulation of glucose-induced beta-cell insulin secretion via cAMP gener...
Loss of functional beta cell mass represents a major factor in the pathogenesis of diabetes. Currently, there are no therapies that halt this process; however, thioredoxin-interacting protein (TXNIP) has recently emerged as a promising therapeutic target. TXNIP was found to be the top glucose-induced gene in a human pancreatic islet microarray, is...
Type 1 diabetes (T1D) is characterized by T-cell and cytokine-mediated pancreatic beta cell loss, but some of the mechanisms involved are still unknown. Growth differentiation factor 15 (GDF15), which is a distant member of the transforming growth factor β (TGFβ) family, has been shown to be increased in various diseases including cancer, heart fai...
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are often associated with diabetes, but are becoming an even bigger world-wide epidemic with over 1 billion people affected. Nevertheless, while some diabetes medications such as glucagon-like peptide 1 and peroxisome proliferator-activated receptor agonists have shown...
Thioredoxin-interacting protein (Txnip) has emerged as a key factor in pancreatic beta cell biology and its upregulation by glucose and diabetes contributes to the impairment in functional beta cell mass and glucose homeostasis. In addition, beta cell deletion of Txnip protects against diabetes in different mouse models. However, while Txnip is ubi...
Increased glucagon is a hallmark of diabetes and leads to worsening of the hyperglycemia, but the molecular mechanisms causing it are still unknown. We therefore investigated the possibility that microRNAs might be involved in the regulation of glucagon. Indeed, analysis of the glucagon 3’UTR revealed potential binding sites for miR-320a and using...
Here, Thielen et al. show that a newly designed, orally available small molecule inhibited pancreatic islet TXNIP expression, glucagon secretion, hepatic glucagon action, glucose production, and steatosis, and exhibited strong anti-diabetic effects in mouse models of type 1 and type 2 diabetes, promising a distinct and innovative diabetes treatment...
Endoplasmic reticulum (ER) stress has been shown to play an important role in beta cell loss in diabetes. However, the factors involved in this process are still not fully understood. Growth differentiation factor 15 (GDF15), a member of the transforming growth factor beta (TGFβ) family, is a stress response gene and is involved in various diseases...
Glucagon, secreted from the α-cells of pancreatic islets, plays an important, yet underappreciated role in glucose homeostasis. As the major counter-regulatory hormone to insulin, it helps maintain normal blood glucose levels and prevent life-threatening hypoglycemia. However, while the regulation of glucagon has been shown to be perturbed in subje...
Glucokinase (GK), mainly expressed in the liver and pancreatic β-cells, is critical for maintaining glucose homeostasis. GK expression and kinase activity, respectively, are both modulated at the transcriptional and post-translational levels. Post-translationally, GK is regulated by binding the glucokinase regulatory protein (GKRP), resulting in GK...
Post-translational modifications (PTMs) of transcription factors play a crucial role in regulating metabolic homeostasis. These modifications include phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. Recent studies have shed light on the importance of lysine acetylation at nonhistone proteins including tra...
Background/objectives:
Increased adipose tissue mass closely associates with the development of insulin resistance and type 2 diabetes mellitus. Previously, we reported that CREB3L4 expressed in adipose tissue negatively regulates adipogenesis, and Creb3l4 knockout mice fed a high-fat diet for 16 weeks showed fat cell hyperplasia, with improved gl...
Programmed cell death 5 (PDCD5) plays a crucial role in TP53-mediated apoptosis, but the regulatory mechanism of PDCD5 itself during apoptosis remains obscure. We identified YY1-associated factor 2 (YAF2) as a novel PDCD5-interacting protein in a yeast two-hybrid screen for PDCD5-interacting proteins. We found that YY1-associated factor 2 (YAF2) bi...
Understanding the molecular networks that regulate adipogenesis is crucial for combating obesity. However, the identity and molecular actions of negative regulators that regulate the early development of adipocytes remain poorly understood. In this study, we investigated the role of CREB3L4, a member of the CREB3-like family, in the regulation of a...
Thioredoxin-interacting protein (TXNIP) is upregulated in the hyperglycaemic state and represses glucose uptake, resulting in imbalanced glucose homeostasis. In this study, we propose a mechanism of how TXNIP impairs hepatic glucose tolerance at the transcriptional level.
We administered adenoviral Txnip (Ad-Txnip) to normal mice and performed intr...
Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a nuclear receptor superfamily; members of which play key roles in the control of body metabolism principally by acting on adipose tissue. Ligands of PPARγ, such as thiazolidinediones, are widely used in the treatment of metabolic syndromes and type 2 diabetes mellitus (T2DM). Alth...
Aims
Alpinia katsumadai was recently found in our previous study to have anti-migratory and anti-invasion activities against HT-1080 cells. However, the study did not demonstrate the exact component of Alpinia katsumadai with anti-migratory and anti-invasive activities. We tested the effects and relevant mechanism of cardamonin (CDN) on the migrati...
Aims/hypothesis:
Transcription factor E3 (TFE3) has been shown to increase insulin sensitivity by activating insulin-signalling pathways. However, the role of TFE3 in glucose homeostasis is not fully understood. Here, we explored the possible therapeutic potential of TFE3 for the control of hyperglycaemia using a streptozotocin-induced mouse model...
We determined the expression of the formyl peptide receptor (FPR) family and the functional roles of the FPR family in NK cells. All tested human NK cells express two members of the FPR family (FPR1 and FPR2). The expression of FPR3 was noted to occur in a donor-specific manner. The stimulation of NK cells with FPR family-selective agonists (fMLF (...
In this study, we observed that lysophosphatidylglycerol (LPG) completely inhibited a formyl peptide receptor like-1 (FPRL1) agonist (MMK-1)-stimulated chemotactic migration in human phagocytes, such as neutrophils and monocytes. LPG also dramatically inhibited IL-1beta production by another FPRL1 agonist serum amyloid A (SAA) in human phagocytes....
Lysophosphatidylserine (LPS) was found to stimulate intracellular calcium increase in U87 human glioma cells. LPS also stimulated chemotactic migration of U87 human glioma cells, which was completely inhibited by pertussis toxin (PTX). Moreover, LPS was also found to stimulate ERK, p38 MAPK, JNK, and Akt activities in U87 cells. We observed that LP...
We observed that lysophosphatidylglycerol (LPG) stimulates chemotactic migration in human natural killer (NK) cells. The LPG-induced chemotactic migration of NK cells was completely inhibited by pertussis toxin (PTX). LPG also stimulated the extracellular signal-regulated kinase (ERK) and Akt activities in NK cells. LPG-stimulated ERK activity was...
F2L, a peptide derived from heme-binding protein, was originally identified as an endogenous ligand for formyl peptide receptor-like (FPRL)2. Previously, we reported that F2L inhibits FPR and FPRL1-mediated signaling in neutrophils. Since endothelial cells express functional FPRL1, we examined the effect of F2L on LL-37 (an FPRL1 agonist)-induced s...
Serum amyloid A (SAA) is an important mammalian acute reactant. Here, we aim to investigate the effect of SAA on apoptosis and its mechanism of action in human amniotic WISH cells.
The expression of formyl peptide receptor (FPRL1), which is reported as a SAA receptor, was tested using RT-PCR and ligand binding assay with radio-labeled FPRL1 ligand....
Serum amyloid A (SAA) and Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm) have been reported as formyl peptide receptor-like 1 (FPRL1) ligands. WKYMVm but not SAA stimulated superoxide generation by human neutrophils. In terms of the downstream signalings triggered by WKYMVm and SAA, both agonists stimulated cytosolic phospholipase A2-mediated arachidonic acid...
Although the level of serum amyloid A has been reported to be up-regulated during inflammatory response, the role of serum amyloid A on the regulation of inflammation and immune response has not been elucidated. We found that serum amyloid A stimulated the production of tumor necrosis factor (TNF)-alpha and interleukin (IL)-10, which are proinflamm...
Although formyl peptide receptor like 2 (FPRL2) has been regarded as an important classical chemoattractant receptor, its functional role and signaling pathway have not been fully investigated, because of the lack of its specific ligand. Recently F2L, a heme-binding protein fragment peptide, has been reported as an FPRL2-selective endogenous agonis...
Lysophosphatidylserine (LPS) may be generated after phosphatidylserine-specific phospholipase A2 activation. However, the effects of LPS on cellular activities and the identities of its target molecules have not been fully elucidated. In this study, we observed that LPS stimulates an intracellular calcium increase in L2071 mouse fibroblast cells, a...
Rat primary chondrocytes express the lysophosphatidic acid (LPA) receptor, LPA1, LPA3, but not LPA2. When chondrocytes were stimulated with LPA, phospholipase C-mediated cytosolic calcium increase was dramatically induced. LPA also stimulated two kinds of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) and p38 kinase i...