
Annals of Functional Analysis (2020) 11:194–207
https://doi.org/10.1007/s43034-019-00025-0

Tusi
Mathematical
Research
Group

ORIG INAL PAPER

Inequalities of the Wasserstein mean with other matrix
means

Sejong Kim1 · Hosoo Lee2

Received: 21 March 2019 / Accepted: 10 June 2019 / Published online: 1 December 2019
© Tusi Mathematical Research Group (TMRG) 2019

Abstract
Recently, a new Riemannian metric and a least squares mean of positive definite
matrices have been introduced. They are called the Bures–Wasserstein metric and
Wasserstein mean, which are different from the Riemannian trace metric and Karcher
mean. In this paper we find relationships of the Wasserstein mean with other matrix
means such as the power means, harmonic mean, and Karcher mean.
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Mathematics Subject Classification 15B48 · 47B65

1 Introduction

Since Pusz and Woronowicz [17] have introduced two variable geometric mean of
positive definite matrices, a variety of different schemes to construct multivariate
geometric means have been developed in the settings of positive matrices and positive
operators. The natural and canonical mean among those multivariate geometric means
on the open convex conePk of k×k positive definitematrices is the least squaresmean,
denoted as�(ω; A1, . . . , An), which is the unique point inPk minimizing theweighted
sum of squares of the Riemannian trace metrics to each variables A1, . . . , An ∈ Pk :
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�(ω; A1, . . . , An) = argmin
X∈Pk

n∑

j=1

w jδ
2(X , A j ),

where ω = (w1, . . . , wn) is a positive probability vector and

δ(A, B) = ‖ log A−1/2BA−1/2‖2
is the Riemannian trace metric between A and B. This has been anticipated by Élie
Cartan [3, Section 6.1.5] and Karcher [13] has shown that �(ω; A1, . . . , An) coin-
cides with the unique positive definite solution X ∈ Pk of the Karcher equation∑n

j=1 w j log(X−1/2A j X−1/2) = O . Many interesting properties including mono-
tonicity and the extension theory of Karcher mean to positive definite operators have
been derived from theKarcher equation [15], sowe call�(ω; A1, . . . , An) theKarcher
mean. Moreover, the theory of means has been developed by Sturm [18] to the setting
of probability measures with finite first moment on the Hadamard space, which is a
complete metric space satisfying the semi-parallelogram law.

Many research topics about the Karcher mean such as finding properties, computa-
tional algorithms, and extending to positive operators have been widely studied [5,11,
13,15,16]. Among lots of interesting approaches to the Karcher mean, Lim and Pálfia
[16] have introduced power means of positive definite matrices Pt (ω; A1, . . . , An)

of order t ∈ [−1, 1] \ {0} as the unique positive definite solution of the following
non-linear equation:

X =
n∑

i=1

wi (X#t Ai ), t ∈ (0, 1]

X =
[

n∑

i=1

wi (X
−1#−t A

−1
i )

]−1

, t ∈ [−1, 0),

where A#t B = A1/2(A−1/2BA−1/2)t A1/2 is the weighted geometric mean of positive
definite matrices A and B. They have shown that the Karcher mean�(ω; A1, . . . , An)

is the limit of the power means Pt (ω; A1, . . . , An) as t → 0. This plays an important
role in proving the monotonicity of Karcher mean and extending to positive invertible
operators.

Motivated frombarycenters in theWasserstein space ofGaussian distributions [1,2],
Bhatia, Jain and Lim [6] have developed the Wasserstein metric d and Wasserstein
mean � on the open convex cone Pk with matrix analysis.

�(ω; A1, . . . , An) = argmin
X∈Pk

n∑

j=1

w j d
2(X , A j ),

where

d(A, B) =
[(

A + B

2

)
− (A1/2BA1/2)1/2

]1/2
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is the Bures–Wasserstein distance between A and B. Although the Wasserstein mean
does not satisfy the monotonicity, determinantal identity, and Wasserstein-harmonic
mean inequality, it still gives interesting results such as theBures–Wasserstein distance
is a Riemannian metric and the Wasserstein mean satisfies the arithmetic-Wasserstein
mean inequality and the Lie–Trotter–Kato formula. See [6,12] for more details.

The main goal of this paper is to find relationships between the Wasserstein mean
and other matrix means in terms of trace and Loewner order. In Sect. 2 we recall
the Bures–Wasserstein distance and Wasserstein mean with known properties, and in
Sect. 3 we show the relationships between theWasserstein mean and power mean, and
between the Wasserstein mean and Karcher mean. Finally, we see in Sect. 4 the order
relation between the Wasserstein mean and the harmonic mean.

2 Wasserstein mean

LetHk be the real vector space of all k×k Hermitianmatrices. LetPk ⊂ Hk be the open
convex cone of all k×k positive definite matrices. The general linear groupGLk of all
k×k invertiblematrices acts onPk via congruence transformations�M (X) = MXM∗
for M ∈ GLk and X ∈ Pk . We denote as Uk the compact group of all k × k unitary
matrices. For any A, B ∈ Hk we write A ≤ B if B − A is positive semi-definite, and
A < B if B − A is positive definite. This is indeed a partial order on Hk , known as
the Loewner order.

A new metric defined by

d(A, B) =
[(

A + B

2

)
− (A1/2BA1/2)1/2

]1/2

and the unique geodesic for this metric on the open convex conePm of positive definite
matrices have been recently introduced in [6]. This metric is the matrix version of the
Hellinger distance

d(
−→p ,

−→q ) =
[
1

2

n∑

i=1

(
√
pi − √

qi )
2

]1/2

for twoprobability distributions−→p = (p1, . . . , pn) and
−→q = (q1, . . . , qn).Moreover,

it coincides with the Bures distance of density matrices in quantum information theory
and theWasserstein metric in statistics and the theory of optimal transport. The Bures–
Wasserstein metric is a Riemannian metric induced by the inner product

〈X ,Y 〉A =
k∑

i, j=1

αiRe(x ji y ji )

(αi + α j )2

for any X = [xi j ] and Y = [yi j ] on the tangent space TAPk ≡ Hk for each A ∈ Pk ,
where α1, . . . , αk are positive eigenvalues of A ∈ Pk . The unique geodesic connecting
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from A to B for the Bures–Wasserstein distance is given by

A �t B := (1 − t)2A + t2B + t(1 − t)
[
(AB)1/2 + (BA)1/2

]
, t ∈ [0, 1].

Let A = (A1, . . . , An) ∈ P
n
k , and let ω = (w1, . . . , wn) ∈ �n , the simplex of all

positive probability vectors in R
n . We consider the following minimization problem

argmin
X∈Pk

n∑

j=1

w j d
2(X , A j ), (2.1)

where d is the Bures–Wasserstein distance on Pk . By using tools from non-smooth
analysis, convex duality, and the optimal transport theory, it has been proved in [1, The-
orem6.1] that the aboveminimization problemhas a unique solution inPk .On the other
hand, it has been shown in [6] that the objective function f (X) = ∑n

j=1 w j d2(X , A j )

is strictly convex on Pk , by applying the strict concavity of the map h : Pk →
R, h(X) = Tr(X1/2). Therefore, we define such a unique minimizer of (2.1) as the
Wasserstein mean, denoted by �(ω;A). That is,

�(ω;A) = argmin
X∈Pk

n∑

j=1

w j d
2(X , A j ).

To find the unique minimizer of objective function f : Pk → R, we evaluate the
derivative Df (X) and set it equal to zero. By using matrix differential calculus, we
have the following.

Theorem 2.1 [6, Theorem 8] The Wasserstein mean �(ω;A) is a unique solution
X ∈ Pk of the nonlinear matrix equation

I =
n∑

j=1

w j (A j#X
−1),

equivalently,

X =
n∑

j=1

w j (X
1/2A j X

1/2)1/2.

Remark 2.2 It has been shown in [6] that

�(1 − t, t; A, B) = (1 − t)2A + t2B + t(1 − t)
[
(AB)1/2 + (BA)1/2

]
,

and it does not hold the monotonicity and the Wasserstein-harmonic mean inequality.
So theWasserstein mean�(1− t, t; A, B) is different from the usual geometric mean
A#B, even for multivariate cases.
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For given A = (A1, . . . , An) ∈ P
n
k , any permutation σ on {1, . . . , n}, and any

invertible matrix M , we denote as

Aσ = (Aσ(1), . . . , Aσ(n)) ∈ P
n
k ,

MAM∗ = (MA1M
∗, . . . , MAnM

∗) ∈ P
n
k ,

A
r = (A1, . . . , An, . . . , A1, . . . , An) ∈ P

nr
k ,

where the number of blocks in the last expression is r . For given ω = (w1, . . . , wn) ∈
�n , we also denote as

ωσ = (wσ(1), . . . , wσ(n)) ∈ �n,

ωr = 1

r
(w1, . . . , wn, . . . , w1, . . . , wn) ∈ �nr .

The following are some properties of the Wasserstein mean: see [6,12].

Lemma 2.3 Let A = (A1, . . . , An) ∈ P
n
k , and let ω = (w1, . . . , wn) ∈ �n. Then the

following are satisfied.

(1) (Consistency with scalars) �(ω;A) =
[∑n

j=1 w j A
1/2
j

]2
if the A j ’s commute.

(2) (Homogeneity) �(ω;αA) = α�(ω;A) for any α > 0.
(3) (Permutation invariancy) �(ωσ ;Aσ ) = �(ω;A) for any permutation σ on

{1, . . . , n}.
(4) (Repetition invariancy) �(ωk;Ak) = �(ω;A) for any k ∈ N.
(5) (Unitary congruence invariancy) �(ω;UAU∗) = U�(ω;A)U∗ for any U ∈

Um.
(6) (Arithmetic-Wasserstein mean inequality) �(ω;A) ≤ ∑n

j=1 w j A j .

Moreover, X = �(ω; A1, . . . , An−1, X) if and only if X = �(ω̂; A1, . . . , An−1),
where ω̂ = 1

1−wn
(w1, . . . , wn−1) ∈ �n−1.

Proof All items (1)-(6) have been proved in [6,12].
Let X = �(ω; A1, . . . , An−1, X). Then it is equivalent by Theorem 2.1 to

I =
n−1∑

j=1

w j (A j#X
−1) + wn(X#X

−1) =
n−1∑

j=1

w j (A j#X
−1) + wn I .

So it is simplified to I = ∑n−1
j=1

w j
1−wn

(A j#X−1), and thus, X = �(ω̂; A1, . . . , An−1)

by Theorem 2.1. �
Lemma 2.4 Let ω = (w1, . . . , wn) ∈ �n and A = (A1, . . . , An) ∈ P

n
k with 0 <

mI ≤ A j ≤ MI for all j and some positive scalars m, M. Then mI ≤ �(ω;A) ≤
MI .

Proof Assume that 0 < mI ≤ A j ≤ MI for all j = 1, . . . , n. Let X = �(ω;A).
Since the congruence transformation and square root map preserve the Loewner order,



Inequalities of the Wasserstein mean with other matrix means 199

we havemX ≤ X1/2A j X1/2 ≤ MX , and
√
mX1/2 ≤ (X1/2A j X1/2)1/2 ≤ √

MX1/2.
Then

√
mX1/2 ≤

n∑

j=1

w j (X
1/2A j X

1/2)1/2 ≤ √
MX1/2.

So
√
mX1/2 ≤ X ≤ √

MX1/2 by Theorem 2.1, and
√
mI ≤ X1/2 ≤ √

MI . Hence,
mI ≤ X ≤ MI . �

An iteration approach to the Wasserstein mean has been recently shown in [2] by
using the map K : Pk → Pk defined as

K (A) = A−1/2

⎡

⎣
n∑

j=1

w j (A
1/2A j A

1/2)1/2

⎤

⎦
2

A−1/2. (2.2)

for each A ∈ Pk .

Theorem 2.5 [2] Let ω ∈ �n and A ∈ P
n
k . For every S0 ∈ Pk the sequence Sr+1 =

K (Sr ) constructed iteratively from the map K in (2.2) converges to �(ω;A), and for
all natural numbers r

Sr ≤ Sr+1 ≤ �(ω;A).

3 Power means and Karcher mean

It is well known from [18] that the least squares mean, the Cartan mean or Karcher
mean, uniquely exists in the Hadamard space. The Karcher mean of positive definite
matrices A1, . . . , An with a positive probability vector ω = (w1, . . . , wn) is defined
as the unique point �(ω; A1, . . . , An) that minimizes the variance function f (X) =∑n

j=1 w jδ
2(X , A j ).

�(ω; A1, . . . , An) = argmin
X∈Pm

n∑

j=1

w jδ
2(X , A j ).

Vanishing the gradient of objective function f (X) = ∑n
j=1 w jδ

2(X , A j ) we obtain
that the Karcher mean �(ω; A1, . . . , An) coincides with the unique solution X ∈ Pk

of nonlinear matrix equation, called the Karcher equation,

n∑

j=1

w j log(X
−1/2A j X

−1/2) = O.

The Karcher mean of positive definite matrices is a currently active research topic
in many areas such as matrix analysis, optimization, numerical computation, and
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operator theory. Among a variety of approaches to the Karcher mean, Lim and Pálfia
have introduced in [16] a powerful theory of power means. The matrix power mean
Pt (ω; A1, . . . , An) for t ∈ (0, 1] is defined as the unique solution X ∈ Pm of the
following equation

X =
n∑

j=1

w j X#t A j .

Indeed, the map g : Pk → Pk, g(X) = ∑n
j=1 w j X#t A j for t ∈ (0, 1] is a strict

contraction for the Thompson metric dT (A, B) = ‖ log A−1/2BA−1/2‖, where ‖ · ‖
denotes the operator norm. Therefore,

lim
k→∞ gk(Z) = Pt (ω; A1, . . . , An) for any Z ∈ Pk .

For t ∈ [−1, 0) we define Pt (ω; A1, . . . , An) = P−t (ω; A−1
1 , . . . , A−1

n )−1. The
most remarkable consequence of matrix power means is that matrix power means
Pt (ω; A1, . . . , An) converges to the Karcher mean �(ω; A1, . . . , An) as t → 0. This
plays an important role to construct the Karcher mean of positive invertible operators:
see [15]. Furthermore, for 0 ≤ s ≤ t ≤ 1

⎡

⎣
n∑

j=1

w j A
−1
j

⎤

⎦
−1

= P−1 ≤ P−t ≤ P−s ≤ · · · ≤ � ≤ · · · ≤ Ps ≤ Pt ≤ P1 =
n∑

j=1

w j A j .

(3.1)

In this section we investigate the relationship of Wasserstein mean with power
means and Karcher mean of positive definite matrices.

Theorem 3.1 Let ω = (w1, . . . , wn) ∈ �n and A = (A1, . . . , An) ∈ P
n
k . For any

0 < t ≤ 1/2,

Pt (ω;A) ≤ �(ω;A).

There are two different approaches of the proof for Theorem 3.1. One method is the
use of monotonicity of matrix power means Pt for parameters, and another method is
the use of iteration approach for the Wasserstein mean in Theorem 2.5.

Proof 1 By Theorem 2 in [7] with the Schatten 1-norm, we have

Q1/2(ω;A) ≤ �(ω;A),
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where Qp(ω;A) =
(∑n

j=1 w j A
p
j

)1/p
for any p ∈ (−∞,∞) is the weighted quasi-

arithmetic mean of A1, . . . , An . Moreover, it has been proved in [8] that

Pt (ω;A) ≤ Qt (ω;A)

for any t ∈ (0, 1). Since the power means Pt is monotone for parameters by (3.1), we
conclude that Pt ≤ P1/2 ≤ Q1/2 ≤ � for 0 < t ≤ 1/2. �
Proof 2 Let X0 = Pt (ω;A)−1 for 0 < t ≤ 1/2. Then by the affine property of
parameters: (A#s B)#t (A#u B) = A#(1−t)s+tu B for any s, t, u ∈ [0, 1], and by the
two-variable arithmetic-geometric mean inequality,

X−1
0 =

n∑

j=1

w j X
−1
0 #t A j =

n∑

j=1

w j

[
X−1
0 #2t (X

−1
0 #A j )

]

≤
n∑

j=1

w j

[
(1 − 2t)X−1

0 + 2t(X−1
0 #A j )

]
= (1 − 2t)X−1

0 + 2t
n∑

j=1

w j X
−1
0 #A j .

A simple calculation yields that X−1
0 ≤ ∑n

j=1 w j X
−1
0 #A j . By applying the congru-

ence transformation via X1/2
0 , we obtain

I ≤
n∑

j=1

w j (X
1/2
0 A j X

1/2
0 )1/2.

Taking square on both sides yields I ≤
[∑n

j=1 w j (X
1/2
0 A j X

1/2
0 )1/2

]2
. By applying

the congruence transformation via X−1/2
0 we obtain

X−1
0 ≤ X−1/2

0

⎡

⎣
n∑

j=1

w j (X
1/2
0 A j X

1/2
0 )1/2

⎤

⎦
2

X−1/2
0 = K (X0).

Therefore, by Theorem 2.5

Pt (ω;A) = X−1
0 ≤ K (X0) = X1 ≤ �(ω;A).

�
Corollary 3.2 Let ω = (w1, . . . , wn) ∈ �n and A = (A1, . . . , An) ∈ P

n
k . For any−1/2 ≤ t < 0,

Pt (ω;A) > k
[
�(ω;A−1)

]−1
,

where A−1 = (A−1
1 , . . . , A−1

n ) ∈ P
n
k .
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Proof Note that Pt (ω;A) = P−t (ω;A−1)−1 for any −1/2 ≤ t < 0. By Theorem 3.1
we have

[
Pt (ω;A)−1

]
= P−t (ω;A−1) ≤ �(ω;A−1).

Since [A−1] > k[A]−1 for any A ∈ Pk , the above inequality implies that

k [Pt (ω;A)]−1 < �(ω;A−1).

Therefore, we obtain the desired inequality. �
Remark 3.3 Let

A =
[
1 2
2 5

]
, B =

[
4 4
4 5

]
.

One can see easily that A, B are positive definite and AB �= BA. The Wasserstein
mean �

( 1
2 ,

1
2 ; A, B

) = A � B and the Karcher mean �
( 1
2 ,

1
2 ; A, B

) = A#B of
positive definite matrices A and B, respectively, are

�

(
1

2
,
1

2
; A, B

)
= 1

4

[
9 12
12 20

]
, �

(
1

2
,
1

2
; A, B

)
=

[
1.6641 2.2188
2.2188 4.1603

]
.

Onecan see that there is noorder relationbetween theWassersteinmean�
( 1
2 ,

1
2 ; A, B

)

and the Karcher mean �
( 1
2 ,

1
2 ; A, B

)
.

Proposition 3.4 Let ω = (w1, . . . , wn) ∈ �n and A = (A1, . . . , An) ∈ P
n
k . Then

k
[
�(ω;A−1)

]−1 ≤ �(ω;A) ≤ �(ω;A).

Proof Note that

lim
t→0

Pt (ω;A) = �(ω;A).

Taking the limit as t → 0+ in the result of Theorem 3.1 and applying the continuity of
the trace map, we obtain �(ω;A) ≤ �(ω;A). Moreover, taking the limit as t → 0−
in the result of Corollary 3.2 yields that �(ω;A) ≥ k

[
�(ω;A−1)

]−1
. �

The following shows the relation between the Wasserstein mean and the matrix
power mean under certain assumption.

Theorem 3.5 Let ω = (w1, . . . , wn) ∈ �n and A = (A1, . . . , An) ∈ P
n
k . For any

1/2 ≤ t ≤ 1, �(ω;A) ≥ I implies �(ω;A) ≥ Pt (ω;A)−1.
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Proof Let X = �(ω;A)−1. Then X ≤ I by assumption. By Theorem 2.1, the affine
property of parameters, and the two-variable arithmetic-geometric mean inequality,
we have

I =
n∑

j=1

w j (X#A j ) =
n∑

j=1

w j

[
X# 1

2t
(X#t A j )

]

≤
n∑

j=1

w j

[(
1 − 1

2t

)
X + 1

2t
(X#t A j )

]

=
(
1 − 1

2t

)
X + 1

2t

n∑

j=1

w j (X#t A j ).

Since X ≤ I , we have

X ≤ 2t I − (2t − 1)X ≤
n∑

j=1

w j (X#t A j ).

Since the map f : Pk → Pk defined by f (Z) = ∑n
j=1 w j (Z#t A j ) is monotone

increasing, we get X ≤ f (X) ≤ f 2(X) ≤ · · · ≤ f r (X) for all r ≥ 1. Note that f
is a strict contraction with respect to the Thompson metric, and as r → ∞ f r (Z)

converges to a unique fixed point, which is the power mean, for any Z ∈ Pk by the
Banach fixed point theorem. So we obtain

X ≤ lim
r→∞ f r (X) = Pt (ω;A).

Therefore, �(ω;A) = X−1 ≥ Pt (ω;A)−1. �

Corollary 3.6 Let ω = (w1, . . . , wn) ∈ �n and A = (A1, . . . , An) ∈ P
n
k . For any

−1 ≤ t ≤ −1/2, �(ω;A) ≥ I implies �(ω;A) ≥ Pt (ω;A−1) ≥
[∑n

j=1 w j A j

]−1
.

Proof Assume that �(ω;A) ≥ I . Since P−t (ω;A)−1 = Pt (ω;A−1) for any −1 ≤
t ≤ −1/2, we obtain from Theorem 3.5 and the monotonicity of power means for
parameters in (3.1) that

�(ω;A) ≥ Pt (ω;A−1) ≥ P−1(ω;A−1) =
⎡

⎣
n∑

j=1

w j A j

⎤

⎦
−1

.

�
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4 Inequalities with harmonic means

In this sectionwe investigate the inequality relationship between theWassersteinmean

and the harmonic mean H(ω; A1, . . . , An) =
[∑n

j=1 w j A
−1
j

]−1
.

For 1 ≤ i, j ≤ n let Ai j ∈ Mk , the set of all k × k matrices with entries in the field
of complex numbers. We define a map 
 : Mn(Mk) → Mk as




⎛

⎜⎝

⎡

⎢⎣
A11 · · · A1n
...

. . .
...

An1 · · · Ann

⎤

⎥⎦

⎞

⎟⎠ =
n∑

j=1

w j A j j .

Then one can easily see that 
 is a unital positive linear map.

Theorem 4.1 Let ω = (w1, . . . , wn) ∈ �n andA = (A1, . . . , An) ∈ P
n
k . If there exist

positive scalars M and m such that 0 < mI ≤ A j ≤ MI for all j , then

4Mm

(M + m)2
I ≤ H(ω; X−1#A1, . . . , X

−1#An) ≤ I ,

where X = �(ω; A1, . . . , An).

Proof Let X = �(ω; A1, . . . , An). Then by the arithmetic-harmonic mean inequality

H(ω; X−1#A1, . . . , X
−1#An) ≤

n∑

j=1

w j X
−1#A j = I .

If there exist positive scalars M andm such that 0 < mI ≤ A j ≤ MI for all j , then
mI ≤ X = �(ω; A1, . . . , An) ≤ MI by Lemma 2.4, and mI ≤ (X1/2A j X1/2)1/2 ≤
MI for all j . So

mI ≤
⎡

⎢⎣
(X1/2A1X1/2)1/2 · · · O
...

. . .
...

O · · · (X1/2AnX1/2)1/2

⎤

⎥⎦ ≤ MI .

Applying Proposition 2.7.8 in [4] to the unital positive linear map 
, we obtain




⎛

⎜⎝

⎡

⎢⎣
(X1/2A1X1/2)1/2 · · · O
...

. . .
...

O · · · (X1/2AnX1/2)1/2

⎤

⎥⎦

⎞

⎟⎠

≤ (M + m)2

4Mm



⎛

⎜⎜⎝

⎡

⎢⎣
(X1/2A1X1/2)1/2 · · · O

...
. . .

...

O · · · (X1/2AnX1/2)1/2

⎤

⎥⎦

−1
⎞

⎟⎟⎠

−1

.
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Equivalently, by Theorem 2.1

X =
n∑

j=1

w j (X
1/2A j X

1/2)1/2 ≤ (M + m)2

4Mm

⎡

⎣
n∑

j=1

w j (X
1/2A j X

1/2)−1/2

⎤

⎦
−1

.

Taking the congruence transformation by X−1/2 on both sides, we obtain

I ≤ (M + m)2

4Mm
X−1/2

⎡

⎣
n∑

j=1

w j (X
1/2A j X

1/2)−1/2

⎤

⎦
−1

X−1/2

= (M + m)2

4Mm

⎡

⎣
n∑

j=1

w j X#A
−1
j

⎤

⎦
−1

= (M + m)2

4Mm
H(ω; X−1#A1, . . . , X

−1#An).

�
Remark 4.2 Note that the constant (M+m)2

4Mm appeared in Theorem 4.1 is known as the
Kantorovich constant. It plays an important role in the reverse inequalities of the
weighted arithmetic, geometric and harmonic means: see [9,14].

The notions of operator convexity and concavity are characterized by Jensen type
inequalities in [10]. For every contraction X we have

(X∗AX)p ≤ X∗ApX if 1 ≤ p ≤ 2,

and

(X∗AX)p ≥ X∗ApX if 0 ≤ p ≤ 1. (4.1)

For X ∈ GLk such that its inverse X−1 is a contraction,

(X∗AX)p ≤ X∗ApX if 0 ≤ p ≤ 1. (4.2)

Indeed, applying (4.1) to the contraction X−1 and X∗AX , we obtain

Ap = ((X−1)∗(X∗AX)X−1)p ≥ (X−1)∗(X∗AX)p X−1,

and hence, (X∗AX)p ≤ X∗ApX .

Theorem 4.3 Let ω = (w1, . . . , wn) ∈ �n and A = (A1, . . . , An) ∈ P
n
k .

(1) If �(ω; A1, . . . , An) ≥ I , then �(ω; A1, . . . , An) ≥ H(ω; A−1/2
1 , . . . , A−1/2

n ).

(2) If �(ω; A1, . . . , An) ≤ I , then �(ω; A1, . . . , An) ≤ H(ω; A−1/2
1 , . . . , A−1/2

n ).

Proof Let X = �(ω; A1, . . . , An).
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(1) By assumption I ≤ X = ∑n
j=1 w j (X1/2A j X1/2)1/2. By the inequality (4.2) we

have

I ≤
n∑

j=1

w j (X
1/2A j X

1/2)1/2

≤
n∑

j=1

w j X
1/2A1/2

j X1/2 = X1/2

⎡

⎣
n∑

j=1

w j A
1/2
j

⎤

⎦ X1/2.

Taking the congruence transformation by X−1/2 on both sides, we obtain X−1 ≤∑n
j=1 w j A

1/2
j . Thus, by taking inverse on both sides we get

X ≥
⎡

⎣
n∑

j=1

w j A
1/2
j

⎤

⎦
−1

= H(ω; A−1/2
1 , . . . , A−1/2

n ).

(2) By assumption I ≥ X = ∑n
j=1 w j (X1/2A j X1/2)1/2. By the inequality (4.1) we

have

I ≥
n∑

j=1

w j X
1/2A1/2

j X1/2 = X1/2

⎡

⎣
n∑

j=1

w j A
1/2
j

⎤

⎦ X1/2.

Taking the congruence transformation by X−1/2 on both sides, we obtain X−1 ≥∑n
j=1 w j A

1/2
j . Thus,

X ≤
⎡

⎣
n∑

j=1

w j A
1/2
j

⎤

⎦
−1

= H(ω; A−1/2
1 , . . . , A−1/2

n ).

�
Remark 4.4 Theorem 4.3 (2) can not be proved directly by Theorem 4.3 (1), since the
Wasserstein mean � is not invariant under inversion.
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