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ABSTRACT

Hypertension impairs cerebral vascular function. Vasodilator­stimulated

phosphoprotein (VASP) mediates active reorganization of the cytoskeleton via

membrane ruffling, aggregation, and tethering of actin filaments. VASP regulation of

endothelial barrier function has been demonstrated by studies using VASP−/−

animals under conditions associated with tissue hypoxia. We hypothesize that

hypertension regulates VASP expression and/or phosphorylation in endothelial cells,

thereby contributing to dysfunction in the cerebral vasculature. Because exercise has

direct and indirect salutary effects on vascular systems that have been damaged by

hypertension, we also investigated the effect of exercise on maintenance of VASP

expression and/or phosphorylation. We used immunohistochemistry, Western

blotting, and immunocytochemistry to examine the effect of hypertension on VASP

expression and phosphorylation in brain endothelial cells in normotensive

[Wistar–Kyoto (WKY)] and spontaneously hypertensive (SH) rats under normal and

exercise conditions. We also analyzed VASP regulation in normoxia­ and

hypoxia­induced endothelial cells. Brain endothelial cells exhibited significantly lower

VASP immunoreactivity and phosphorylation at the Ser157 residue in SHR versus

WKY rats. Exercise reversed hypertension­induced alterations in VASP

phosphorylation. Western blotting and immunocytochemistry indicated reduction in

VASP phosphorylation in hypoxic versus normoxic endothelial cells. These results

suggest that diminished VASP expression and/or Ser157 phosphorylation mediates

endothelial changes associated with hypertension and exercise may normalize these

changes at least in part by restoring VASP phosphorylation.
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ABSTRACT 

Hypertension impairs cerebral vascular function. Vasodilator-stimulated 

phosphoprotein (VASP) mediates active reorganization of the cytoskeleton via membrane 

ruffling, aggregation, and tethering of actin filaments. VASP regulation of endothelial 

barrier function has been demonstrated by studies using VASP−/− animals under 

conditions associated with tissue hypoxia. We hypothesize that hypertension regulates 

VASP expression and/or phosphorylation in endothelial cells, thereby contributing to 

dysfunction in the cerebral vasculature. Because exercise has direct and indirect salutary 

effects on vascular systems that have been damaged by hypertension, we also 

investigated the effect of exercise on maintenance of VASP expression and/or 

phosphorylation. We used immunohistochemistry, Western blotting, and 

immunocytochemistry to examine the effect of hypertension on VASP expression and 

phosphorylation in brain endothelial cells in normotensive [Wistar–Kyoto (WKY)] and 

spontaneously hypertensive (SH) rats under normal and exercise conditions. We also 

analyzed VASP regulation in normoxia- and hypoxia-induced endothelial cells. Brain 

endothelial cells exhibited significantly lower VASP immunoreactivity and 

phosphorylation at the Ser157 residue in SHR versus WKY rats. Exercise reversed 

hypertension-induced alterations in VASP phosphorylation. Western blotting and 

immunocytochemistry indicated reduction in VASP phosphorylation in hypoxic versus 

normoxic endothelial cells. These results suggest that diminished VASP expression 

and/or Ser157 phosphorylation mediates endothelial changes associated with 

hypertension and exercise may normalize these changes at least in part by restoring 

VASP phosphorylation. 
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INTRODUCTION 

Hypertension, a condition associated with endothelial dysfunction, is a critical risk 

factor for cerebrovascular and cardiovascular diseases. It also has a role in the 

development of vascular cognitive impairment and vascular dementia [1, 2]. Cerebral 

blood vessels have many unique structural and functional characteristics that differentiate 

them from vessels in other organs. These include absence of fenestrations and presence of 

tight junctions, which are the foundation of the blood-brain barrier (BBB). Endothelial 

cells also play an important role in the regulation of vascular tone by releasing potent 

vasoactive factors such as nitric oxide (NO), free radicals, prostacyclin, endothelium-

derived hyperpolarizing factor, and endothelin [3]. Neurovascular structure is disrupted 

early in pathological conditions such as hypertension and ischemic stroke, leading to 

metabolic deficiency in neuronal tissue. The deleterious action of reactive oxygen species 

on cerebral blood vessels also mediates cerebrovascular dysregulation [6]. Furthermore, 

acute and chronic increases in blood flow and/or shear stress in endothelial cells are 

known to enhance the expression and activity of endothelial nitric oxide synthase 

(eNOS), thereby resulting in the release of nitric oxide (NO). This mechanism has been 

shown to be associated with Ca2+-independent hypertension [7, 8]. 

VASP (vasodilator-stimulated phosphoprotein), first described in human platelets, 

is a 46 kDa membrane-associated protein that is part of the Ena/VASP family [9]. It is 

widely accepted that VASP is concentrated at focal adhesions, and cell-cell contacts 

where it regulates actin microfilaments; this suggests an intracellular modulatory role in 

the adhesion functions of many cells including platelets, vascular smooth muscle cells, 

endothelial cells, and fibroblasts. VASP is functionally activated by phosphorylation at 
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serine 157, serine 239, and threonine 278. The serine 157 and serine 239 sites are 

primarily phosphorylated by the cAMP and cGMP signaling pathways, respectively. 

Previous studies have shown that VASP mediates regulation of vascular endothelial cell 

functions such as endothelial barrier integrity, vascular permeability, and platelet 

aggregation under in vivo and in vitro conditions [10-12].  

Hypertension reduces expression and/or activity of eNOS in endothelial cells, 

causing endothelium-dependent relaxation of cerebral blood vessels to deteriorate [14]. 

Previous studies have shown that VASP phosphorylation is NO/cGMP-dependent in 

brain capillary endothelial cells [15]. VASP modulates cytoskeletal dynamics in vascular 

endothelial cells, a crucial structural and functional unit of the blood-brain barrier. Other 

studies have shown that VASP regulates Rac1 Rho-GTPase, resulting in stabilization of 

endothelial barrier function [6]. Maintaining the endothelial barrier requires intercellular 

adhesion and cell-matrix connections for which VASP is thought to be essential. It has 

also been shown that VASP phosphorylation is decreased in hypertensive rats [16]. We 

hypothesize that hypertension-related hypoxia decreases the expression and/or 

phosphorylation of VASP in brain endothelial cells, thereby contributing to the 

development of dysfunction in cerebral vasculature. 

METHODS 
Animal Experiments 

Spontaneously hypertensive rats (SHR) (11–12 weeks of age) and age-matched 

normotensive WKY rats (Harlan Laboratories, Indianapolis, IN, USA) served as the 

source for brain tissues. The animals were housed at 23 ± 2°C under a 12:12 h light:dark 

cycle and had free access to standard rat chow and drinking water. Systolic blood 
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pressure (SBP) was monitored daily via a tail-cuff method during the week before the 

experiments and every 2 weeks during the 8-week study period. All animal protocols 

were performed in accordance with the standards established and approved by the Animal 

Care Use and Animal Ethics Committee at Akdeniz University Faculty of Medicine, 

Turkey. 

Rats were assigned randomly to WKY sedentary (WKY; n = 20), WKY-

exercising (WKY-E; n = 20), SHR-sedentary (SHR; n = 20), and SHR-exercising (SHR-

E; n = 20) groups. The exercise training groups were subjected to swimming exercise (60 

min/day, 5 days/wk for 8 wks) in a glass tank (100 × 50 × 50 cm) filled with tap water 

(32–34C). The duration of the first swimming experience was limited to 10 min and 

increased by 10 min daily until 60 min was reached. The experimental protocol was 

approved by the Animal Care and Usage Committee of Akdeniz University and in 

accordance with the guidelines for using animals in experimental research. Animals were 

sacrificed under thiopental sodium anesthesia (80 mg/kg/body weight) [17]. After 

anesthesia, extracted brain samples were fixed in 10% formalin for 8 h, dehydrated in an 

ascending ethanol series, and embedded in paraffin for immunohistochemical analysis. 

Blood Pressure Monitoring 

Systolic blood pressure was measured using a non-invasive tail-cuff method at baseline 

and every 2 weeks during the 8-week study period. Data were obtained with a MAY-BPHR 9610-

PC unit and MP 150 data acquisition system (BIOPAC Systems; Santa Barbara, CA, USA). Final 

measurements were performed on exercised animals one day after the last swimming session. 

Immunohistochemistry 

Total VASP, Ser157-phosphoVASP, and Ser238-phosphoVASP immunohistochemistry 

were performed with antibodies developed specifically for total and phosphorylated forms of 
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VASP, as described previously [18]. Serial sections were incubated with mouse monoclonal total 

VASP antibody (Alexis Biochemicals), rabbit polyclonal Ser157-phosphoVASP (Cell Signaling 

Technology, Beverly, MA; both at 1:50 dilution), and rabbit polyclonal Ser238-phosphoVASP 

(Novus Biologicals, Littleton, CO; at 1:75 dilution) in TBS overnight in a humidified chamber at 

4°C.  

Non-specific mouse IgG1 and normal rabbit IgG antibodies were used at the same 

concentrations as the primary antibodies for negative controls. 100-M access peptide (Novus 

Biologicals, catalogue # NB100-82254PEP Littleton, CO) blocking was performed on the 

negative control VASP-Ser238 slides for 30 min before primary antibody application to 

determine the specificity of anti-Ser238 VASP antibody. After washing, the slides were incubated 

with biotinylated horse anti-mouse secondary antibody and biotinylated goat anti-rabbit 

secondary antibody (1:400; Vector Labs, Burlingame, CA) for 30 min at room temperature. After 

washing twice in TBS, the antigen-antibody complex was detected with streptavidin-biotin 

peroxidase complex (Vector Labs). DAB (3, 3-diaminobenzidine tetrahydrochloride dihydrate) 

(Vector Labs) was used as the chromogen to detect total VASP, phospho-Ser157 VASP, and 

phospho-Ser238 VASP. Slides were lightly counterstained with hematoxylin and mounted with a 

cover slip. 

The distribution and intensity of total, phosphoSer157, and phosphoSer238 VASP 

immunostaining were semi-quantitatively evaluated using HSCORE analysis [19]. The intensity 

of endothelial immunoreactivity was scored as follows: 0, no staining; 1, weak, but detectable 

staining; 2, moderate staining; and 3+, intense staining. An HSCORE value was derived for each 

specimen by calculating the sum of the percentage of stained cells in each category multiplied by 

its respective score, using the formula HSCORE = ∑i i*Pi, where i represents the intensity score 

and Pi is the corresponding percentage of cells [20]. For each slide, five different fields were 

evaluated microscopically at 250× magnification. HSCORE evaluation was performed 
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independently by two investigators blinded to the source of the samples. Investigator scores were 

averaged. 

Endothelial Cell Culture 

Human umbilical vein endothelial cells (HUVECs) were purchased from 

Clonetics (San Diego, CA), and mouse brain microvascular endothelial cells (bEND.3s) 

were kindly provided by Michael Ostrowski (Department of Molecular and Cellular 

Biochemistry, The Ohio State University College of Medicine, Columbus, OH). Both 

HUVECs and bEND.3s were grown in endothelial cell basal medium-2 (Clonetics, 

BioWhittaker, San Diego, CA) supplemented with human recombinant epidermal growth 

factor (10 pg/mL), human recombinant basic fibroblast growth factor (4 pg/mL), vascular 

endothelial growth factor, human recombinant IGF, ascorbic acid, heparin, 

hydrocortisone (0.4 µg/mL), gentamicin (50 µg/mL), amphotericin B (50 ng/mL), and 5% 

fetal bovine serum (Clonetics, BioWhittaker). HUVECs and bEND.3s were plated on 6-

well plates and 4-well chamber slides and incubated in hypoxia (0.5% O2 and 5% CO2 

with a balance of N2 in a specialized environmental chamber (C-Chamber and ProOx 

Model C21, BioSpherix) and normoxia (5% CO2/95% air) for 12 and 24 h. The plates 

and chamber slides were used for Western blotting and immunocytochemistry. 

Experiments were conducted with third subcultures at 70–80% confluence. Before each 

experiment, cells were treated with phenol red-free media prepared with 5% charcoal-

stripped calf serum for 24 h. Each experiment was repeated at least three times. 

Western Blotting  

Total protein from hypoxia- and normoxia-incubated HUVECs were extracted 

using T-PER protein extraction reagent (Pierce, Rockford, IL) supplemented with 

protease inhibitor cocktail (1 mM Na3VO4, 10 µg/mL leupeptin, 10 µg/mL aprotinin, and 
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1 mM phenylmethylsulfonyl fluoride; Calbiochem, San Diego, CA). Western blotting 

was performed as described previously [20]. Briefly, 20 µg protein was loaded into each 

lane, separated by SDS-PAGE using 10% Tris-HCl Ready Gels (Bio-Rad Laboratories), 

and electroblotted onto nitrocellulose membrane (Bio-Rad Laboratories). The membrane 

was blocked with 5% nonfat dry milk in TBS-T buffer (0.1% Tween 20 in Tris-buffered 

saline) for 1 h to reduce nonspecific binding. The membrane was incubated with mouse 

anti-human VASP or mouse anti-human phospho-Ser157 VASP or mouse anti-human 

phospho-Ser238 VASP monoclonal antibodies (1:1000 dilution; Cell Signaling 

Technology, Beverly, MA) overnight at 4°C and washed three times with TBS-T for 30 

min. The membrane was incubated for 1 h with peroxidase-labeled anti-mouse IgG 

(1:10,000; Vector Laboratories) and washed with TBS-T three times for 30 min. Total 

and phospho-VASP were detected with chemiluminescent detection reagents 

(PerkinElmer Life Sciences, Boston, MA) and exposure to BioMax film (Kodak, 

Rochester, NY). 

Membranes were stripped with stripping solution (Pierce) and reprobed with 

mouse monoclonal anti-β-actin (Cell Signaling Technology, Beverly, MA). Immunoblot 

bands for total VASP (T-VASP), phospho-Ser157 VASP, phospho-Ser238 VASP, and β-

actin were quantified with ImageJ software (National Institutes of Health, Bethesda, 

MD). Each band for T-VASP was normalized to the value obtained from the 

corresponding β-actin band, whereas each band for phospho-Ser157 or phosphor-Ser238 

VASP was normalized to the value obtained from the corresponding T-VASP band.  
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Immunocytochemistry 

Chamber slides were fixed in 4% paraformaldehyde for 30 min at 4°C, then 

washed three times in TBS-T followed by the immunohistochemistry protocol, starting 

from endogenous peroxidase quenching as described above (see immunohistochemistry 

protocol). 

Statistical Analyses 

Normal SHR with or without exercise were normally distributed as determined by 

ANOVA for repeated measures followed by Bonferroni correction. These results were used to 

compare blood pressure levels. Statistical significance was defined as p < 0.001. HSCORE results 

from immunostaining were also normally distributed and analyzed by one-way ANOVA with 

post hoc Tukey testing. Statistical significance was defined as p < 0.05. 

RESULTS 

Blood Pressure Outcomes 

Systolic blood pressure was significantly higher in SHR than in WKY rats (Mean 

± SEM; SBP SHR = 190.7 ± 1.2 mmHg vs. SBP WKY = 130.3 ± 1.1 mmHg; p < 0.001). 

At the end of the study (after 8 weeks), exercise training had produced a significant 

decrease in systolic blood pressure in SHR-E animals compared to the SHR group (Mean 

± SEM; SHR-E = 182.5 ± 2.2 vs. SHR = 204.7 ± 1.4; p < 0.001). In contrast, blood 

pressure levels were similar in the WKY-E and WKY rats (Mean ± SEM; WKY-E = 

134.2 ± 1.6 vs. WKY = 134.0 ± 1.0; Table 1). 

VASP Expression in Brain Endothelial Cells 

Arteriolar and capillary endothelial cells have different functions; the former is 

responsible for blood flow and the latter mediates nutrient and gas exchange and blood-

brain-barrier function. Brain endothelial cells were evaluated in arteriolar and capillary 
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endothelia. VASP immunoreactivity was observed in brain endothelial cells of arteriolar 

and capillary vessels in both SHR and WKY rats (Fig. 1). HSCORE analysis revealed 

that SHR brain arteriolar and capillary endothelial cells expressed significantly less 

VASP than normotensive (WKY) brain endothelial cells (p < 0.05, Figs. 1, 2A and 4A). 

However, exercise did not change VASP expression in arteriolar endothelial cells in 

WKY vs. WKY+E (p < 0.08) and SHR vs. SHR+E (p < 0.78) (Fig. 2A). Similarly, 

exercise had no significant effect on capillary endothelial VASP expression in WKY vs. 

WKY+E (p < 0.31) and HT vs. HT+E (p < 0.42; Fig. 4A). 

Exercise Reverses the Decreased VASP Phosphorylation in HT Brain 

Endothelial Cells 

HSCORE analyses revealed that VASP phosphorylation at the Ser157 residue in 

SHR brain endothelial cells is significantly reduced in comparison to WKY brain 

arteriolar and capillary endothelial cells (p < 0.05 and p < 0.02, respectively; Fig. 3A vs. 

B; Figs. 2B and 4B). Moreover, exercised WKY+E rats showed an increase in phospho-

Ser157 VASP immunoreactivity in arteriolar and capillary endothelium in comparison to 

unexercised WKY rats (p < 0.006; Fig. 3A vs. C; 2 and 4B). Similarly, arteriolar and 

capillary endothelial cells of exercised SHR+E rats revealed a significant increase in 

Ser157 phosphorylation when compared with unexercised SHR rats (p<0.001; Fig. 3B 

vs. D; Figs 2B and 4B). 

There was no significant difference in VASP ser238 phosphorylation in brain 

arteriolar and capillary endothelial cells between WKY and SHR rats (p<0.06; Fig. 3E vs. 

F; Figs. 2C, and 4C). Furthermore, there was no significant difference in VASP Ser238 

phosphorylation in brain endothelial cells between WKY rats vs. WKY+E rats (p<0.49 
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Fig. 3E vs. G; Figs.2C and 4C) and SHR vs. SHR+E rats (p < 0.1; Fig. 3F vs. H; Figs. 2C 

and 4C). 

Hypoxia Inhibits VASP Phosphorylation in Cultured Endothelial Cells 

To characterize the association between the hypertension-related decrease in 

VASP phosphorylation and hypoxia, endothelial cells were incubated in normoxia and 

hypoxia conditions. Western blotting showed that VASP phosphorylation at Ser157 was 

significantly reduced following 12 and 24 h incubations under hypoxic versus normoxic 

conditions (Fig. 5). In contrast, VASP phosphorylation at Ser238 did not differ between 

normoxia and hypoxia after 12 and 24 h incubation (Fig. 5).  

Immunocytochemistry verified that hypoxia-induced HUVECs exhibited lower 

phospho-Ser157, but not phospho-Ser238 levels in endothelial cells (Fig. 6A-D). 

Furthermore, compared to normoxic conditions (Fig. 6 E), phospho-VASP Ser157 levels 

in bEND.3s cells incubated in hypoxic conditions (Fig. 6F) were also reduced. This 

confirms that hypoxia also induces changes in VASP phosphorylation in brain 

endothelial cells, similar to HUVECs.  

DISCUSSION 
VASP is important for F-actin assembly in endothelial cells [21] and is required to 

maintain heart and lung microvascular endothelial barrier functions in vivo and in vitro 

[22-24]. We analyzed the in vivo expression and phosphorylation levels of VASP in the 

brain vascular endothelium of normal rats and determined the effects of hypertension and 

exercise on these levels. This study was performed in an in vivo animal model and 

verified by in vitro immunocytochemistry and western blots. 
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Genetic studies in mice suggest Ena/VASP mediates neuritogenesis, endothelial 

barrier formation, and neural tube closure [23, 25]. Mutations in all three Ena/VASP 

family members result in severe endothelial barrier dysfunction, which is consistent with 

earlier studies suggesting a link between VASP and barrier function [15, 26]. Although 

our results do not provide a direct link between VASP expression and hypertension, the 

lower level of VASP expression in hypertensive rats suggests that VASP in the brain 

endothelium is sensitive to and down-regulated by hypertension. This observation is 

consistent with the results of another study that demonstrated reduced VASP 

phosphorylation associated with hypertension in platelets [16]. We found similar changes 

in VASP expression and/or its phosphorylation in microvascular and arteriolar 

endothelium, suggesting these transformations occur independent of vessel type and/or 

specific function in regulating blood flow and tissue-blood exchanges and/or blood-brain 

barrier functions, respectively [27]. 

Hypoxia is associated with hypertension in the vascular system [28]. Our in vitro 

finding which demonstrates reduced VASP phosphorylation by hypoxia supports the 

hypothesis that hypertension-related hypoxia decreases the phosphorylation of VASP in 

brain endothelial cells. Furthermore, this interaction occurs without changing VASP 

levels. A recent study showed that VASP is downregulated in response to hypoxic 

conditions, illustrating another mechanism by which Ena/VASP family members regulate 

barrier function [29]. Targeting VASP by siRNA reduces barrier function in human 

microvascular endothelial cells, whereas overexpression of VASP increases basal barrier 

function and protects cells from hypoxia-induced barrier dysfunction [23].  
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Phosphorylation of VASP at serine 157, serine 239, and threonine 278 results in 

functional activation of the protein [11, 16, 23]. The serine 157 and serine 239 sites are 

primarily phosphorylated by cAMP and cGMP, respectively. Our results show that 

hypertension affects VASP phosphorylation at serine 157 but not at serine 239, 

suggesting that decreased VASP Ser-157 phosphorylation in the endothelial cells of SH 

rats most likely affects the cAMP signaling cascade. cAMP- and cGMP-dependent 

phosphorylation of VASP is also responsible for the negative regulation of collagen-

induced fibrinogen binding and platelet aggregation [30]. VASP also regulates vascular 

smooth muscle cell proliferation [31] and studies suggest it is involved in the 

endothelium-driven development of arteriosclerotic diseases [32, 33]. We speculate that 

alterations in VASP expression and phosphorylation may explain why endothelial 

cytoskeletal disruption results in hypertension-related endothelial changes. In a similar 

manner, hypertension alters endothelium-dependent relaxation of cerebral blood vessels 

[14] by reducing the expression and/or activity of eNOS in endothelial cells. This 

supports our hypothesis, as phosphorylation of VASP is NO/cAMP and or NO/cGMP-

dependent in capillary endothelial cells [15, 34].  

In this study, we demonstrated that exercise increases VASP phosphorylation at 

the Ser157 residue without changing its total expression level in normal and hypertensive 

rats; thus, the reduction in VASP phosphorylation in the brain endothelium of SH rats is 

reversible. This, in turn, may result in a functional improvement of vasculature in 

exercised rats. Previous studies have shown that regular exercise may represent a non-

pharmacological therapeutic option to delay the degradation of endothelial function 

associated with aging [35] and may reverse endothelial impairment in individuals with 
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atherosclerosis [36] or heart failure [37]. Studies of a variety of vessels and animal 

models have shown that the repetitive increases in blood flow and shear stress that 

accompany regular exercise elicit an adaptive response that alters the intrinsic 

responsiveness of the endothelium by increasing mRNA expression of NOS [38]. This in 

turn increases the synthesis and release of NO and improves endothelial function. 

Because exercise is associated with increased NOS synthesis, our results showing 

increased VASP phosphorylation in exercised rats could be due to increased NO 

production; this will be addressed in future studies. In addition, it has been shown that 

expression of eNOS in arterial segments was significantly higher in exercising groups 

than in the controls, and this upregulation expression was expected because the increased 

shear stress during exercise is known to induce eNOS expression [39]; this may improve 

endothelial function. Indeed, increased bioavailability of endothelium-derived NO in the 

bloodstream induces PKG-dependent Ser157 and Ser238 phosphorylation of VASP in 

endothelial cells and platelets [15, 40]. 

This study demonstrates for the first time that hypertension-related hypoxia alters 

expression and phosphorylation of VASP in brain endothelial cells. This may be a 

contributing factor in hypertension-related endothelial changes. Our findings also show 

that exercise can reverse the loss of VASP phosphorylation in hypertensive rats and thus 

may improve brain endothelium related vascular changes. Pharmacologic agents targeting 

VASP expression and/or phosphorylation should be tested in this rat model as a potential 

treatment for hypertensive patients. 
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TABLE AND FIGURE LEGENDS 

Table 1. Systemic blood pressure before and after swimming exercise 

 Rats were divided into normotensive control (WKY), normotensive training (WKY-E), 

hypertensive control (SHR), and hypertensive training (SHR-E) groups (n = 20 per 

group). Changes in the mean arterial pressure (MAP, mmHg) were measured by the tail-

cuff method. Data are means ± SD. *P < 0.001 vs. Wistar-Kyoto (WKY); #P < 0.001 

relative to basal levels. 

 

 

 

Figure 1. Immunostaining of total VASP in brain vascular endothelial cells 

Immunohistochemical staining of total-VASP in brain arteriolar (A) and capillary (C) 

endothelial cells of WKY rats is and that of total-VASP in arteriolar (B) and capillary (D) 

endothelial cells of SHR. Original magnification A–D, 250X 
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Figure 2. HSCORE analysis of VASP, Ser157-Phospho VASP, and Ser238-

PhosphoVASP in brain arteriolar endothelium of WKY sedentary (WKY), WKY-

exercised (WKY-E), SHR-sedentary (SHR), and SHR-exercised (SHR-E) rats 

Total VASP expression (A); Ser157-PhophoVASP (B); and Ser238 Phospo-VASP (C) in 

brain arteriolar endothelial cells. *P < 0.05 
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Figure 3. Immunostaining of Ser157 phospho-VASP and Ser238 phospho-VASP in 

brain endothelial cells 
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Ser157-VASP immunoreactivity in rat brain capillary endothelium of WKY rats (A), 

SHR (B), WKY-E (C), and SHR-E (D) rats. Ser238-VASP immunoreactivity in rat brain 

endothelium of WKY (E), SHR (F), WKY-E (G) and SHR-E (H) rats. Original 

magnification A–D, 250× 

 

 

In
t J

 N
eu

ro
sc

i 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
17

8.
24

6.
86

.2
51

 o
n 

06
/0

4/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



JU
ST

ACCEPTED

 

Figure 4. HSCORE analysis of VASP, Ser157-Phospho VASP, and Ser238-

PhosphoVASP in brain capillary endothelium of WKY sedentary (WKY), WKY-

exercised (WKY-E), SHR-sedentary (SHR), and SHR-exercised (SHR-E) rats. Total 

VASP expression (A); Ser157-PhophoVASP (B), and Ser238 Phospho-VASP (C) in 

brain capillary endothelial cells. *P < 0.05 
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Figure 5. VASP expression and phosphorylation in hypoxic cultured 

endothelial cells Confluent endothelial cells were incubated under normoxic (Nx) and 

hypoxic (Hx) conditions for 12 and 24 h in 6-well plates. Western blots of VASP, 

Ser157-Phospho VASP, and Ser238-PhosphoVASP. * versus Normoxia. Experiments 

were repeated three times. Representative blots from one experiment are shown. Bars 

represent mean ± SEM. 

 

 

 

Figure 6. Immunocytochemistry of VASP phosphorylation in hypoxic cultured 

endothelial cells 

Cells on tissue chamber slides were immunostained for phospho-VASP Ser157 and 

phospho-VASP Ser238 after incubation under normoxic and hypoxic conditions. 
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Immunostaining of normoxic (A) and hypoxic (B) endothelial cells for phospho-VASP 

Ser157 and normoxic (C) and hypoxic (D) endothelial cells for phospho-VASP Ser238. 

Staining with a rabbit isotype was used as a negative control (D, inset). Expression of 

phospho-VASP Ser157 in cultured mouse brain microvascular endothelial cells under 

normoxic (E) and hypoxic conditions (F). Original magnification: 200× (A–F and D 

inset).  

 

 

 

Table 1. Systemic blood pressure before and after swimming exercise 

*p < 0.001 WKY; #p < 0.001 difference from basal 
 

 

 

 

 

 

 

 

 

 Normotensive rats Hypertensive rats 

 Control Exercised Control Exercised (SHR-
Basal 130.3 ±1.1 132.3 ± 1.4 190.7 ± 191.6 ± 1.6* 

After 8 134.0 ± 134.2 ± 1.6 204.7 ± 182.5 ± 2.2*# In
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