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Summary 

The validation of air quality measurements is guided on the one hand by automatic logs of 
equipment malfunctioning and on the other by the expert judgement interpretation of occurring 
trends, extreme values, etc. Generally this works quite well.  
 
The question arose if the process of ‘expert judgement’ of the likeliness of a certain 
measurement value could be facilitated and further formalised. This can be done by predicting 
the measured value by using a (statistical) model. If the model provides adequate predictions, 
the predictions can be used as a yardstick to appraise the measurements. Unlikely 
measurements could hint at changes in the sources of air pollution or measurement error. In 
both cases additional attention to the observed data is warranted. 
  
This document describes and compares techniques to predict measurements using a number 
of case studies. The results show that - if sufficient reference data is available to develop 
prediction models – validation can be facilitated using these statistical techniques. 
Their use will  result in easier, and potentially more uniform, validation and in better metadata. 
This is particularly relevant for studies of the behaviour of sources over time.  
 
If these techniques are used to assess hourly or daily data for outliers / deviating behaviour 
(e.g. to filter data before their use real-time applications) the best possible models are required. 
If they are mainly used in support of validation (e.g. to detect deviating trends) model quality is 
less important. Simple ordinary linear regression models, having the benefit of being 
transparent in their operation, can be used as well. 
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1 Introduction 

1.1 Why additional quality control 

Monitoring ambient air quality is surrounded by many QA procedures. Dutch monitoring 
networks generally comply to ISO/IEC 17025. ISO/IEC 17025 indicates various technical 
procedures and tests to monitor the correct operation of the monitoring system such as the use 
of reference materials (section 5.9.1.a).  In addition it also suggests the ‘correlation of results’  
as an additional method to assess the correctness of the measurements (section 5.9.1.e.). In 
this document a method is presented to assess the likeliness of a measurement result as 
additional information to support the validation process.  
 
Unexpected measurement results could indicate that something has changed in the sources of 
air pollution that influence the observations, e.g. a (temporary) closure of a road, or that 
something went wrong without obvious technical failures. In the first case additional meta data 
could be warranted to explain (for future use of the data) the deviating measurements. In the 
second case the data might have to be rejected after all. Increasingly, monitoring equipment is 
monitored by remote control and the periods of autonomous operation increase. Although this 
is highly desirable from an operational perspective, it also implies that visual inspection on the 
ground of both the monitor and the conditions in the surroundings of the monitoring station are 
being reduced. We developed a method to support the assessment of the ‘likeliness of the 
correctness of the observations’ and tested it on a number of datasets. The results show that 
questionable data still occurred in validated data sets, demonstrating the usefulness of this 
additional statistical validation. 
 
The approach presented in this document is based on estimating each measured value and 
comparing the measurement with its estimate. The concept of comparing measurements with 
modelled estimates was described in Carslaw and Carslaw (2007). The difference between the 
two, the residuals of the estimation model, are analysed for deviances (patterns, outliers) 
indicating unexpected measurement results. Carslaw and Carslaw used the approach to study 
changes in vehicle direct NO2 emissions. Whilst doing this study they discovered an anomaly in 
an observed time series that coincided with a maintenance event and suggested that the 
described approach could be used for quality control. In this study we built on this concept 
though the models to make the predictions are different.   

1.2 Study area data and scope 

The present study is conducted in Rijnmond (the Rotterdam port-industrial area). DCMR, the 
regional EPA runs an air quality monitoring network in this area. The Dutch national monitoring 
network (run by RIVM, National Institute for Public Health and the Environment) also has a 
number of sites in Rijnmond. This report focuses on NO2 though the concepts used can be 
applied to other pollutants as well. RIVM and DCMR closely collaborate in the field of air quality 
monitoring and amongst others jointly operate a monitoring station where most pollutants are 
monitored in duplicate to assure comparability of the monitoring results of both networks. 
 
Developing and testing of the methods described was done on monitoring data for the period 
2011 and 2012 with emphasis on a roadside monitoring site and an urban background site. An 
additional scan of all NO2 monitoring stations and of historical data will be performed by DCMR. 
Some examples can be found in the annexes. 
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Figure 1. Study area and monitoring locations. The two main case study locations are 
Schiedamsevest (urban background) A13 Overschie (motorway). Other stations shown (and 
some not shown) were used to develop the statistical models. Meteo was derived from 
Rotterdam airport, approximately 1 km north of the A13 monitoring station. 

1.3 Scope of the study 

The methods developed to predict hour-by hour air quality measurements can be used for a 
number of purposes. 

 Testing the likeliness of measured observations as support for data validation (the main 
reason to develop this method) 

 Early detection of potential problems at monitoring stations to avoid, in case of a 
problem, having to reject large amounts of data during validation. 

 Missing data can either be due to technical problems or to a non continuous monitoring 
strategy. NO2 has distinct diurnal and seasonal patterns. Missing data affect the 
uncertainty of observed mean, and non-random missing data will create bias. RIVM 
uses a method to estimate missing regional background daily average PM data 
(Mooibroek, 2013). DCMR employed a method to correct potential bias in incomplete 
NO2 data series before (Elshout, 2003). The models developed here could 
supplement/replace the existing methods. 

 Monitoring equipment is guaranteed to work properly within a certain range of 
conditions. Manufacturers increasingly add sensors to their equipment providing 
diagnostic information. The question arises which diagnostic signals indeed lead to 
wrong observations (observation rightly rejected during validation) and which are less 
important. After all rejecting an observation also leads to increased uncertainty in the 
observed mean value. 

The focus of this document will be on the first two bullets. 
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2 Comparing expected and measured air quality 
observations 

2.1 Modelling expected observations, variables used 

For each monitoring location (x,y) at each time (t) a measurement M(x,y,t) is obtained. To 
assess the likeliness of M(x,y,t) it is compared to an expectation E(x,y,t). For each location and 
time the difference (Δ(x,y,t)) between the measurement and the expectation is derived  from: 
 
M(x,y,t) = E(x,y,t) + Δ(x,y,t)         [1] 
 
Ideally Δ(x,y,t) has the following properties: 

 The mean of Δ(x,y) is constant: there is no drift neither in the expectations nor in the 
measurements  

 The mean of Δ(x,y) is 0: there is no bias between the expectations and the 
measurements 

 Δ(x,y,t) is normally distributed, the standard deviation is small and the observations are 
independent (there is no pattern in Δ(x,y,t)) 

 
There are two ways to make the expectation E(x,y,t): 

 By looking forward where for each monitoring site(x,y), E(t+1) is a function of the 
previous measurements M(t). This was done for example by Carslaw and Carslaw 
(2007) using a GAM model. 

 By looking ‘sideways’ in space were for every time (t), E(x,y) is a function of the 
measurements at other monitoring sites M(xi,yi). This was used by RIVM (Mooibroek, 
2013) to estimate missing PM2.5 values. 

 
We opt for the spatial approach where E(x,y,t) depends on M(xi,yi,t) at other monitoring sites in 
the same region as this is more likely to be able to capture gradual drift. In addition to the other 
measurements meteorological variables are used. E(x,y,t) is modelled using multiple linear 
regression (see section 2.2.1) and a principal component technique (see section 2.2.2) . 

2.2 Modelling approaches  

2.2.1 Linear regression approach  

 
Linear regression models (ordinary least squares – OLS) were built using an average 
background concentration - B(t), meteo and a number of other variables. Matlab interactive 
stepwise regression was used (but this could even be done in a spreadsheet) and variables 
significant at p = 0.05 were retained in the model. Hourly measurement and meteorological 
data are used. The meteo data is from Rotterdam airport.  
The variables used in the OLS approach are:  

 B(t) that is calculated as the average measured concentration at time (t) of  5 
background stations in the area. When the prediction method is applied to one of the 
background stations that specific station is excluded and B(t) will be based on the other 
4 stations.  

 A dummy variable that differentiates working and weekend days W(t). 
 Six dummy variables indicating wind direction in groups of 60 degrees - WR1(t) to 

WR6(t). WR1 represents a wind direction between 0-60 degrees each consecutive WR 
variable covers an additional 60 degrees. The situation where the wind direction could 
not be established is the default situation (to avoid over-fitting). 

 The inverse wind speed - WS(t) is used as a measure for exposure conditions. 
 Precipitation – P(t) and Temperature –T(t) 
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E(x,y,t) = β0 + β1*B(t) + β2*W(t) + β3*WR1(t) + β4*WR2(t) + β5*WR3(t) +  
β6*WR4(t) + β7*WR5(t) + β8*WR6(t) + β9*T(t) + β10*P(t) + β11* (WS(t)+1)-1         [2] 
 
For each monitoring site a regression model is developed and a time series of expected values 
is calculated that can be compared with the actual measured values. The hourly differences 
between measured and expected values Δ(x,y,t), are calculated and plotted and analysed. See 
chapter 3. 
 
The models are evaluated by their R2-adjusted.and RMSE parameters. Note that RMSE is not 
the regular RMSE output from the regression tool. To be able to compare regression RMSE 
with PLS RMSE both are calculated as:  
 
RMSE= √(Σ(model – measurement)2/n)            [3] 
 

2.2.2 PLS regression approach 

PLS (partial least squares regression) is a modelling technique similar to PCA (principal 
components analysis 1). Instead of regressing a property (in this case, a concentration) onto a 
set of variables, the property is regressed onto the score of principal components of these 
variables. In this study a dataset of 23 variables was used (for a two year data set this is an 
array of 17544 rows and 23 columns). These variables are: 

 NO2 hourly concentrations measured at 18 individual monitoring sites in Rijnmond and 
surrounding area. All monitoring sites in this area were used regardless of their 
classification.   

 5 meteo variables: wind speed, temperature, precipitation and 2 variables indicating 
wind direction. The wind direction is not used as such but the vectors of the wind 
direction were used. The meteo variables were multiplied with a factor to get values of 
the same order as the concentration:  WS(t)*10, T(t)*10, P(t)*20, sin(WR(t))*20, 
cos(WR(t))*20. 

The PLS modelling was performed with a PLS_Tool box2that can be run within the MATLAB 
environment. From the original parameters this tool calculates principal components, performs 
regression with the chosen principal components (5 in this study) and gives predicted values. 
Some trials show that auto-scaling of data (a function of the PLS_Tool)3 prior to regressing 
improves the results of the models. Therefore this pre-processing was applied to all runs. The 
results reported here were obtained with 5 principal components. The used dataset has a few 
percent missing data. Because the PLS tool can not deal with missing data, prior to modelling 
these data were filled with values estimated from other data (see also appendix A1). 
 
PLS regression is particularly suited when the matrix of predictors has more variables than 
observations (not relevant in this case) and when there is multicollinearity among the variables 
in the model. Standard (OLS) regression will fail in these cases. The OLS models in this 
document overcome the multicolinearity problem of using several background stations by 
averaging them into a single background variable. Inevitably some information is lost in this 
process. The PLS regression is more efficient in using the information of all the monitoring 
stations in the sample. 
 
When the text refers to ‘OLS’ or ‘PLS’, the modelling approaches as outlined in this and the 
previous section are meant. It should be noted that apart from the regression techniques, 
both approaches also differ (slightly) in the variables used and the way the variables are 
handled (e.g. individual monitoring stations <> average of background).  

                                                      
1 PCA was successfully used in Nguyen et al. (2012) to characterise the behaviour of Dutch air quality 
monitoring stations  
2 See also http://www.eigenvector.com/ 
3 i.e. mean-centring and scaling the column to unit variance 
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2.3 Prediction modelling with validated and unvalidated data 

The prediction methods as described here were initially developed on validated data. If this 
statistical screening is to be turned into an operational tool assisting in the validation process, it 
has to work on unvalidated data as well. In this study we developed the models using a two 
year dataset (≈ 17000 hourly values) so with a typical validation ‘loss’ of less than 5% it is not 
expected that this will  affect the models significantly. Some trials with the PLS approach show 
that models developed on validated and unvalidated data give the same results (see appendix 
A1). 
 
If the unvalidated data contains substantial errors, this might affect the model. As it turned out 
the test data did contain periods, that in retrospect had an extended period of data that should 
not have passed validation. This provided an opportunity to see how sensitive the models are 
to measurement error in the dataset. The tests developed for deviating data were also used (in 
one case) to see if the statistical screening presented here reaches the same conclusion as the 
manual validation process (see section 3.1.4).  

2.4 Statistical screening 

The differences between the measured and the predicted value are interpreted on different 
averaging times. Test criteria were developed for hourly and daily (24h moving average) results 
of the differences. This could be helpful in the early detection of deviating measurements. 
Additional tests were developed for longer averaging times (1, 2 and 4 weeks) to see if 
deviating trends can be detected. In all cases moving averages of the desired period were 
calculated and RMSE for each averaging time was determined. Testing was with 2, 3, and 
4*RMSE as thresholds.   
 
The outcome of the screening is an indication of the likeliness of an observation. If an 
observation is flagged it means that it requires additional attention during validation; it doesn’t 
necessarily mean that something is wrong. There can be external circumstances (change of 
sources, change of traffic near a roadside station, etc.) that cause the observations to deviate 
from the expectations. The fact that measurements are flagged should lead to closer inspection 
of the measurements and the circumstances under which they occurred. This can reveal 
reasons to discard the data as wrong, or on the contrary confirm that they are deviant but 
correct. If indeed the sources that influence the station have changed, and the change is 
permanent the prediction model would have to be run again to create new expectations 
E(x,y,t). 
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3 Results 

The methodology was development on data from the urban background station 
Schiedamsevest in Rotterdam centre and the A13 motorway station in Overschie (Rotterdam 
north). In view of the currently developed screening method, both monitoring sites happen to 
have periods where anomalies seem to occur and/or periods that should not have passed 
validation. 

3.1 Screening datasets Schiedamsevest (urban background) 

3.1.1 Model characteristics 

The regression model and its characteristics are shown in table 1. The performance 
characteristics of the PLS results are shown as well. The PLS approach seems to perform 
better than the OLS approach though the differences are not very large.  
 
Table 1: Schiedamsevest – modelling approach performance (OLS and PLS) and OLS 
coefficients 

 OLS coefficients PLS model 

Background concentration 0.91  

Weekday (W) 2.26  

Wind direction WR1 -8.60  

Wind direction WR2 -2.12  

Wind direction WR3 1.84  

Wind direction WR4 4.72  

Wind direction WR5   

Wind direction WR6 -4.02  

Temperature -0.03  

Precipitation -0.13  

(Windspeed+1)-1 4.65  

Intercept 3.70  

RMSE 9.564 7.451 

R2_adjusted 0.763 0.845 

Variables used 11 23 (5)4 

# Observations 17395 17395 

 

3.1.2 Interpretation of results – visual inspection 

Figure 2. shows plots of a 24-hour moving average of the differences between the model and 
the observations. The figures for both models are quite similar though the regression model 
occasionally leads to large spikes. Apart from the occasional spikes in the 24 hour moving 
average, both graphs show a distinct gradual upward drift from mid August 2011 until mid 
January 2012. From January 2012 onward the residuals show only a small variation around -2. 
The fact that the residuals don’t oscillate around 0 is a consequence of the upward drift earlier 
in the sample period that was used to fit the models. Since the modelling leads to residuals with 
an average of 0, substantial deviations in the sample period that is used to build the model 
leads to a small bias in periods when the data are correct. For visual inspection this is not a 
problem but if automatic flagging of results is introduced this needs attention.  
 

                                                      
4 Resulting in 5 principal components that make up the actual prediction model 
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Figure 2: Schiedamsevest – 1 day moving average plots of the differences (measurement-
model)  
 
The PLS graph for the 24h moving average displays less variation and misses a few extreme 
spikes that are found in the OLS graph. Apparently the PLS model is better capable of 
capturing the hourly and daily variation at the monitoring station. The R2-adjusted and RMSE 
scores of PLS approach are better than those for OLS approach but the graph shows that this 
is (partially) the result of less spikes and not just overall smaller random noise. This is an 
advantage of the PLS as the spikes are used to flag potentially erroneous measurements.  
 
Figure 3. shows the weekly averaging times for both models including the 1 and 2*RMSE 
bands. Both models agree fairly well. If a 2*RMSE threshold is used to flag potential deviations 
the visual inspection shows that 4 and 6 periods are flagged by the PLS and OLS models 
respectively. If 1*RMSE is used for flagging the results are 19 and 18 respectively. The 
1*RMSE criterion seems to produce a substantial number of suspect periods though this is 
somewhat inflated by the period with the upward drift causing all results to be more extreme. 
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The 2*RMSE criterion flags an operationally acceptable number of periods though it is quite 
late in positively identifying the gradual upward trend. In this particular case one would lose an 
additional 5 to 6 weeks in diagnosing a potential problem. 
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Figure 3: Schiedamsevest – 1 week moving average plots of the residuals 
 
 
Figure 4. shows the 4-week moving average with 1*RMSE bands. The 4-week moving average 
flags only a few periods and, as was remarked before, the hits in the second year are mainly 
due to the bias that was created in the model by the deviation in the first year. The 4-week 
moving average would flag the upward drift only a few days after the weekly moving average 
with a 1*RMSE criterion. The 4-week moving average therefore has the advantage of offering a 
low threshold and relative early detection without the potential disadvantage of numerous 
periods being flagged. 
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Figure 4: Schiedamsevest – 4-week moving average plots of the residuals 
 
 

3.1.3 Criteria for automatic screening  

For an automatic screening, test criteria to flag potentially deviating measurements are needed. 
RMSE was calculated for the various averaging times and thresholds for 1, 2, 3 and 4*RMSE 
were tested. The results for both models are shown in table 2. The table shows that RMSE 
rapidly drops with increasing averaging time. From a week onward, this decrease is small. For 
short averaging times 1 and 2*RMSE thresholds result in a substantial number of suspect 
hours needing additional attention. This is not desirable. For hourly data even the 3*RMSE 
threshold would lead to many hours being flagged. However, this is partly due to the period 
with upward drift. The 3*RMSE criterion is probably not practical for hourly values and 4*RMSE 
should be used. For the 24 hour moving average 3*RMSE seems suitable. 
 
 



 

   Measurement validation by observation predictions  blad 15 van 41  

Table 2: Number of hours or periods (in case of the moving averages) when the specified 
RMSE criteria is exceeded by the models  
 PLS OLS 
#*RMSE 1 hour 24 hour 1 week 4 weeks 1 hour 24 hour 1 week 4 weeks
1 3955 327 56 30 4052 314 44 13 
2 838 68 20 3 928 68 18 3 
3 247 13 8 1 268 13 2 0 
4 88 1 0 0 86 3 1 0 
RMSE 7.45 3.67 2.64 2.31 9.56 4.92 3.35 2.82 
 
 
The 4-week moving average is best used for visual inspection as shown in the previous 
section. Flagging based on 1*RMSE leads to quite a number of hits with the PLS model 
according to table 2. However, this is somewhat misleading if the table and figure 4 are 
compared. There happens to be a lot of wavering of the moving average around the 1*RMSE 
threshold causing a substantial number of hits. The number of ‘hits’ with the OLS model is 
much lower and happens to do more justice to the situation in this case. Increasing the 
threshold to 2*RMSE based on these results is not recommended, it will delay the detection of 
the drift period substantially. A combination of 2*RMSE for weekly moving averages + 1*RMSE 
for 4-weekly moving averages would lead to an acceptable level of warnings without losing the 
capacity to early detect drift issues. 
 
There is a fair amount of agreement as far as the overall scores are concerned. A second test 
was done to verify if the models both pick the same hours and days. Both models agree on 
identifying the measurements at the end of the period of upward drift as questionable as can be 
seen from figure 4. The detailed results on an hour by hour basis are shown in table 3. For the 
short averaging times, there is some agreement but the results are not impressive. For the 
weekly criterion the results are slightly better. Apparently the timing of the models is slightly 
different. Though the overall agreement between the models is good as can be seen from the 
graphs, agreement5 on the discrete decision-making (yes or no > threshold) at a given hour 
only occurs in the more extreme circumstances. It also shows that the longer the averaging 
time, the better the agreement between the models. 
 
Table 3: Number of hours flagged by one or both models for various combinations of RMSE 
threshold and averaging time. 
  Hour 4*RMSE Day 4*RMSE Day 3*RMSE Week 2*RMSE 
Both models flag 42 0 16 713 
Only PLS flags 46 13 99 410 
Only OLS flags 44 23 120 370 
No flag 17412 17508 17309 16051 
% agreement 32% 0% 7% 48% 

 

3.1.4 Manual and ‘automatic’ validation compared 

All results reported so far are based on unvalidated data. This provides the opportunity to 
compare the flags by the models to the decisions made during the normal manual validation 
process. Table 4 shows the results. Looking at the 3 and 4*RMSE there is agreement between 
the models and the manual validation in about 13 to 25 % of the hours. During manual 
validation the period with the very gradual upward drift was noticed but the measurements were 

                                                      
5 Agreement is defined as the number of hours that both models flag an hour/the total number of hours 
flagged. Of course, if no hours are flagged (the vast majority of the time) the models also agree but this is 
not a very informative parameter. 
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accepted as drift was seen on a previous occasion. Had this period been rejected6 this would 
have improved the agreement somewhat (a few %).  
 
Table 4: Hourly observations judged by ‘manual validation ‘ compared to the exceedence of 
modelled thresholds (PLS/OLS) 

 
About two thirds of the hours that were manually rejected were not flagged by the models. 
Rejections occur on technical grounds, e.g. instrument parameters are out of range and the 
manufacturer doesn’t guarantee proper functioning of the monitor. The results from this 
analysis seem to suggest that for some of these parameters less strict criteria are feasible. 
After all the monitoring results do fit in the range of expected values. In particular those hours 
where measurement and model match closely could be inspected to see which technical 
grounds caused the rejection7   

3.2 Screening datasets A13 (motorway station) 

Model development was done on validated data. This implies that the analysis done in section 
3.1.4 will not be repeated for this monitoring station. Like the urban background station in 3.1. 
this dataset contains a period with substantially deviating data.  
 

3.2.1 Model characteristics 

The regression model and its characteristics are shown in table 5. The performance 
characteristics of the PLS results are shown as well. Compared to the urban background 
station the model performance is somewhat less. On the other hand the results are also 
influenced by the fact that deviating data was used to fit the models. The models were refitted 
excluding the erroneous data. This improved the model performance characteristics notably. 
 
Also in this case the PLS model performs (substantially) better than the regression model. This 
becomes even more evident looking at figure 5 with the daily averaged differences. The OLS 
model displays much more noise than the PLS model. 
 

                                                      
6 Validation decisions are often expert judgements. Statistical methods like this can never replace these 
judgements but the tools provide a way to quantify the likeliness of deviations and pinpoint the timing of 
changes in trends. In this case the trend change coincided with maintenance.  
7 Currently the nature of the technical rejection is not recorded so this aspect was not investigated. 

Threshold (RMSE) 2 3 4 Remark 

Total numbers of hours 
flagged 838 / 928 247 / 268 88 / 86  

Hours flagged and 
manually rejected 51 / 49 48 / 34 28 / 21 

Agreement between model and manual 
interpretation 

Hours flagged but not 
rejected 787 / 879 199 / 234 60 / 65 

This includes a part of the hours in the 
period with upward drift 

Rejected but not 
flagged 97 / 99 100 / 114 120 / 127 

Criteria to manually reject observations 
are too strict??? 

Total number of hours 
manually rejected 148 148 148 

Rejections only occurred on technical 
grounds (e.g. temp. out of range, etc.) 
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Table 5: A13 motorway - modelling approach performance (OLS and PLS) and OLS 
coefficients 

* New OLS model excluding the period with erroneous data from the dataset for model 
development8 
 
 

3.2.2 Interpretation of results – visual inspection 

Visual inspection of the moving average of the weekly differences (figure 5, right hand side) 
clearly reveals a period with a significant drop of 5 to 10 µg/m3. The daily and weekly graphs 
show that the drop occurs almost instantly and is different from the gradual upward drift seen at 
the background station in the previous case study. Return to normal is also almost instantly.. 
The 1*RMSE threshold (weekly moving average) is exceeded on numerous occasions 
particularly in the OLS model. In this case using the 2*RMSE doesn’t delay the detection of the 
problem.  
 

                                                      
8 The results of the analysis and the fact that the changes (deviation and return to normal) coincided with 
maintenance at the monitoring station led to revalidation and rejection of the flagged data. 

 
OLS 

coefficients 
PLS 

approach 

OLS 
coefficients -
corrected* 

PLS 
approach - 
corrected* 

Background concentration 0.85  0.99  

Weekday (W) 5.44  5.43  

Wind direction WR1 -16.76  -16.24  

Wind direction WR2 -12.54  -13.07  

Wind direction WR3 7.01  6.44  

Wind direction WR4 9.94  10.73  

Wind direction WR5 7.32  8.13  

Wind direction WR6 -4.96  -3.64  

Temperature -0.10    

Precipitation     

(Windspeed+1)-1   4.35  

Intercept 10.38  4.55  

RMSE 13.014 9.415 11.93 7.676 

R2_adjusted 0.64 0.81 0.71 0.88 

Variables used 10 23 10 23 

# Observations 17014 17018 14709 14709 
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Figure 5:  A13 motorway – 1 day(left) and 1 week (right) moving average plots of the residuals 
 
 
Figure 6 showing the 4 week moving average shows the same broad pattern for both models. 
Apart from the problem in spring 2011 the models also flag a period at the end 2012. This 
coincides with a maintenance event. 
 
 

3.2.3 Criteria for automatic screening 

Results of the automatic screening for the motorway case are shown in table 6. Combinations 
of flagging thresholds and averaging times resulting in unrealistic small or large numbers were 
not considered (see table 2 for example). Given the fact that there was an extended period with 
erroneous measurements the hourly and daily results show a surprising small number of hits. 
The shorter averaging times don’t seem suitable to detect the structural problems and mainly 
flag (potentially wrong) extreme values. It is the longer averaging times that are needed to 
detect structural problems.  
 
Table 6: Number of hours or periods (in case of the moving averages) when the specified 
RMSE criteria is exceeded by the models (only probable combinations considered) 
 PLS OLS 
#*RMSE 1 hour 24 hour 1 week 4 weeks 1 hour 24 hour 1 week 4 weeks 
1   51 17   44 14 
2  56 21 5  72 19 1 
3 268 24 5 0 159 14 3 0 
4 85 3   30 3   
RMSE 9.415 5.525 3.972 3.329 13.014 7.252 4.963 4.150 
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Figure 6: A13 motorway – 4-week moving average plots of the residuals 
 
 
The agreement between the two models on the number of flagged hours is shown in table 7. 
The results are similar to the previous case. Though there is agreement on the overall trend of 
the differences, agreeing on the exact hour when a threshold is exceeded appears difficult 
(particularly when the criteria are strict and only a few hours are flagged).  
 
 
Table 7: Number of hours flagged by one or both models for various combinations of RMSE 
threshold and averaging time. 
  Hour 4*RMSE Day 4*RMSE Day 3*RMSE Week 2*RMSE 
Both models flag 9 3 62 758 
Only PLS flags 21 3 87 477 
Only OLS flags 76 31 207 478 
No flag 16912 17026 16707 15486 
% agreement 8% 8% 17% 44% 
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It should be born in mind that this dataset was validated (unlike the previous one). So table 7 
could be read as: both models agree to flag an additional 3 to 62 hours as (highly) unlikely 
(using the shorter averaging time criteria).  

3.3 Data quality and model specification 

In the previous sections we saw that trouble data in the dataset used to fit the models does not 
affect their general operation. However, extend periods of deviating data causes two effects:  

 it increases RMSE and hence reduces the sensitivity to detect problems; 
 it inflates smaller deviations from 0 with the opposite sign of the problem period as the 

models are fit to assure that the mean of all differences equals 0; the basic concept of 
regression techniques. 

 
These effects can be demonstrated by looking at the corrected models for the motorway 
station. See figure 7. The top graph is based on the revised OLS model (see table 5.) and the 
bottom the original graph as shown in figure 6. 
 
The graph shows that the 1*RMSE band shrinks from 4.2 to 2.6 µg/m3. The upward peaks in 
the second year shrink somewhat and the whole graph shifts a few tenths of a microgram 
downward to compensate these peaks. And whereas 1*RMSE previously seemed a practical 
criterion, it is rather strict when the model is developed on correct data so it leads to frequent 
flagging of suspect periods. The PLS model (not shown) exhibits similar behaviour. 
Summary results are presented in tables 8 and 9. 
 
Table 8: Number of hours or periods (in case of the moving averages) flagged by the models 
(only probable combinations considered) – Revised A13 motorway model 
 PLS OLS 
#*RMSE 1 hour 24 hour 1 week 4 weeks 1 hour 24 hour 1 week 4 weeks 
1   58 16   93 36 
2  73 23 5  65 12 1 
3 190 17 1 0 116 10 2 0 
4 47 0   22 0   
RMSE 7.68 3.89 2.49 1.89 11.92 5.98 3.50 2.55 
 
 
Table 9: Number of hours flagged by one or both models for various indicators – Revised A13 
motorway model 
  Hour 4*RMSE Day 4*RMSE Day 3*RMSE Week 2*RMSE 
Both models flag 3 0 10 201 
Only PLS flags 19 0 69 326 
Only OLS flags 44 0 65 309 
No flag 14642 14729 14585 13925 

% agreement 5%  ‐  7%  24% 
 
Though tables 7 and 9 cannot be compared directly as in the second case the period with 
problem data was left out, the measure of agreement between the models can be compared. If 
the period with the obvious deviations - on which the models agree - is left out the measure of 
agreement drops.   
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Figure 7: Two OLS models compared: model based on dataset with (bottom) and without (top) 
a period with the suspect measurements.  
 

3.4 Stability of models over time 

In the previous section data were analysed by models that were developed on the same data 
set. In reality one will be looking forward (new observations as they hourly arrive) with a model 
developed on a passed period. To examine if results obtained are sensitive to the time lag 
between the period when the models were developed and the moment of screening data, the 
models were applied to different periods in the past. Figure 8 shows an OLS model (4 week 
moving average) developed on the period 2011-2012 applied to the period 2003-2013. This 
was done for the Schiedam urban background station as this station didn’t have issues in the 
period on which the model was developed. The red dots show moments when a monitor was 
changed either due to perceived problems or because of regular maintenance. The results 
show that the model is remarkably stable over a 10 year period. The graph shows that monitor 
changes often coincide with changes in the graph (note that not all maintenance actions are 
marked), implying that the larger changes in the graph indeed signify events. It also flags a few 
periods with potential issues.  
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Figure 8. Ten year time series of a 4-week moving average based on a two year model – 
Schiedam urban background. 
 
 
Though figure 8. looks quite stable over time the performance of the prediction model can be 
evaluated more formally by looking at the mean and the RMSE in each year. The mean is 0 for 
the period on which the model was developed and can be expected to deviate more as as one 
moves away from that period. Similarly RMSE will be smallest for the period on which the 
model was developed and might go up as one moves away from that period. All this assuming 
that there are no issues in the period examined (clearly not the case in this example) that could 
cause a year to deviate from the overall trend. Figure 9 shows the evolution of both the mean 
and the RMSE.  
 

 

Figure 9. Evolution of mean and RMSE as a function of the years since the model was 
developed (OLS model developed on 2010-2011 daily observations – 4 week moving average). 
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Drift from 0 makes automatic screening less accurate and an increase of RMSE makes the 
models less sensitive to issues. In particular monitoring stations that are strongly influenced by 
a single source – such as a traffic station – that is subject to policy to reduce its impact, need 
periodic updating. 
 
The results suggest that annual or biannual updates of the models will suffice to assure 
meaningful additional information from this screening method. 

3.5 Testing for discontinuities after maintenance 

Apart from the automatic flagging as suggested by the methods demonstrated so far, one could 
implement a test for a discontinuity after each maintenance event. Carslaw and Carslaw (2007) 
review various methods for detecting and timing unknown change points in trends and apply a 
method based on F-statistics (Zeileis et al., 2003) to formally test for changes. In this report we 
simply want to assess if a known event might have led to a change and hence we adopt a more 
simple approach by simply comparing the mean difference before and after maintenance. This 
test might rapidly detect potential errors but is unlikely to identify slow drift.  
 
 

Figure 10: Top: monthly moving average Schiemdamsevest - maintenance instances included. 
Bottom: average hourly difference before and after maintenance (average of 4 weeks before 
minus the average of either 2 or 1 week after the maintenance).  
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Figure 10 shows the results of a test whereby the hourly average differences between model 
and measurement, before and after maintenance are compared. Before the intervention a 4-
weekly average is determined and this is compared to the average of a one or two week period 
after the maintenance. The results show that all but one instances of maintenance the 
differences before and after maintenance are less than 2 standard deviations. This is what one 
hopes and expects: the results before and after maintenance are sufficiently consistent. The 
only exception is not the start of the period of the slow upward drift, but the almost instant 
return to normal after the drift issue was corrected. This result suggests that this test can 
capture - within one to two weeks – a rapid change as a result of maintenance. 
 
A similar test was done for the motorway station. See figure 11. note that this time there are 
two bands to indicate the 2 standard deviation range: one based on the period including the 
erroneous data and one without them. If the methods for the early detection of problems, as 
suggested here, are employed, the narrow bands are more likely too apply. The results show 
that both the rapid drop and the return to normal cause differences larger than 2 standard 
deviations. The test on the impact of maintenance would have identified the problem 
approximately two weeks before the 1*RMSE flagging of the 4-week moving average. 
 

Figure 11: Top: monthly moving average A13 motorway - maintenance instances included. 
Bottom: average hourly difference before and after maintenance (average of 4 weeks before 
minus the average of either 2 or 1 week after the maintenance).  
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3.6 General applicability of the model approaches 

The two cases described here deal with models to estimate measured values on nearby 
stations. As can be seen from figure 1, most of the stations are within 10 – 25 km distance of 
each other and there are a good number of background stations available to calculate an 
average background (the approach taken in the OLS models). Here we assess the potential of 
the method in an area where the monitoring stations are less dense.  
Nguyen et al (2012) showed that monitoring sites in the Netherlands, depending on their type, 
exhibit fairly similar behaviour. This is exploited by using three monitoring stations in different 
parts of the Netherlands to make a model for a monitoring station in the study region. The 
stations used are at a distance > 50 km from the station for which a predictionis done and the 
distances between the three stations are also 50 -100km (or more). The rural background 
station is modelled using an average based on five other rural background stations. For the 
urban background and traffic stations an average background based on three urban 
background stations was used. 
 
The results (OLS approach) are shown in table 10. As expected, the model performance is less 
than in the previous cases. The best performing model is for the rural background. That is the 
least demanding situation as the monitoring site is mainly subject to large scale influences that 
resemble those in the rest of the country. The performance goes down as the local influence 
becomes stronger. For reference the A13 motorway station from section 3.2 is included as well. 
The A13 column in table 10 can be compared to the A13 OLS model (2nd  column) in table 5.9 
 
Table 10: OLS modelling approach: regression coefficients using distant monitoring sites for 
model development. 

 
Figure 12 compares the distant and the original model for the A13 motorway case. General 
behaviour is fairly similar though there are substantial differences in absolute terms. The model 
could be suitable for visual inspection of broad trends. Whether these models are suitable for 
automatic flagging and certainly at shorter averaging times is questionable. On the other hand 
one has to bear in mind that this is a rather extreme case where the stations that make up the 
average background are located in different parts of the country sometimes over 100 km apart, 

                                                      
9 The PLS model was also re-run using only stations from outside the study area (see fig. 1). 
As expected the model performance is somewhat reduced: R2-adjusted drops from 0.81 to 
0.69 and RMSE increases from 9.4 to 12 (see also figure 12b). 

 
Westmaas -  

Rural 
background 

The Hague - 
urban 

background 

The Hague - 
Roadside 

A13 
Overschie - 
Motorway 

Background concentration 0,91 1,03 1,1 0,94 
Weekday (W) 2,94   7,26 
Wind direction WR1 2,44 -4,71 -5,44 -17,91 
Wind direction WR2 3,24 6,09 1,89 -10,40 
Wind direction WR3 -0,68 14,14 6,75 9,62 
Wind direction WR4 -1,90 5,75 6,22 11,46 
Wind direction WR5 -2,63 -6,55 -0,94 9,58 
Wind direction WR6 6,57 -11,04 -7,59 -8,76 
Temperature -0,38 -0,25 0,20 -0,17 
Precipitation -0,33    
(Windspeed+1)-1 33,00 29,12 31,42 28,81 
Intercept 2,13 1,75 5,42 11,02 

RMSE 9,44 13,99 14,00 14,93 
R2_adjusted 0,63 0,59 0,55 0,54 
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likely facing different meteo conditions, etc. Graphs for the other locations are shown in Annex 
A3. 
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Figure 12a: Top: 4-weekly moving average A13 motorway – model based on three background 
locations far apart. Bottom: original model using five background locations in the same area 
(distance <= 25 km). 
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Figure 12b: Top: 4-weekly moving average A13 motorway – PLS model based on monitoring 
locations outside the study area. Bottom: original PLS model using nearby background 
locations. 
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4 Discussion and conclusions 

4.1 Introduction 

In chapter 1 we suggested that measurement data could be predicted (based on other 
measurements) and that these predictions can be used to make inferences on the probability of 
the actual measurement and hence provide a basis for the detection of anomalies. These 
anomalies – if serious enough - could imply: 

 measurement errors 
 changes in the way sources influence a monitoring site since the moment the prediction 

model was developed. 
 
In both cases the flagged measurements would need additional attention during ordinary 
validation procedures. An example of the first case was shown in chapter 3. Figure 13 
illustrates the second case. Most reversals of trends can be linked to maintenance events but 
in addition two periods of road works leading to reduced traffic seem to cause trend changes 
(local minima) in the difference between measured and predicted values.  
 
 

Figure 13: Curb site monitoring station and OLS modelling approach. The graph shows the 
changes of monitoring equipment (dot on the x-axes); other registered maintenance (other 
dots), and two periods with road works (blue line) upstream of the monitoring site reducing the 
traffic numbers. 
 
In a recent application of the model at the Ridderkerk motorway site a downward trend was 
observed that was not completely rectified by maintenance. As the moving average remained 
too low it was decided to place an additional independent NOx monitor to rule out any 
malfunctioning of the monitoring equipment. Rather than discovering strange behaviour in 
retrospect the model allowed us to perform additional tests during the seemingly deviating 
measurements. The research for this station now concentrates on a potential change in traffic 
numbers and data were requested from the motorway authority to further clarify the observed 
concentration drop.  
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The results in chapter 3 show that making measurement predictions provides useful additional 
information for the validation of measurements. The methods studied here revealed insights 
that previously went unnoticed, or were noticed but considered indecisive in the reference 
frame commonly used for validation. The methods proposed here provide a more formal 
reference context by quantifying the degree of deviation (in terms of RMSE). This could lead to 
a different judgement. In this chapter we will discuss the interpretation of the obtained results. 

4.2 Validation support and early warning - general concepts 

Measurements are surrounded by elaborate quality control systems assuring that 
measurement uncertainty remains within specified limits. This implies that not every deviation is 
immediately corrected. This would lead to a serious loss of observations and unrealistically  
frequent field visits to replace or adjust monitoring equipment. A certain margin of error is 
accepted (e.g. as in Shewhart quality control cards). Consequently some kind of scatter and/or 
a saw tooth pattern within the margins of tolerance is expected and no reason for action. Figure 
14 shows the graph of an urban background station. It is a twin station of the curb site station 
shown in figure 13. The two are recently started monitoring sites, located within less than a km 
distance and serve as a pair to study the traffic contribution to air pollution.  
 

-15,0

-12,5

-10,0

-7,5

-5,0

-2,5

0,0

2,5

5,0

7,5

10,0

12,5

15,0

Urban background - Zwartewaalstraat

4 week m.a.

 
Figure 14: Background monitoring station and OLS modelling approach. The graph shows the 
changes of monitoring equipment (dot on the x-axes) and other registered maintenance (other 
dots). 
 
The two graphs show that the variation differs between the roadside and the background 
monitoring site. In Chapter 3 we also saw that the motorway station had a higher RMSE than 
the background stations. While interpreting results this should be taken into account. In both 
graphs it is also visible that maintenance events increase in number during periods with larger 
deviations. Apparently suspicious behaviour was noticed during regular operations leading to 
additional inspections/calibrations.  
 
The graph also shows that maintenance often coincides with changes in trends (note that there 
is some lag between a maintenance event and its appearance in the 4-week moving 
average).This is also very evident from figures 10 and 11 in section 3.5: many changes in the 
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trend can be attributed to maintenance events. Note that even small changes in trend are 
noticeable. Apparently the models are sensitive enough to capture these interventions if they 
lead to changes in the way the monitoring equipment behaves (calibrations, replacements of 
malfunctioning equipment, etc.),  
 
Not every change has a meaning in terms of quality control and part of the saw tooth pattern is 
just a sign of regular operations. As the EN ISO 14211 (2012) indicates that NOx 
measurements of the reference gas are to be guaranteed within 5% one could say that scatter 
up to 2 µg/m3 (5% at the limit value) is just a consequence of normal operations. 
 
Another issue arises if there is a small gradual trend in one direction. Even if the deviations 
remain small in absolute terms this could be a sign that something is not working properly. For 
an operational system one would want to avoid this and rather strict criteria could be employed 
for the early detection of these trends. This could lead to additional onsite verification and/or 
maintenance. On the other hand, if screening as presented here is used in retrospect, it makes 
less sense to employ very strict criteria: why revalidate a lot of data that show, in absolute 
terms, only minor deviations? One could decide to only revalidate those hours that substantially  
exceed thresholds.  
 
The results in Chapter 3 showed that the detection of broad trends is possible with both types 
of prediction models and that even biased models – due to questionable measurements in the 
dataset used for model development – are quite capable of detecting them. However, section 
3.3 also showed that the thresholds used for decision making do strongly depend on the quality 
of the data used for model specification. Before deciding on a threshold the model should be 
run and if periods with substantial deviations do occur, the model should be rerun on a cleaned 
dataset. For operational purposes the model should be based on the best possible data. 
 
So far thresholds for flagging were expressed in terms of levels of RMSE. In practice fixed 
numbers are easier to implement and the RMSE concept can be used as guidance for 
selecting an appropriate number. The exact level will depend on practical considerations where 
a feasible balance between the early detection of potential issues and the additional burden of 
hours to be investigated has to be found. 

4.3 Interpretation of results  

4.3.1 Model performance 

In chapter 3 two modelling approaches were tested and compared. A simple multiple 
regression model (OLS) and a principal components based approach (PLS). The modelling 
approaches were different, the way the variables were used and the number of variables used 
were not identical. In a statistical sense the results should therefore not be seen as a 
competition between the two modelling techniques. However, the results show that the PLS 
modelling approach did perform somewhat better than the OLS approach. This is mainly 
relevant when judging hourly or daily results. In a real-time system (e.g. screening data before 
they are put online) the better model obviously has an advantage. If the averaging time 
increases and the methods are used to detect broader patterns both approaches produce 
similar results. In that case the OLS models have a major advantage in the sense that they are 
very transparent in what is happening. For example: suppose a deviation occurs on a public 
holiday. The regression coefficients (as in table 5) could quickly reveal that for the motorway 
station a difference of 5.4 µg/m3 would be expected as the model thinks that it is a working 
day. Similarly, the influence of the wind direction10 can easily be traced. 
 
The method discussed in this document is based on a concept used by Carslaw and Carslaw 
(2007). It compares a measurement with an estimate of the measurement. They use 

                                                      
10 In this study we used 6 fixed wind sectors for the OLS. If a monitoring site is specifically influenced by 
one or more identifiable sources these sectors could be adapted to get a better OLS model. 
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Generalised Additive Modelling (GAM) to forecast daily averaged NO2 measurements based on 
the NOx concentration, background O3 and NO2 concentration and a wind vector. The method 
was applied to 20 roadside stations in London. They obtain r2 values between 0.74 and 0.97. 
Results for r2 obtained here in chapter 3 range from 0.64 (or 0.71) to 0.88 depending on the 
modelling approach and whether or not a period of problem data were excluded from model 
development. The fact that the r2 are somewhat lower in this study may have several reasons. 
Firstly, hourly data are used instead of daily data leading to higher variability in this study. 
Secondly, Carslaw and Carslaw include total NOx measured at the site where NO2 is estimated 
in their equation. Lastly, they explain explicitly that the data used to build the model should be 
free of bias. In this case no a priori screening of the data was done in order to mimic real time 
application of testing unvalidated data. 
 

4.3.2 Hourly and daily differences between measurements and predictions 

The results in chapter 3 showed that both modelling approaches flag a good number of hours 
as suspicious in addition to the hours already  rejected  by the validators. So an additional 
statistical screening of the measurements (as suggested in this document) seems to provide 
useful further guidance for validation. However there are certain issues as well: 

 The models partly flag different hours; 
 Depending on the threshold many additional hours are flagged for further investigation; 
 Sometimes hours that were rejected on technical grounds were accepted by the 

prediction models.  
 

Hourly data: Since the agreement between the prediction models and or the model and the 
validator is only partial and since it is impossible to know whose judgement is right or wrong it 
is recommended to only flag seriously deviating hours/days. For operational purposes hours 
with a flag could be left out of real-time presentations and further scrutinised during validation. 
Flagging individual hours or days is sensitive to model bias so particularly for this purpose the 
best possible dataset should be used for model development.  
If a filter is desired to support real-time publication of hourly values, 30 µg/m3 is recommended. 
This would filter 85 and 50 hours at the background and motorway station respectively in a two 
year period. This amounts to approximately 0.5% of the data stream. 
 
Daily data: Based on the results daily deviations of 12.5 µg/m3 are flagged. This corresponds to 
approximately 3*RMSE (depending on the site and the quality of the data used to develop a 
model). This results to 30 and 3 hours in the background and the corrected motorway datasets 
respectively in a two year period. For validation guidance the daily variable is suitable.  
 
The exact threshold should be based on practical experience and the amount of validation 
support one wants to receive. One could argue that if the thresholds are set in a such a way 
that less than 1% of the (unvalidated) data are flagged it might not be worthwhile maintaining 
the system. 
 

4.3.3 Detecting trends 

For the detection of trends the longer averaging times are more suitable and the models are 
less sensitive to bias. The 4-weekly moving average is easiest to interpret but might delay the 
detection of suspicious data. Here we compare the 1 week and 4-weekly results. 
 
The urban background case in section 3.1 showed that an analysis based on a one week 
moving average at 1*RMSE would lead to early detection but also to several periods being 
flagged. A 2*RMSE threshold would delay the detection of the drift. The combination of a 4-
weekly moving average and 1*RMSE threshold gave the same time of detection as the 1 
week/1*RMSE combination. However, the signal is cleaner and easier to interpret and the 
number of periods flagged is less . Hence the 4-weekly moving average is the preferred 
indicator. 
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In case of the motorway station with the rapid drop in concentration after maintenance the 
situation is different. The detection using the 4-weekly moving average is notably later than the 
weekly criterion. However, also in this case the 4-weekly moving average signal is much easier 
to interpret than the weekly signal. See figure 15. If really the first passage of the 1 or 2*RMSE 
threshold is interpreted (left most vertical blue line), the weekly criterion would be faster. 
However, the weekly curve bounces back to normal quite quickly. This could be interpreted as 
a false alarm and if the decision to further investigate is only made after the second passage 
there would be no advantage in using the weekly curve over the 4-weekly curve. 
 
 

 
 
Figure 15: PLS models with a weekly (left) and a 4-weekly (right) moving average. The timing 
of decisions depends on the exceedence of the thresholds: left 1 or 2*RMSE (blue and red 
lines respectively); and right 1*RMSE (red line).  
 
 
Four weekly moving average: for automatic warnings a threshold of 3 µg/m3 can be used. This 
is approximately 1 to 2*RMSE depending on the modelling approach and the correctness of the 
data used to develop the models.  
 
Also in this case the exact threshold should be based on practical experience and perhaps set  
differently for urban background and traffic monitoring sites. After all if the applied method 
leads to early detection of issues and less noise in the data, previously functional thresholds 
might lose their effectiveness (absolute threshold never being exceeded, RMSE based 
threshold becoming too strict).  
 
For a rapid detection of quick changes after major maintenance such as replacements of a 
monitor, a gas bottle etc.) a t-test on the average before and after the maintenance is probably 
the best way. See the results in section 3.5.  
 

4.4 Generalisation of results 

The methods developed in this report predict measurements using a number of meteo and day 
of the week variables as well simultaneous measurements at other locations and succeed 
(surprisingly) well in doing so. The study area is well equipped with monitoring stations and 
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stations used in building the models are located within a relatively short distance from each 
other. In section 3.6 (and Annex A.3) results were shown from the opposite situation where 
sites far apart were used as input for the OLS model used for the measurement estimates. The 
results show that the general concept still works but the results is less robust if one has to rely 
on few monitoring stations. 

4.5 Conclusions 

In this study it was shown that models can be made to predict measurements. The models are 
sufficiently accurate to act as a first check on the likeliness of the measurement observations. 
Analysing the differences between measurements and predictions is a useful way of obtaining 
additional information for the validation of the air quality measurements. Two monitoring sites 
were studied in depth and examples of an additional five monitoring sites are given. All in all 
the method was applied at 10 sites in the study area. The concept of estimating measurements 
to check the behaviour over time of these measurements, was also demonstrated for 20 traffic 
monitoring sites in London (Carslaw and Carslaw, 2007).   
 
It was shown that the statistical screening of measurement data by using predictions based on 
simultaneous measurements at other locations is a useful addition to regular validation. 
Different parameters are needed for different purposes: 

 A daily moving average of the difference between measured and predicted 
observations can be used to flag for outlier measurements needing additional attention 
during validation. 

 Hourly differences can be used to detect potential deviations in real-time applications.  
 4-weekly moving averages can be used to detect cases of drift that are either due to 

changing circumstances or malfunctioning of the measurement set-up. 
 
The most accurate models are derived by PLS using the information from both meteo variables 
and other air quality measurement stations. Accurate models are particularly important for real 
time application when one has to judge highly variable hourly values. If the methods are mainly 
used as validation guidance and if one focuses on daily and 4-weekly averages the OLS 
models will do. These models are slightly less accurate but easier to develop and maintain and 
transparent in their operation. To detect issues in trends even simple regression models 
developed on unvalidated data including trouble periods can be used. 
 
Models can be updated biannually unless a known change in the emission sources influencing 
a station has occurred. The trend detection is rather insensitive to the model being accurate. If 
the models are used for the detection of outliers on an hourly or daily basis, the best possible 
models are needed. 
 
The models in this case study were based on two years of monitoring data. This was intuitively 
assumed to be a reasonable compromise between the number of data needed and the 
sensitivity to exceptional meteo or deviating data in the data set. The use of one year of data is 
possible as well provided trouble data are excluded from model development (see for example 
Carslaw and Carslaw, 2007).  
 
The usefulness of the tool depends on the quality of the prediction model. In densely monitored 
areas (as studied in this report) it is possible to develop good models. The further apart the 
monitoring stations are, the harder it becomes to develop adequate models. The study showed 
that models developed with monitoring stations up to 100 km apart might still provide useful 
complementary information for the validation process.
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Annexes 

A1 PLS modelling: additional trials using unvalidated data and inverse wind speed 

 

Validated versus unvalidated data 

The model described in this report was developed on validated data. In the validation process 
unvalidated data will be used. This aspect was examined with PLS modelling using the dataset 
Schiedamsevest (urban background). The unvalidated 2 years-dataset of Schiedamsevest 
contains 148 data which were rejected in the manually validation. Because the PLS tool can 
not deal with missing data, prior to modelling, missing data (no measurement available and 
data which were rejected) were filled by values which were estimated based on available data, 
using a simple  formula that calculates missing value xij as the average of all stations at hour i 
adjusted with the ratio of the overall average to the average at site j according to:  
 









 






17544

1
)(,17544

1 1
),(,

1
)(,

*
n

injn

n

N

k
injkkn

N

k
jkki

ij x
x

x
x  

 
  xi,j: estimated concentration of hour i at station j 
  N: number of stations 
 
This procedure was applied in all PLS models described in this report. It has to be remarked 
that if a large part of the dataset was missed, the above formula causes a bias in the filled up 
data. To avoid a bias, average instead of sum should be used. 
 
In the table below the comparison between PLS models developed on validated and 
unvalidated data respectively, is shown.  
 
Table A.1: Amount of hours flagged by one or both models for various indicators 
  Hour 1*RMSE Hour 2*RMSE Hour 3*RMSE Hour 4*RMSE 
Both models flag 3731 766 232 85 
PLS-validated dataset flag 328 72 15 3 
PLS-unvalidated dataset flag 307 68 21 8 
No flag 13178 16638 17276 17448 
% agreement 85 85 87 89 

 
We can conclude that the use of unvalidated data does not have significant impact on the 
results 
 

Wind speed versus inverse wind speed 

When the wind speed is close to zero the effect of wind speed is much more pronounced if 
inverse wind speed instead of the wind speed itself is used. This effect is examined by PLS 
model using the dataset Schiedamsevest. The table below shows the comparison between 
both models.  
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Table A.2: Amount of hours flagged by one or both models for various indicators 
  Hour 1*RMSE Hour 2*RMSE Hour 3*RMSE Hour 4*RMSE 
Both models flag 3896 809 240 86 
PLS-dataset with WS flag 163 29 7 2 
PLS-dataset with inverse WS flag 133 24 9 2 
No flag 13352 16682 17288 17454 
% agreement 93 94 94 96 

 
We can conclude that though the inverse wind speed has a theoretical advantage, over wind 
speed as such, the practical results are quite similar. 
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A2 Additional information model stability 

OLS models were made for various stations in the Rotterdam area. The models were fitted on 
2011-2012 data and were applied for the period 2003-1012. Contrary to the models in the main 
text, the models discussed here are based on daily averaged concentrations. For Schiedam the 
ten year results were shown in figure 8. In this annex a few more examples will be discussed. 
 
Almost all graphs show increasing scatter the further one moves away from the data period on 
which the models were developed. This is something one could expect from any model 
extrapolation. There is a second reason why this is happening: over time the ISO standard that 
governs the measurements has changed. Previously (before 2010) deviations up to 10% in the 
periodic span checks were allowed before readjustment of the monitoring equipment took 
place. Currently this threshold is set at 5 %. Climate control at the monitoring sites was also 
improved over the years. 
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Figure A.1 Hoogvliet 10 year back extrapolation of the 2011-2012 model. 
 
Background site Hoogvliet shows a quite stable graph over the years. Like Schiedam the 2-
year model seems to be adequate over the full ten year period. Like in Schiedam, the historic 
data show two strange peaks, that were missed at the time during validation.  
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Figure A.2 Maassluis 10 year back extrapolation of the 2011-2012 model. 
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The Maassluis graph is an example  of an  urban background station that was not stable over 
time.  In different periods construction work took place near  the monitoring site and over the 
years the sources that influence the station have changed. The residential area is now more 
dense and closer to the monitoring station. 
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Figure A.3 A13 Overschie 10 year back extrapolation of the 2011-2012 model. 
 
 
At motorway site A13 -Overschie the 2-year OLS model exhibits an upward trend if we go back 
in history. This can easily be understood. In essence the model describes how the motorway 
station behaves relative to the prevailing background concentrations and over the years the 
gap between traffic and background stations has been reduced. The transport sector has been 
subject to elaborate emission control legislation reducing the emissions per/km substantially. 
Secondly, road works north of the monitoring have widened the road and reduced the number 
of traffic jams for north-bound traffic. This has further reduced the concentrations at this site. In 
this case the model that provides the estimates would need an annual or biannual update. 
 
Table A.3: OLS coefficients 

 
Dataset used: 2003-

2004 
Dataset used: 2011-

2012 
Background concentration 0.82 1.00 

Weekday (W) 7.79 5.70 
Wind direction WR1 -6.20  
Wind direction WR2   

Wind direction WR3 18.33 16.51 
Wind direction WR4 21.11 20.67 
Wind direction WR5 20.55 17.69 
Wind direction WR6 9.01 9.87 

Temperature 0.18  
Precipitation   

(Windspeed+1)-1 22.18  
Intercept -3.91 -6.30 
RMSE 9.564 7.451 

R2_adjusted 0.74 0.82 
Variables used 10 7 

 



 

   Measurement validation by observation predictions  blad 39 van 41  

Comparing both models it is evident that the motorway contribution has changed. The 
additional working day increment has dropped by 2 µg/m3. This signifies that the difference 
between week and weekend that is due to the difference in traffic density was reduced. Also 
the contributions in the wind directions 3, 4 and 5 have gone down. This covers the compass 
angles from 120 to 300  degrees: the exact location of the motorway as can be seen from 
figure A.4 where the monitoring station is marked with the arrow. South-westerly winds 
dominate in the Netherlands so this marks a noticeable reduction. 
 
  

 
 
Figure A.4: A13 Motorway and location of the monitoring site.  
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A3 Results using distant background stations (OLS models) 

In section 3.6 the regression coefficients were shown for four cases where background station 
at major distance > 50 -100 km were used to built the estimation models.   
 

The first graph is for a regional 
background monitoring station and the 
average background was derived from the 
sites (Posterholt, Eibergen, Wekerom, 
Balk and Kollumerwaard). The results 
appear quite straight forward.   
 
 
 
 
 
The other graphs are urban situations. 
The background was derived from the 
sites (Heerlen, Nijmegen and Groningen). 
The second and the fourth graph are 
traffic influenced sites, the third is an 
urban background site. Graphs two and 
three are in The Hague, the last one is in 
Rotterdam (and was shown in section 
3.6).  
 
 
The reason to include it again is that the 
last three appear to share some spikes. 
Some even seem to coincide in all four 
graphs. If a spike occurs in all four it could 
hint at meteo differences between the 
study area and the places where the 
background concentrations were 
determined. A 4-week moving average is 
presented so it is unlikely but it can’t be 
ruled out. 
 
Alternatively something could be 
happening at the background stations  
(and indeed there were periods with 
missing values) that were used. It is an 
average of only three stations so it is less 
robust than the background used 
previously (based on four or five stations 
in the same area). 
 
A local change mainly affecting The 
Hague seems to occur (maintenance on 
the same day in the same area?). See 
second blue line on the right. 
 
 

Figure A.5: 4-weekly moving averages for four sites based on distant background stations 
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The left most blue line shows that several effects could coincide. At first glance the bottom 
graph (A13) doesn’t seem to behave like the others. However, if one looks at the original graph 
(see figure 12) one can see that there was a strong upward movement of the moving average 
at the time if the local model is used. What appears as a small dip in the bottom graph of figure 
A.5 is in fact a major downward movement at the same moment as in the other graphs.  
 
Since this is happening at all four locations it is not only a background influence. The deviation 
is rather big, so only meteo influence is unlikely. Maintenance on the same day has to be ruled 
out as all background stations are far apart. Simultaneous maintenance on the study stations is 
unlikely as one is managed by another organization and only two are conveniently close. Just 
after the dip in the graphs there are missing values in the stations used to provide the urban 
background. Perhaps something was going astray that needed maintenance (the period with 
the missing values). This could (partially) explain the dip but it is not the only explanation. 
 
The variability in the circumstances that influence the shape of these graphs is considerably 
higher than that in the cases where all stations considered are relatively close to each other. 
The current report has not analysed what the maximum distance between monitoring sites 
could be. The preliminary tests shown here demonstrate that in these cases it is important to 
use sufficient monitoring stations to determine the average background (in case the OLS 
modelling approach is used) and that complementary information such as maintenance dates is 
definitely needed to interpret the graphs. In short, the method might still be useable, but relying 
on automatic screening is more difficult as more complementary information is needed. 
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