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Abstract. In recent years, the subject of Apostol-Bernoulli polyno-
mials, Apostol-Euler polynomials and Apostol-Genocchi polynomials
have been studied extensively. Recently, the authors have introduced
in [27, 28] some new generalized classes of Apostol-Bernoulli, Apostol-
Euler and Apostol-Genocchi polynomials. In this paper, with the help
of a result involving an explicit formula for the generalized potential
polynomials obtained by Cenkci [5], we develop some explicit formulas
related with these new classes of polynomials.
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1. Introduction, Definitions and Notations

The generalized Bernoulli polynomials B
(α)
n (x) of order α ∈ C, the gener-

alized Euler polynomials E
(α)
n (x) of order α ∈ C and the generalized Genoc-

chi polynomials G
(α)
n (x) of order α ∈ C, each of degree n as well as in α,

are defined respectively by the following generating functions (see,[8, vol.3,
p.253 et seq.], [14, Section 2.8] and [18]):

(1)

(
t

et − 1

)α

· ext =
∞∑

k=0

B
(α)
k (x)

tk

k!
(|t| < 2π; 1α := 1),

(2)

(
2

et + 1

)α

· ext =
∞∑

k=0

E
(α)
k (x)

tk

k!
(|t| < π; 1α := 1)

and

(3)

(
2t

et + 1

)α

· ext =
∞∑

k=0

G
(α)
k (x)

tk

k!
(|t| < π; 1α := 1).

The literature contains a large number of interesting properties and rela-
tionships involving these polynomials [1, 4, 7, 8, 10, 25]. These appear in
many applications in combinatorics, number theory and numerical analysis.
Lately, some interesting analogues of the classical Bernoulli polynomials,
the classical Euler polynomials and the classical Genocchi polynomials have
been investigated. Q.-M. Luo and H.M. Srivastava [22, 24] introduced the

generalized Apostol-Bernoulli polynomials B
(α)
n (x;λ) of order α ∈ C (the

case α = 1 was investigated first by T.M. Apostol [2, Eq.(3.1), p.165]). In
2006, Q.-M. Luo [15] invented the generalized Apostol-Euler polynomials
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E
(α)
n (x;λ) of order α ∈ C and the generalized Apostol-Genocchi polyno-

mials G
(α)
n (x;λ) of order α ∈ C in [18]. Many authors have investigated

these polynomials and numerous very interesting papers can be found in the
literature. The reader should read ([3, 6, 9, 16, 17, 19, 20, 21, 23, 26]).

Recently, the authors in [27, 28] have investigated some properties of
new related classes to these polynomials. Explicitly, they considered the
following new classes defined respectively by the next definitions.

Definition 1.1. For arbitrary real or complex parameter α and for b, c ∈
R+, the generalized Apostol-Bernoulli polynomials B

[m−1,α]
n (x, b, c;λ), m ∈

N, λ ∈ C, are defined, in a suitable neighborhood of t = 0, with |t log b +
log λ| < 2π by means of the generating function

(4)

(
tm

λbt −∑m−1
l=0

(t log b)l

l!

)α

· cxt =
∞∑

k=0

B[m−1,α]
n (x, b, c;λ)

tk

k!
.

Definition 1.2. For arbitrary real or complex parameter α and for b, c

∈ R+, the generalized Apostol-Euler polynomials E
[m−1,α]
n (x, b, c;λ), m ∈ N,

λ ∈ C, are defined, in a suitable neighborhood of t = 0, with |t log b+log λ| <
π by means of the generating function

(5)

(
2m

λbt +
∑m−1

l=0
(t log b)l

l!

)α

· cxt =
∞∑

k=0

E[m−1,α]
n (x, b, c;λ)

tk

k!
.

Definition 1.3. For arbitrary real or complex parameter α and for b, c ∈
R+, the generalized Apostol-Genocchi polynomials G

[m−1,α]
n (x, b, c;λ), m ∈

N, λ ∈ C, are defined, in a suitable neighborhood of t = 0, with |t log b +
log λ| < π by means of the generating function

(6)

(
2mtm

λbt +
∑m−1

l=0
(t log b)l

l!

)α

· cxt =
∞∑

k=0

G[m−1,α]
n (x, b, c;λ)

tk

k!
.

If we set b = c = e, m = 1 and λ = 1 in each of these definitions, we recover
the definitions of the classical Bernoulli, Euler and Genocchi polynomials
defined respectively by (1), (2) and (3).

In this paper, we establish explicit formulas for all these classes of poly-
nomials in the case where b = c = e and λ = 1. This is done with the
help of a generalization, by Cenkci [5], of a theorem involving the poten-
tial polynomials due to Howard [13] and by making use of the multinomial
theorem.

2. Preliminaries

In this section, we recall the result given by Howard in [13] involving the
potential polynomials and we give the generalization obtained recently by
Cenkci [5].

For r ≥ 0 and ar 6= 0, let F (t) =
∑∞

j=r aj
tj

j! be a formal power series. For

α ∈ C, the potential polynomials F
(α)
n [7, 13] are defined by the exponential
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generating function

(7)

(
ar

tr

r!

F (t)

)α

=
∞∑

n=0

F (α)
n

tn

n!

If r ≥ 1, then the exponential Bell polynomials Bn,k(0, ..., ar, ar+1, ...) in an
infinite number of variables ar, ar+1, ... can be defined by means of

(8) (F (t))k = k!
∞∑

n=0

Bn, k(0, ..., 0, ar, ar+1, ...)
tn

n!
.

When k is a positive integer, then

(9) F (−k)
n =

(
r!

ar

)k n!k!

(n+ rk)!
Bn+rk, k(0, ..., 0, ar, ar+1, ...).

In 1982, Howard in [13] obtained the following theorem:

Theorem 2.1. If F
(α)
n is defined by (7) and if Bn,k is defined by (8), then

F (α)
n =

n∑

k=0

(−1)k
(
α+ k − 1

k

)(
α+ n

n− k

)(
r!

ar

)k n!k!

(n+ rk)!

×Bn+rk, k(0, ..., 0, ar, ar+1, ...).(10)

Recently, Cenkci [5] has extended this last theorem by introducing the

generalized potential polynomials F
(α)
n (x) where α ∈ C. He thus considered

the following definition.

Definition 2.2. For r ≥ 0 and ar 6= 0, let F (t) =
∑∞

j=r aj
tj

j! be a formal

power series. For an independent variable x, we define the generalized po-

tential polynomials F
(α)
n (x) by means of the exponential generating function

(11)

(
ar

tr

r!

F (t)

)α

ext =
∞∑

n=0

F (α)
n (x)

tn

n!
.

Obviously, setting x = 0 in (11), we have F
(α)
n (0) = F

(α)
n .

Theorem 2.3. If F
(α)
n (x) is defined by (11) and if Bn,k is defined by (8),

then

F (α)
n (x) =

n∑

k=0

(−1)k
(
α+ k − 1

k

)(
r!

ar

)k

·
n−k∑

l=0

(
n

l + k

)(
α+ k + l

l

)
xn−k−l

× (l + k)!k!

(l + k + rk)!
Bl+k+rk, k(0, ..., 0, ar, ar+1, ...).(12)

Making use of this theorem, Cenkci [5, p. 1502, Equation 3.1] obtain the

following relation for the generalized Bernoulli polynomials B
(α)
n (x). Let

F (t) = et− 1 = t+
t2

2!
+

t3

3!
+ . . . . Thus r = 1 and a1 = 1. From (8), we have

(13) k!
∞∑

n=0

Bn, k(1, 1, 1, ...)
tn

n!
= (et − 1)k = k!

∞∑

n=0

S(n, k)
tn

n!
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and then we obtain

B (α)
n (x) =

n∑

k=0

(−1)k
(
α+ k − 1

k

) n−k∑

l=0

(
n

l + k

)
xn−k−l

×
(
α+ k + l

l

)
(l + k)! k!

(l + 2k)!
S(l + 2k, k).(14)

3. Main results

Our main objective in this section is to apply the multinomial identity and
Theorem 2 to all the classes of generalized Apostol-Bernoulli, Apostol-Euler
and Apostol-Genocchi polynomials defined respectively by (4), (5) and (6)
in the case where b = c = e and λ = 1.

Lemma 3.1. (Multinomial identity [7, p. 28, Theorem B]) If x1, x2,. . . , xr
are commuting elements of a ring, then for all n ∈ N0, we have

(15) (x1 + · · ·+ xm)n =
∑

ν1,··· ,νm≥0
ν1+ν2+···+νm=n

(
n

ν1, · · · , νm

)
xν11 · · ·xνmm

where summation takes place over all integers νi ≥ 0 and

(16)

(
n

ν1, · · · , νm

)
:=

n!

ν1! ν2! . . . νm!

which are called the multinomial coefficients.

Theorem 3.2. The following explicit representation holds for the general-

ized Bernoulli polynomials B
[r−1, α]
n (x) defined by (4) where b = c = e and

λ = 1

B[r−1,α]
n (x) =

n∑

k=0

(
α+ k − 1

k

)
(r!) α+k

n−k∑

l=0

(
n

l + k

)
xn−k−l

(
α+ k + l

l

)
(l + k)!

×
∑

ν1,··· ,νr ≥ 0
ν1+ν2+···+νr= k

(
k

ν1, · · · , νr

)
(−1)µ+k (ν1!) S(l + k + rk − µ, ν1)

(l + k + rk − µ)!
(17)

where µ = ν2 + 2ν3 + · · ·+ (r − 1)νr.
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Proof. Considering F (t) = et −
r−1∑

h=0

th

h!
= et − 1−

r−1∑

h=1

th

h!
. Thus, we have

(18)(
et −

r−1∑

h=0

th

h!

)k

=

[
(et − 1)−

r−1∑

h=1

th

h!

]k

=
∑

ν1,··· ,νr ≥ 0
ν1+ν2+···+νr= k

(
k

ν1, · · · , νr

)
(−t)µ

( ∞∑

l=1

tl

l!

)ν1

=
∑

ν1,··· ,νr ≥ 0
ν1+ν2+···+νr= k

(
k

ν1, · · · , νr

)
(−t)µ(ν1!)

∞∑

n=0

S(n, ν1)
tn

n!

where µ = ν2 + 2ν3 + · · ·+ (r − 1)νr. We know from (8) that

(F (t))k = k!
∞∑

n=0

Bn, k(0, ..., 0, ar, ar+1, ...)
tn

n!

=
∞∑

n=0

∑

ν1,··· ,νr ≥ 0
ν1+ν2+···+νr= k

(
k

ν1, · · · , νr

)
(−1)µ (ν1!) S(n, ν1)

tn+µ

n!
.(19)

We thus have

Bn, k(0, ..., 0, 1, 1, 1, ...) =

n!

k!

∑

ν1,··· ,νr ≥ 0
ν1+ν2+···+νr= k

(
k

ν1, · · · , νr

)
(−1)µ (ν1!) S(n− µ, ν1)

(n− µ)!
.(20)

By making use of Theorem 2 with ar = 1, we obtain

(21)

F (α)
n (x) =

n∑

k=0

(
α+ k − 1

k

)
(r!)k

n−k∑

l=0

(
n

l + k

)
xn−k−l

(
α+ k + l

l

)
(l + k)!

×
∑

ν1,··· ,νr ≥ 0
ν1+ν2+···+νr= k

(
k

ν1, · · · , νr

)
(−1)µ+k (ν1!) S(l + k + rk − µ, ν1)

(l + k + rk − µ)!
.

Finally, since the generalized Bernoulli polynomials B
[r−1,α]
n (x) are defined

by means of the generating function (4) where b = c = e and λ = 1, it is
easy to observe that

(22) B[r−1,α]
n (x) = (r!) α F (α)

n (x)
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and consequently, we have

(23)

B[r−1,α]
n (x) =

n∑

k=0

(
α+ k − 1

k

)
(r!) α+k

n−k∑

l=0

(
n

l + k

)
xn−k−l

(
α+ k + l

l

)
(l + k)!

×
∑

ν1,··· ,νr ≥ 0
ν1+ν2+···+νr= k

(
k

ν1, · · · , νr

)
(−1)µ+k (ν1!) S(l + k + rk − µ, ν1)

(l + k + rk − µ)!

where µ = ν2 + 2ν3 + · · ·+ (r − 1)νr. ¤

As a special case of (23) if we set r = 2 then µ = ν2 = k − ν1 and we
divide by 2α, we get
(24)

B
[1,α]
n (x)

2α
=

n∑

k=0

(
α+ k − 1

k

)
2 k

n−k∑

l=0

(
n

l + k

)
xn−k−l

(
α+ k + l

l

)
(l + k)!

×
k∑

ν1=0

(
k

ν1

)
(−1)ν1 (ν1!) S(l + 2k + ν1, ν1)

(l + 2k + ν1)!
.

This result has been obtained in [5, p. 1505, Eq. 3.15] for the polynomials

A
(α)
n (x) defined and studied by Howard [11, 12].

Theorem 3.3. The following explicit representation holds for the gener-

alized Euler polynomials E
[r−1, α]
n (x) defined by (5) where b = c = e and

λ = 1

(25)

E [r−1, α]
n (x) =

n∑

k=0

(−1)k
(
α+ k − 1

k

) n−k∑

l=0

(
n

l + k

)
xn−k−l

(
α+ k + l

l

)
(l + k)!

×
∑

ν1,··· ,νr+1 ≥ 0
ν1+ν2+···+νr+1= k

(
k

ν1, · · · , νr+1

)
2ν2−k+(r−1)α (ν1!) S(l + k − µ, ν1)

(l + k − µ)!

where µ = ν3 + 2ν4 + · · ·+ (r − 1)νr+1.



7

Proof. Setting F (t) = et +
r−1∑

h=0

th

h!
= 2 + 2t+ 2

t2

2!
+ · · ·+ 2

tr−1

(r − 1)!
+

∞∑

k=r

tk

k!
.

This implies that a0 = 2 and we have
(26)(

et +

r−1∑

h=0

th

h!

)k

=

[
(et − 1) + 2 +

r−1∑

h=1

th

h!

]k

=
∑

ν1,··· ,νr+1 ≥ 0
ν1+ν2+···+νr+1= k

(
k

ν1, · · · , νr+1

)
2ν2tµ

( ∞∑

l=1

tl

l!

)ν1

=
∑

ν1,··· ,νr+1 ≥ 0
ν1+ν2+···+νr+1= k

(
k

ν1, · · · , νr+1

)
2ν2tµ (ν1!)

∞∑

n=0

S(n, ν1)
tn

n!

where µ = ν3 + 2ν4 + · · ·+ (r − 1)νr+1. From (8), simple calculations give

Bn, k(2, 2, 2, ..., 1, 1, 1, 1...) =

n!

k!

∑

ν1,··· ,νr+1 ≥ 0
ν1+ν2+···+νr+1= k

(
k

ν1, · · · , νr+1

)
2ν2 (ν1!) S(n− µ, ν1)

(n− µ)!
.(27)

We thus obtain from Theorem 2 with a0 = 2 that
(28)

F (α)
n (x) =

n∑

k=0

(−1)k
(
α+ k − 1

k

) n−k∑

l=0

(
n

l + k

)
xn−k−l

(
α+ k + l

l

)
(l + k)!

×
∑

ν1,··· ,νr+1 ≥ 0
ν1+ν2+···+νr+1= k

(
k

ν1, · · · , νr+1

)
2ν2−k (ν1!) S(l + k − µ, ν1)

(l + k − µ)!

and using the fact that the generalized Euler polynomials E
[r−1,α]
n (x) are

defined by means of the generating function (5) where b = c = e and λ = 1,
we find that

(29) E [r−1, α]
n (x) = 2(r−1)α F (α)

n (x)

and we finally obtain
(30)

E [r−1, α]
n (x) =

n∑

k=0

(−1)k
(
α+ k − 1

k

) n−k∑

l=0

(
n

l + k

)
xn−k−l

(
α+ k + l

l

)
(l + k)!

×
∑

ν1,··· ,νr+1 ≥ 0
ν1+ν2+···+νr+1= k

(
k

ν1, · · · , νr+1

)
2ν2−k+(r−1)α (ν1!) S(l + k − µ, ν1)

(l + k − µ)!
.

¤
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If we set r = 1 in (30) then µ = 0 and ν2 = k− ν1 and we recover a result
given by Cenkci in [5, p. 1503, Eq. 3.6], that is,

E (α)
n (x) =

n∑

k=0

(−1)k
(
α+ k − 1

k

) n−k∑

l=0

(
n

l + k

)
xn−k−l

(
α+ k + l

l

)

×
k∑

ν1=0

(
k

ν1

)
2−ν1 (ν1!) S(l + k, ν1).(31)

Now, by making use of the generating functions (5) and (6) where b =
c = e and λ = 1 in both cases, it is easy to obtain the following relationship

between the generalized Euler polynomials E
[r−1, j]
n (x) of integer order j

and the generalized Genocchi polynomials G
[r−1, j]
n (x) of order j, namely

(32) G [r−1, j]
n (x) =

n!

(n− rj)!
E

[r−1, j]
n−rj (x) (n ≥ rj).

Theorem 3.4. The following explicit representation holds for the gener-

alized Genocchi polynomials G
[r−1, j]
n (x) of integer order j defined by (6)

where b = c = e and λ = 1
(33)

G [r−1, j]
n (x) =

n!

(n− rj)!

n−rj∑

k=0

(−1)k
(
α+ k − 1

k

) n−rj−k∑

l=0

(
n− rj

l + k

)
xn−rj−k−l

(
α+ k + l

l

)

× (l + k)!
∑

ν1,··· ,νr+1 ≥ 0
ν1+ν2+···+νr+1= k

(
k

ν1, · · · , νr+1

)
2ν2−k+(r−1)α(ν1!)S(l + k − µ, ν1)

(l + k − µ)!

where n ≥ rj.
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