
Sébastien MarcelIdiap Research Institute | IDIAP · Biometrics Security and Privacy
Sébastien Marcel
PhD signal processing
About
251
Publications
90,513
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,998
Citations
Introduction
Head of a research group in Biometrics at the Idiap research institute ( http://www.idiap.ch/~marcel ).
Principal investigator and coordinator of FP7 projects MOBIO ( http://www.mobioproject.org : 2008-2010 ), TABULA RASA ( http://www.tabularasa-euproject.org : 2010-2014 ) and BEAT ( http://www.beat-eu.org : 2012-2016 ).
Supporting replicable research ( www.idiap.ch/software/bob ).
Swiss expert for ISO/JTC1/SC37 (WD 30107).
Publications
Publications (251)
Morphing attacks are a threat to biometric systems where the biometric reference in an identity document can be altered. This form of attack presents an important issue in applications relying on identity documents such as border security or access control. Research in generation of face morphs and their detection is developing rapidly, however ver...
Applications of face recognition systems for authentication purposes are growing rapidly. Although state-of-the-art (SOTA) face recognition systems have high recognition performance, the features which are extracted for each user and are stored in the system's database contain privacy-sensitive information. Accordingly, compromising this data would...
The vulnerability against presentation attacks is a crucial problem undermining the wide-deployment of face recognition systems. Though presentation attack detection (PAD) systems try to address this problem, the lack of generalization and robustness continues to be a major concern. Several works have shown that using multi-channel PAD systems coul...
This paper proposes PolyProtect, a method for protecting the sensitive face embeddings that are used to represent people’s faces in neural-network-based face verification systems. PolyProtect transforms a face embedding to a more secure template, using a mapping based on multivariate polynomials parameterised by user-specific coefficients and expon...
This paper presents a survey of biometric template protection (BTP) methods for securing face templates in neural-network-based face recognition systems. The BTP methods are categorised into two types: Non-NN and NN-learned. Non-NN methods use a neural network (NN) as a feature extractor, but the BTP part is based on a non-NN algorithm applied at i...
Face authentication is now widely used, especially on mobile devices, rather than authentication using a personal identification number or an unlock pattern, due to its convenience. It has thus become a tempting target for attackers using a presentation attack. Traditional presentation attacks use facial images or videos of the victim. Previous wor...
Face recognition has emerged as a widely used biometric modality. However, its vulnerability to presentation attacks remains a significant security threat. Although Presentation Attack Detection (PAD) methods attempt to remedy this problem, often they fail in generalizing to unseen attacks and environments. As the quality of presentation attack ins...
Machine learning-based (ML) systems are being largely deployed since the last decade in a myriad of scenarios impacting several instances in our daily lives. With this vast sort of applications, aspects of fairness start to rise in the spotlight due to the social impact that this can get in some social groups. In this work aspects of fairness in bi...
The availability of large-scale face datasets has been key in the progress of face recognition. However, due to licensing issues or copyright infringement, some datasets are not available anymore (e.g. MS-Celeb-1M). Recent advances in Generative Adversarial Networks (GANs), to synthesize realistic face images, provide a pathway to replace real data...
The availability of large-scale face datasets has been key in the progress of face recognition. However, due to licensing issues or copyright infringement, some datasets are not available anymore (e.g. MS-Celeb-1M). Recent advances in Generative Adversarial Networks (GANs), to synthesize realistic face images, provide a pathway to replace real data...
In this work, we present a general framework for building a biometrics system capable of capturing multispectral data from a series of sensors synchronized with active illumination sources. The framework unifies the system design for different biometric modalities and its realization on face, finger and iris data is described in detail. To the best...
Automatic methods for detecting presentation attacks are essential to ensure the reliable use of facial recognition technology. Most of the methods available in the literature for presentation attack detection (PAD) fails in generalizing to unseen attacks. In recent years, multi-channel methods have been proposed to improve the robustness of PAD sy...
Morphing attacks is a threat to biometric systems where the biometric reference in an identity document can be altered. This form of attack presents an important issue in applications relying on identity documents such as border security or access control. Research in face morphing attack detection is developing rapidly, however very few datasets w...
The vulnerability of face recognition systems to presentation attacks has limited their application in security-critical scenarios. Automatic methods of detecting such malicious attempts are essential for the safe use of facial recognition technology. Although various methods have been suggested for detecting such attacks, most of them over-fit the...
Machine learning-based (ML) systems are being largely deployed since the last decade in a myriad of scenarios impacting several instances in our daily lives. With this vast sort of applications, aspects of fairness start to rise in the spotlight due to the social impact that this can get in minorities. In this work aspects of fairness in biometrics...
The High-Quality Wide Multi-Channel Attack database (HQ-WMCA) database extends the previous Wide Multi-Channel Attack database(WMCA), with more channels including color, depth, thermal, infrared (spectra), and short-wave infrared (spectra), and also a wide variety of attacks.
Deepfake videos, where a person's face is automatically swapped with a face of someone else, are becoming easier to generate with more realistic results. In response to the threat such manipulations can pose to our trust in video evidence, several large datasets of deepfake videos and many methods to detect them were proposed recently. However, it...
Face recognition has evolved as a widely used biometric modality. However, its vulnerability against presentation attacks poses a significant security threat. Though presentation attack detection (PAD) methods try to address this issue, they often fail in generalizing to unseen attacks. In this work, we propose a new framework for PAD using a one-c...
This paper addresses the problem of face presentation attack detection using different image modalities. In particular, the usage of short wave infrared (SWIR) imaging is considered. Face presentation attack detection is performed using recent models based on Convolutional Neural Networks using only carefully selected SWIR image differences as inpu...
Face recognition has evolved as a widely used biometric modality. However, its vulnerability against presentation attacks poses a significant security threat. Though presentation attack detection (PAD) methods try to address this issue, they often fail in generalizing to unseen attacks. In this work, we propose a new framework for PAD using a one-c...
This paper addresses the problem of face presentation attack detection using different image modalities. In particular, the usage of short wave infrared (SWIR) imaging is considered. Face presentation attack detection is performed using recent models based on Convolutional Neural Networks using only carefully selected SWIR image differences as inpu...
In a typical face recognition pipeline, the task of the face detector is to localize the face region. However, the face detector localizes regions that look like a face, irrespective of the liveliness of the face, which makes the entire system susceptible to presentation attacks. In this work, we try to reformulate the task of the face detector to...
Due to its convenience, biometric authentication, especial face authentication, has become increasingly mainstream and thus is now a prime target for attackers. Presentation attacks and face morphing are typical types of attack. Previous research has shown that finger-vein- and fingerprint-based authentication methods are susceptible to wolf attack...
In this work, we present a general framework for building a biometrics system capable of capturing multispectral data from a series of sensors synchronized with active illumination sources. The framework unifies the system design for different biometric modalities and its realization on face, finger and iris data is described in detail. To the best...
Biometric-based verification is widely employed on the smartphones for various applications, including financial transactions. In this work, we present a new multimodal biometric dataset (face, voice, and periocular) acquired using a smartphone. The new dataset is comprised of 150 subjects that are captured in six different sessions reflecting real...
This paper describes the speaker diarization systems developed for the Second DIHARD Speech Diarization Challenge (DIHARD II) by the Speed team. Besides describing the system, which considerably outperformed the challenge baselines, we also focus on the lessons learned from numerous approaches that we tried for single and multi-channel systems. We...
Makeup is a simple and easy instrument that can alter the appearance of a person’s face, and hence, create a presentation attack on face recognition (FR) systems. These attacks, especially the ones mimicking ageing, are difficult to detect due to their close resemblance with genuine (non-makeup) appearances. Makeups can also degrade the performance...
It is increasingly easy to automatically swap faces in images and video or morph two faces into one using generative adversarial networks (GANs). The high quality of the resulted deep-morph raises the question of how vulnerable the current face recognition systems are to such fake images and videos. It also calls for automated ways to detect these...
Face recognition is a mainstream biometric authentication method. However, vulnerability to presentation attacks (a.k.a spoofing) limits its usability in unsupervised applications. Even though there are many methods available for tackling presentation attacks (PA), most of them fail to detect sophisticated attacks such as silicone masks. As the qua...
This work focuses on detecting presentation attacks (PA) mounted using custom silicone masks. Face recognition (FR) systems have been shown to be highly vulnerable to PAs based on such masks bhattacharjee:2018, raghavendra:2019. Here we explore the use of multispectral data (color imagery, near infrared (NIR) imagery and thermal imagery) for face p...
This contribution presents a new database to address current challenges in face recognition. It contains face video sequences of 75 individuals acquired either through a laptop webcam or when mimicking the front-facing camera of a smartphone. Sequences have been acquired with a device allowing to record visual, near-infrared and depth data at the s...
Face recognition has evolved as a prominent biometric authentication modality. However, vulnerability to presentation attacks curtails its reliable deployment. Automatic detection of presentation attacks is essential for secure use of face recognition technology in unattended scenarios. In this work, we introduce a Convolutional Neural Network (CNN...
While the performance of face recognition systems has improved significantly in the last decade, they are proved to be highly vulnerable to presentation attacks (spoofing). Most of the research in the field of face presentation attack detection (PAD), was focused on boosting the performance of the systems within a single database. Face PAD datasets...
Face recognition has evolved as a prominent biometric authentication modality. However, vulnerability to presentation attacks curtails its reliable deployment. Automatic detection of presentation attacks is essential for secure use of face recognition technology in unattended scenarios. In this work, we introduce a Convolutional Neural Network (CNN...
While the performance of face recognition systems has improved significantly in the last decade, they are proved to be highly vulnerable to presentation attacks (spoofing). Most of the research in the field of face presentation attack detection (PAD), was focused on boosting the performance of the systems within a single database. Face PAD datasets...
Face recognition is a mainstream biometric authentication method. However, vulnerability to presentation attacks (a.k.a spoofing) limits its usability in unsupervised applications. Even though there are many methods available for tackling presentation attacks (PA), most of them fail to detect sophisticated attacks such as silicone masks. As the qua...
Trust in eAssessment is an important factor for improving the quality of online-education. A comprehensive model for trust based authentication for eAssessment is being developed and tested within the score of the EU H2020 project TeSLA. The use of biometric verification technologies to authenticate the identity and authorship claims of individual...
The vulnerability of face recognition systems towards evolving presentation attacks has drawn significant interest in the last decade. In this paper, we present an empirical study on both vulnerability analysis and presentation attack detection for commercial face recognition systems (FRS) using custom 3D silicone face masks corresponding to real s...
The domain of presentation attacks (PAs), including vulnerability studies and detection (PAD), remains very much unexplored by available scientific literature in biometric vein recognition. Contrary to other modalities that use visual spectral sensors for capturing biometric samples, vein biometrics is typically implemented with near-infrared imagi...
Despite an increasing interest in speaker recognition technologies, a significant obstacle still hinders their wide deployment—their high vulnerability to spoofing or presentation attacks. These attacks can be easy to perform. For instance, if an attacker has access to a speech sample from a target user, he/she can replay it using a loudspeaker or...
The undeniable convenience of face recognition (FR) based biometrics has made it an attractive tool for access control in various application areas, from airports to remote banking. Widespread adoption of face biometrics, however, depends on the perception of robustness of such systems. One particular vulnerability of FR systems comes from presenta...
Presentation attack detection (PAD, also known as anti-spoofing) systems, regardless of the technique, biometric mode or degree of independence of external equipment, are most commonly treated as binary classification systems. The two classes that they differentiate are bona-fide and presentation attack samples. From this perspective, their evaluat...
It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help develop...
Trust in eAssessment is an important factor for improving the quality of online-education. A comprehensive model for trust based authentication for eAssessment is being developed and tested within the scope of the EU H2020 project TeSLA. The use of biometric verification technologies to authenticate the identity and authorship claims of individual...
The task of Heterogeneous Face Recognition consists in matching face images that are sensed in different domains, such as sketches to photographs (visual spectra images), thermal images to photographs or near-infrared images to photographs. In this work we suggest that high level features of Deep Convolutional Neural Networks trained on visual spec...
We investigate the vulnerability of convolutional neural
network (CNN) based face-recognition (FR) systems to presentation attacks (PA) performed using custom-made silicone masks. Previous works have studied the vulnerability of CNN-FR systems to 2D PAs such as print-attacks, or digital-video replay attacks, and to rigid 3D masks. This is the first...
This paper introduces a new task termed low-latency speaker spotting (LLSS). Related to security and intelligence applications , the task involves the detection, as soon as possible, of known speakers within multi-speaker audio streams. The paper describes differences to the established fields of speaker diariza-tion and automatic speaker verificat...
Most of the research on vein biometrics addresses the problems of either palm or finger vein recognition with a considerably smaller emphasis on wrist vein modality. This paper paves the way to a better understanding of capabilities and challenges in the field of wrist vein verification. This is achieved by introducing and discussing a fully automa...
While face recognition systems got a significant boost in terms of recognition performance in recent years, they are known to be vulnerable to presentation attacks. Up to date, most of the research in the field of face anti-spoofing or presentation attack detection was considered as a two-class classification task: features of bona-fide samples ver...
Recent years have shown an increase in both the accuracy of biometric systems and their practical use. The application of biometrics is becoming widespread with fingerprint sensors in smartphones, automatic face recognition in social networks and video-based applications, and speaker recognition in phone banking and other phone-based services. The...
The vulnerability of deep-learning-based face-recognition (FR) methods, to presentation attacks (PA), is studied in this study. Recently, proposed FR methods based on deep neural networks (DNN) have been shown to outperform most other methods by a significant margin. In a trustworthy face-verification system, however, maximising recognition-perform...
This work presents the 2nd Cross-Spectrum
Iris/Periocular Recognition Competition (Cross-
Eyed2017). The main goal of the competition is to
promote and evaluate advances in cross-spectrum iris and
periocular recognition. This second edition registered
an increase in the participation numbers ranging from
academia to industry: five teams submitted t...
In recent years, software-based face presentation attack detection (PAD) methods have seen a great progress. However, most existing schemes are not able to generalize well in more realistic conditions. The objective of this competition is to evaluate and compare the generalization performances of mobile face PAD techniques under some real-world var...