
Sébastien Lefèvre- PhD., Hab.
- Professor (Full) at University of Southern Brittany
Sébastien Lefèvre
- PhD., Hab.
- Professor (Full) at University of Southern Brittany
About
306
Publications
85,342
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,856
Citations
Introduction
My research interests are in image processing, computer vision, data mining and machine learning applied to Earth and environment observation.
I specifically develop novel methods and applications based on hierarchical representations as well as deep learning.
Current institution
Publications
Publications (306)
In this study, we tackle the challenge of identifying plant species from ultra high resolution (UHR) remote sensing images. Our approach involves introducing an RGB remote sensing dataset, characterized by millimeter-level spatial resolution, meticulously curated through several field expeditions across a mountainous region in France covering vario...
Regular patterns of vegetation are considered widespread landscapes, although their global extent has never been estimated. Among them, spotted landscapes are of particular interest in the context of climate change. Indeed, regularly spaced vegetation spots in semi-arid shrublands result from extreme resource depletion and prefigure catastrophic sh...
In the context of climate change, it is important to monitor the dynamics of the Earth’s surface in order to prevent extreme weather phenomena such as floods and droughts. To this end, global meteorological forecasting is constantly being improved, with a recent breakthrough in deep learning methods. In this paper, we propose to adapt a recent weat...
Change detection is an important task that rapidly identifies modified areas, particularly when multitemporal data are concerned. In landscapes with complex geometry (e.g., urban environments), vertical information is a very useful source of knowledge that highlights changes and classifies them into different categories. In this study, we focus on...
Remote sensing largely benefits from recent advances in deep learning. Beyond traditional color imagery, remote sensing data often features some extra bands (e.g. multi or hyperspectral imagery) or multiple sources, leading to the so-called multimodal scenario. While multimodal data can lead to better performances, it also requires to design specif...
This paper studies a reconstruction-based approach for weakly-supervised animal detection from aerial images in marine environments. Such an approach leverages an anomaly detection framework that computes metrics directly on the input space, enhancing interpretability and anomaly localization compared to feature embedding methods. Building upon the...
Object detection in remote sensing is a crucial computer vision task that has seen significant advancements with deep learning techniques. However, most existing works in this area focus on the use of generic object detection and do not leverage the potential of multimodal data fusion. In this paper, we present a comparison of methods for multimoda...
Choosing how to encode a real-world problem as a machine learning task is an important design decision in machine learning. The task of glacier calving front modeling has often been approached as a semantic segmentation task. Recent studies have shown that combining segmentation with edge detection can improve the accuracy of calving front detector...
In a constant evolving world, change detection is of prime importance to keep updated maps. To better sense areas with complex geometry (urban areas in particular), considering 3D data appears to be an interesting alternative to classical 2D images. In this context, 3D point clouds (PCs) obtained by LiDAR or photogrammetry are very interesting. Whi...
Change detection from traditional optical images has limited capability to model the changes in the height or shape of objects. Change detection using 3D point cloud aerial LiDAR survey data can fill this gap by providing critical depth information. While most existing machine learning based 3D point cloud change detection methods are supervised, t...
Change detection is an important task to rapidly identify modified areas, in particular when multi-temporal data are concerned. In landscapes with complex geometry such as urban environment, vertical information turn out to be a very useful knowledge not only to highlight changes but also to classify them into different categories. In this paper, w...
Choosing how to encode a real-world problem as a machine learning task is an important design decision in machine learning. The task of glacier calving front modeling has often been approached as a semantic segmentation task. Recent studies have shown that combining segmentation with edge detection can improve the accuracy of calving front detector...
Dwelling information is essential for humanitarian emergency response during or in the aftermath of disasters, especially in temporary settlement areas hosting forcibly displaced people. To map dwellings, the integration of very highresolution remotely sensed imagery in computer vision models plays a key role. However, state-of-the-art deep learnin...
The Image Analysis and Data Fusion (IADF) Technical Committee (TC) of the IEEE Geoscience and Remote Sensing Society (GRSS) has been organizing the annual Data Fusion Contest (DFC) since 2006. The contest promotes the development of methods for extracting geospatial information from large-scale, multisensor, multimodal, and multitemporal data. It a...
Bathymetry studies are important to monitor the changes occurring in coastal topographies, to update navigation charts, and to understand the dynamics of the marine environment. Satellite-derived bathymetry enables rapid mapping of large coastal areas through measurement of optical penetration of the water column. In this study, bathymetry predicti...
Vehicle detection is an important but challenging problem in Earth observation due to the intricately small sizes and varied appearances of the objects of interest. In this paper, we use these issues to our advantage by considering them results of latent image augmentation. In particular, we propose using supervised contrastive loss in combination...
Despite the popularity of deep neural networks in various domains, the extraction of digital terrain models (DTMs) from airborne laser scanning (ALS) point clouds is still challenging. This might be due to the lack of dedicated large-scale annotated dataset and the data-structure discrepancy between point clouds and DTMs. To promote data-driven DTM...
The recent developments of deep learning models that capture complex temporal patterns of crop phenology have greatly advanced crop classification from Satellite Image Time Series (SITS). However, when applied to target regions spatially different from the training region, these models perform poorly without any target labels due to the temporal sh...
Deep-learning-based image classification and object detection has been applied successfully to tree monitoring. However, studies of tree crowns and fallen trees, especially on flood inundated areas, remain largely unexplored. Detection of degraded tree trunks on natural environments such as water, mudflats, and natural vegetated areas is challengin...
Mainly depending on their lithology, coastal cliffs are prone to changes due to erosion. This erosion could increase due to climate change leading to potential threats for coastal users, assets, or infrastructure. Thus, it is important to be able to understand and characterize cliff face changes at fine scale. Usually, monitoring is conducted thank...
It is of interest to localize a ground-based LiDAR point cloud on remote sensing imagery. In this work, we tackle a subtask of this problem, i.e. to map a digital elevation model (DEM) rasterized from aerial LiDAR point cloud on the aerial imagery. We proposed a contrastive learning-based method that trains on DEM and high-resolution optical imager...
It is of interest to localize a ground-based LiDAR point cloud on remote sensing imagery. In this work, we tackle a subtask of this problem, i.e. to map a digital elevation model (DEM) rasterized from aerial LiDAR point cloud on the aerial imagery. We proposed a contrastive learning-based method that trains on DEM and high-resolution optical imager...
Deep-learning-based image classification and object detection has been applied successfully to tree monitoring. However, studies of tree crowns and fallen trees, especially on flood inundated areas, remain largely unexplored. Detection of degraded tree trunks on natural environments such as water, mudflats, and natural vegetated areas is challengin...
Deep-learning-based image classification and object detection has been applied successfully to tree monitoring. However, studies of tree crowns and fallen trees, especially on flood inundated areas, remain largely unexplored. Detection of degraded tree trunks on natural environments such as water, mudflats, and natural vegetated areas is challengin...
Deep-learning-based image classification and object detection has been applied successfully to tree monitoring. However, studies of tree crowns and fallen trees, especially on flood inundated areas, remain largely unexplored. Detection of degraded tree trunks on natural environments such as water, mudflats, and natural vegetated areas is challengin...
Data availability plays a central role in any machine learning setup, especially since the rise of deep learning. Although input data are often available in abundance, reference data used to train and evaluate corresponding approaches are usually scarce due to the high cost of obtaining them. Although this is not limited to remote sensing, it is of...
Human activities in the sea, such as intensive fishing and exploitation of offshore wind farms, may impact negatively on the marine mega fauna. As an attempt to control such impacts, surveying, and tracking of marine animals are often performed on the sites where those activities take place. Nowadays, thank to high resolution cameras and to the dev...
In this article, we develop a novel feature extraction method that combines two well-established mathematical morphology concepts: watersheds and morphological attribute profiles (APs). In order to extract spatial-spectral features from remote sensing data, APs were originally defined as sequences of filtering operators on inclusion trees, i.e., th...
Few-shot learning (FSL) aims at making predictions based on a limited number of labeled samples. It is a hot topic in many fields such as natural language processing, computer vision and more recently, remote sensing. In this work, we focus on few-shot remote sensing scene classification which aims to recognize unseen scene categories at training s...
Despite the popularity of deep neural networks in various domains, the extraction of digital terrain models (DTMs) from airborne laser scanning (ALS) point clouds is still challenging. This might be due to the lack of the dedicated large-scale annotated dataset and the data-structure discrepancy between point clouds and DTMs. To promote data-driven...
Deep learning, together with the availability of large amounts of data, have transformed the way we process Earth observation tasks, like land cover mapping or image registration. Yet, today new models are needed to push further the revolution and enable new possibilities. This work focuses on a recent framework for generative modeling and explore...
The recent developments of deep learning models that capture the complex temporal patterns of crop phenology have greatly advanced crop classification of Satellite Image Time Series (SITS). However, when applied to target regions spatially different from the training region, these models perform poorly without any target labels due to the temporal...
Representing an image through a tree structure as provided with a morphological hierarchy enables efficient image analysis and processing methods operating directly on the tree structure. Max-tree and min-tree can be built with efficient algorithms but they only focus on brighter and darker components of the image respectively. Conversely, the Tree...
In recent years, numerous deep learning techniques have been proposed to tackle the semantic segmentation of aerial and satellite images, increase trust in the leaderboards of main scientific contests and represent the current state-of-the-art. Nevertheless, despite their promising results, these state-of-the-art techniques are still unable to prov...
Morphological attribute profiles (APs) are among the most prominent methods for spatial-spectral pixel analysis of remote sensing images. Since their introduction a decade ago to tackle land cover classification, many studies have been contributed to the state of the art, focusing not only on their application to a wider range of tasks but also on...
In the context of rapid urbanization, monitoring the evolution of cities is crucial. To do so, 3D change detection and characterization is of capital importance since, unlike 2D images, 3D data contain vertical information of utmost importance to monitoring city evolution (that occurs along both horizontal and vertical axes). Urban 3D change detect...
As the majority of the earth population is living in urban environments, cities are continuously evolving and efficient monitoring tools are needed to retrieve and classify their evolution. In this context, analysing changes between two dates is a crucial point. In urban environments, most changes occur along the vertical axis (with new constructio...
Automated mapping of heterogeneous riparian landscape is of high interest to assess our planet. Still, it remains a challenging task due to the occurrence of flooded vegetation. While both optical and radar images can be exploited, the latter has the advantage of being independent acquisition conditions. However, and despite their popularity, the t...
We combine two well-established mathematical morphology notions: watershed segmentation and morphological attribute profile (AP), a multilevel feature extraction method commonly applied to the analysis of remote sensing images. To convey spatial-spectral features of remote sensing images, APs were initially defined as sequences of filtering operato...
We extend the notion of content based image retrieval to patch retrieval where the goal is to find the similar patches to a query patch in a large image. Naive searching for similar patches by sequentially computing and comparing descriptors of sliding windows takes a lot of time in a large image. We propose a novel method to compute descriptors fo...
The development of semi-supervised learning techniques is essential to enhance the generalization capacities of machine learning algorithms. Indeed, raw image data are abundant while labels are scarce, therefore it is crucial to leverage unlabeled inputs to build better models. The availability of large databases have been key for the development o...
Le littoral et la mer sont des ressources naturelles environnementales. C’est-à-dire des ressources qui, sans être un produit de l’activité humaine, influent ou pourraient influer sur
l’économie des pays ou le bien-être de leurs habitants. Partout dans le monde, ces zones concentrent des populations croissantes et des activités multiples. Les impac...
Multispectral image pairs can provide complementary visual information, making pedestrian detection systems more robust and reliable. To benefit from both RGB and thermal IR modalities, we introduce a novel attentive multispectral feature fusion approach. Under the guidance of the inter- and intra-modality attention modules, our deep learning archi...
Most deep learning object detectors are based on the anchor mechanism and resort to the Intersection over Union (IoU) between predefined anchor boxes and ground truth boxes to evaluate the matching quality between anchors and objects. In this paper, we question this use of IoU and propose a new anchor matching criterion guided, during the training...
We present a new approach for matching urban object instances across multiple ground-level images for the ultimate goal of city-scale mapping of objects with high positioning accuracy. What makes this task challenging is the strong change in view-point, different lighting conditions, high similarity of neighboring objects, and variability in scale....
In this paper we propose an end-to-end learnable approach that detects static urban objects from multiple views, re-identifies instances, and finally assigns a geographic position per object. Our method relies on a Graph Neural Network (GNN) to, detect all objects and output their geographic positions given images and approximate camera poses as in...
Multispectral images (e.g. visible and infrared) may be particularly useful when detecting objects with the same model in different environments (e.g. day/night outdoor scenes). To effectively use the different spectra, the main technical problem resides in the information fusion process. In this paper, we propose a new halfway feature fusion metho...
The development of semi-supervised learning techniques is essential to enhance the generalization capacities of machine learning algorithms. Indeed, raw image data are abundant while labels are scarce, therefore it is crucial to leverage unlabeled inputs to build better models. The availability of large databases have been key for the development o...
Most deep learning object detectors are based on the anchor mechanism and resort to the Intersection over Union (IoU) between predefined anchor boxes and ground truth boxes to evaluate the matching quality between anchors and objects. In this paper, we question this use of IoU and propose a new anchor matching criterion guided, during the training...
Multispectral images (e.g. visible and infrared) may be particularly useful when detecting objects with the same model in different environments (e.g. day/night outdoor scenes). To effectively use the different spectra, the main technical problem resides in the information fusion process. In this paper, we propose a new halfway feature fusion metho...
This article tackles the problem of detecting small objects in satellite or aerial remote sensing images by relying on super-resolution to increase image spatial resolution, thus the size and details of objects to be detected. We show how to improve the super-resolution framework starting from the learning of a generative adversarial network (GAN)...
LiDAR data are widely used in various domains related to geosciences (flow, erosion, rock deformations, etc.), computer graphics (3D reconstruction) or earth observation (detection of trees, roads, buildings, etc.). Because of the unstructured nature of remaining 3D points and because of the cost of acquisition, the LiDAR data processing is still c...
The use of high-resolution digital terrain model derived from airborne LiDAR system becomes more and more prevalent. Effective multi-scale structure characterization is of crucial importance for various domains such as geosciences, archaeology and Earth observation. This paper deals with structure detection in large datasets with little or no prior...
We present BreizhCrops, a novel benchmark dataset for the supervised classification of field crops from satellite time series. We aggregated label data and Sentinel-2 top-of-atmosphere as well as bottom-of-atmosphere time series in the region of Brittany (Breizh in local language), north-east France. We compare seven recently proposed deep neural n...
Monitoring observable processes in Satellite Image Time Series (SITS) is one of the crucial way to understand dynamics of our planet that is facing unexpected behaviors due to climate change. In this paper, we propose a novel method to assess the evolution of objects (and especially their surface) through time. To do so, we first build a space-time...
Object detection from aerial and satellite remote sensing images has been an active research topic over the past decade. Thanks to the increase in computational resources and data availability, deep learning-based object detection methods have achieved numerous successes in computer vision, and more recently in remote sensing. However, the ability...
Tree degradation in National Parks poses a serious risk to the birds and animals and to a larger extent the general ecosystem. The essence of Forest degradation mapping is to detect the extent of damage on the trees over time, hence providing stakeholders with a basis for forest rehabilitation and intervention. The study proposes a workflow for det...
In this paper we propose an end-to-end learnable approach that detects static urban objects from multiple views, re-identifies instances, and finally assigns a geographic position per object. Our method relies on a Graph Neural Network (GNN) to, detect all objects and output their geographic positions given images and approximate camera poses as in...
LiDAR point clouds are receiving a growing interest in remote sensing as they provide rich information to be used independently or together with optical data sources, such as aerial imagery. However, their nonstructured and sparse nature make them difficult to handle, conversely to raw imagery for which many efficient tools are available. To overco...
The papers in this special section focus on the technology of urban remote sending. The rapid growth and the multiple changes of the urban environments pose unique challenges to cities across the globe. Due to the high rates of urbanization on our planet, it is often argued that the future of humanity will be decided in cities. This means that inno...
The monitoring and surveillance of maritime activities are critical issues in both military and civilian fields, including among others fisheries’ monitoring, maritime traffic surveillance, coastal and at-sea safety operations, and tactical situations. In operational contexts, ship detection and identification is traditionally performed by a human...
Morphological hierarchies now form a well-established framework for (still) image modeling and processing. However, their extension to time-related data remains largely unexplored. In this paper, we address such a topic and show how to analyze image sequences with tree-based representations. To do so, we distinguish between three kinds of models, n...
In this work, we exploit convolutional neural networks (CNNs) for the classification of very high resolution (VHR) polarimetric SAR (PolSAR) data. Due to the significant appearance of heterogeneous textures within these data, not only polarimetric features but also structural tensors are exploited to feed CNN models. For deep networks, we use the S...
Detection of new infrastructures (commercial, logistics, industrial or residential) from satellite images constitutes a proven method to investigate and follow economic and urban growth. The level of activities or exploitation of these sites may be hardly determined by building inspection, but could be inferred from vehicle presence from nearby str...
Understanding visual scenes relies more and more on dense pixel-wise classification obtained via deep fully convolutional neural networks. However, due to the nature of the networks, predictions often suffer from blurry boundaries and ill-segmented shapes, fueling the need for post-processing. This work introduces a new semantic segmentation regula...
Understanding visual scenes relies more and more on dense pixel-wise classification obtained via deep fully convolutional neural networks. However, due to the nature of the networks, predictions often suffer from blurry boundaries and ill-segmented shapes, fueling the need for post-processing. This work introduces a new semantic segmentation regula...
In this work, we introduce a recently developed early classification mechanism to satellite-based agricultural monitoring. It augments existing classification models by an additional stopping probability based on the previously seen information. This mechanism is end-to-end trainable and derives its stopping decision solely from the observed satell...