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Abstract

Recent methods for generating novel molecules use graph representations of
molecules and employ various forms of graph convolutional neural networks
for inference. However, training requires solving an expensive graph isomorphism
problem, which previous approaches do not address or solve only approximately.
In this work, we propose LF-MolGAN, a likelihood-free approach for de novo
molecule generation that avoids explicitly computing a reconstruction loss. Our
approach extends generative adversarial networks by including an adversarial
cycle-consistency loss to implicitly enforce the reconstruction property. To capture
properties unique to molecules, such as valence, we extend Graph Isomorphism
Network to multi-graphs. To quantify the performance of models, we propose to
compute the distance between distributions of physicochemical properties with the
1-Wasserstein distance. We demonstrate that LF-MolGAN more accurately learns
the distribution over the space of molecules than all baselines. Moreover, it can be
utilized for drug discovery by efficiently searching the space of molecules using
molecules’ continuous latent representation.

1 Introduction

Deep generative models have been proven successful in generating high-quality samples in the
domain of images, audio, and text, but it was only recently when models have been developed for de
novo chemical design [1, 2]. The goal of de novo chemical design is to map desirable properties of
molecules, such as a drug being active against a certain biological target, to the space of molecules.
This process – called inverse Quantitative Structure-Activity Relationship (QSAR) – is extremely
challenging due to the vast size of the chemical space. Polishchuk et al. [3] estimated the number
of realistic drug-like molecules to be in the order of 1033. Searching this space efficiently is often
hindered by the discrete nature of molecules, which prevents the use of gradient-based optimization.
Thus, obtaining a continuous and differentiable representation of molecules is a desirable goal that
could ease drug discovery. For de novo generation of molecules, it is important to produce chemically
valid molecules that comply with the valence of atoms, i.e., how many electron pairs an atom of a
particular type can share. For instance, carbon has a valence of four and can form at most four single
bonds. Therefore, any mapping from the continuous latent space of a model to the space of molecules
should result in a chemically valid molecule.

The current state of the art deep learning models are adversarial or variational autoencoders (AAE,
VAE) that represent molecules as graphs and rely on graph convolutional neural networks (GCNs)
[4–12]. The main obstacle is in defining a suitable reconstruction loss, which is challenging when
inputs and outputs are graphs. Because there is no canonical form of a graph’s adjacency matrix,
two graphs can be identical despite having different adjacency matrices. Before the reconstruction
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loss can be computed, correspondences between nodes of the target and reconstructed graph need
to be established, which requires solving a computationally expensive graph isomorphism problem.
Existing graph-based VAEs have addressed this problem by either traversing nodes in a fixed order
[5, 8, 10] or employing graph matching algorithms [11] to approximate the reconstruction loss.

We propose LF-MolGAN, a likelihood-free Generative Adversarial Network for inference and
generation of molecular graphs (see fig. 1). This is the first time that an inference and generative
model of molecular graphs can be trained without computing a reconstruction loss. Our model
consists of an encoder (inference model) and a decoder (generator) that are trained by implicitly
imposing the reconstructing property via cycle-consistency, thus, avoiding the need to solve a
computationally prohibitive graph isomorphism problem. To learn from graph-structered data, we
base our encoder on the recently proposed Graph Isomorphism Network [13], which we extend to
multi-graphs, and employ the Gumbel-softmax trick [14, 15] to generate discrete molecular graphs.
Finally, we explicitly incorporate domain knowledge such that generated graphs represent valid
chemical structures. We will show that this enables us to perform efficient nearest neighbor search in
the space of molecules.

In addition,we performed an extensive suite of benchmarks to accurately determine the strengths and
weaknesses of models. We argue that summary statistics such as the percentage of valid, unique, and
novel molecules used in previous studies, are poor proxies to determine whether models are generating
chemically meaningful molecules. In our experiments, we instead compare the distributions of 10
chemical properties and demonstrate that our proposed method is able to more accurately learn a
distribution over the space of molecules than previous approaches.

2 Related Work

Graphs, where nodes represent atoms, and edges chemical bonds, are a natural representation of
molecules, which has been explored in [4–12]. Most methods rely on graph convolutional neural
networks (GCNs) for inference, which can efficiently learn from the non-Euclidean structure of graphs
[4, 7, 8, 10–12]. Molecular graphs can be generated sequentially, adding single atoms and bonds
using an RNN-based architecture [5–8, 10, 12], or in a single step [4, 9, 11]. Sequential generation
has the advantage that partially generated graphs can be checked, e.g., for valence violations [8, 10].
Molecules can also be represented as strings using SMILES encoding, for which previous work relied
on recurrent neural networks for inference and generation [1, 2, 16–23]. However, producing valid
SMILES strings is challenging, because models need to learn the underlying grammar of SMILES.
Therefore, a considerable portion of generated SMILES tend to be invalid (15-80%) [16, 18, 19, 22,
23] – unless constraints are built into the model [2, 7, 17, 21]. The biggest downside of the SMILES
representation is that it does not capture molecular similarity: substituting a single character can
alter the underlying molecule structure significantly or invalidate it. Therefore, partially generated
SMILES strings cannot be validated and transitions in the latent space of such models may lead to
abrupt changes in molecule structure [5].

With respect to the generative model, most previous work use either VAEs or adversarial learning.
VAEs and AAEs take a molecule representation as input and project it via an inference model
(encoder) to a latent space, which is subsequently transformed by a decoder to produce a molecule
representation [1, 2, 5, 8, 10, 11, 16, 17, 19, 24]. New molecules can be generated by drawing points
from a simple prior distribution over the latent space (usually Gaussian) and feeding it to the decoder.
AAEs [16, 24] perform variational inference by adversarial learning, using a discriminator as in
GANs, which allows using a more complex prior distribution over the latent space. Both VAEs and
AAEs are trained to minimize a reconstruction loss, which is expensive to compute. Standard GANs
for molecule generation lack an encoder and a reconstruction loss, and are trained via a two-player
game between a generator and discriminator [4, 18, 22]. The generator transforms a simple input
distribution into a distribution in the space of molecules, such that the discriminator is unable to
distinguish between real molecules in the training data and generated molecules. Due the lack of an
inference model, such models cannot be used for efficient neighborhood search in the latent space.
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Figure 1: Overview of the proposed model. Boxes with identical background color represent neural
networks that share their weights. The joint discriminator plays a similar role as the discriminator
in standard GANs. The cycle discriminator enforces the reconstruction property without explicitly
computing a reconstruction loss. Molecules can be generated by transforming a sample from a simple
prior distribution (blue path), or by embedding a real molecule into the latent space and reconstructing
its latent representation (red path).

3 Methods

We are seeking a generative model that learns a distribution in the space of molecules that enables
us to generate novel molecules and to efficiently search the neighborhood of existing molecules.
Here, we represent molecules as graphs. Our model, LF-MolGAN, has a GCN-based encoder
that projects a graph into the latent space and a decoder that outputs a one-hot representation of
atoms and an adjacency matrix defining atomic bonds. Hence, graph generation is performed in a
single step, which allows considering global properties of a molecule. An undirected multi-graph
G = (V,R, E) is defined by its vertices V = {v1, . . . , vn}, relation types R = {r1, . . . , rm}, and
typed edges (relations) E = {(vi, rk, vj) | vi, vj ∈ V, rk ∈ R}. Here, we only allow vertices to
be connected by at most one type of edge. We represent a multi-graph G by its adjacency tensor
A ∈ {0, 1}n×n×m, where Aijk is one if (vi, rk, vj) ∈ E and zero otherwise, and the node feature
matrix X = (xv1 , . . . ,xvn)

> ∈ Rn×d, where d is the number of features describing each node. Here,
vertices are atoms,R is the set of bonds considered (single, double, triple), and node feature vectors
xvi are one-hot encoded atom types (carbon, oxygen, . . . ), with d representing the total number of
atom types. We do not consider hydrogen atoms explicitly, but implicitly add hydrogens to match an
atom’s valence.

3.1 Adversarially Learned Inference

We first describe Adversarially Learned Inference with Conditional Entropy (ALICE) [25], which
is at the core of LF-MolGAN. It allows training our encoder-decoder model fully adversarially and
implicitly enforces the reconstruction property without the need to compute a reconstruction loss
(see fig. 1 for an overview). Training is performed by matching joint distributions over graphs
G ∈ G and latent variables z ∈ Z . We denote by q(G) the marginal data distribution, from which
we have samples, by z̃ a latent representation produced by the encoder, and by G̃ a generated graph.
The encoder generative model over the latent variables is qφ(z |G) with parameters φ, and the
decoder generative model over graphs is qθ(G | z), parametrized by θ. Putting everything together,
we obtain the encoder joint distribution qφ(G, z) = q(G)qφ(z |G), and the decoder joint distribution
pθ(G, z) = pz(z)qθ(G | z). The objective of Adversarially Learned Inference (ALI) [26] is to
match the two joint distributions by playing an adversarial game. A discriminator network Dψ with
parameters ψ is trained to distinguish samples (G, z̃) ∼ qφ(G, z) from (G̃, z) ∼ pθ(G, z):

min
θ,φ

max
ψ

EG∼q(G), z̃∼qφ(z |G)[log σ(Dψ(G, z̃))]

+ EG̃∼qθ(G | z), z∼p(z)[log(1− σ(Dψ(G̃, z)))].
(1)

where σ(·) denotes the sigmoid function. Drawing samples z̃ and G̃ is made possible by specifying the
encoder qφ and decoder qθ as neural networks using the change of variable technique: z̃ = gφ(G, ε),
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G̃ = gθ(z, ε), where ε is some random source of noise. This allows gradients to propagate from the
discriminator to the encoder and decoder.

ALICE [25] extends this idea by including a cycle-consistency constraint via an additional adversarial
loss. This encourages encoder and decoder networks to mimic the reconstruction property without
explicitly computing a reconstruction loss. Therefore, we do not need to solve a computationally
demanding graph isomorphism problem. To this end, a second discriminator network with parameters
η is trained to distinguish a real graph G from its reconstructed graph G̃′:

min
θ,φ

max
η

EG∼q(G)[log σ(Dη(G,G))]

+ EG̃′∼qθ(G | z̃), z̃∼qφ(z |G)[log(1− σ(Dη(G, G̃′)))].
(2)

3.2 Generator

The generator network gθ(z, ε) takes a point z from latent space, and outputs a discrete-valued
and symmetric graph adjacency tensor A and a discrete-valued node feature matrix X. We use an
MLP architecture as in [4], consisting of three hidden layers with 128, 256, 512 units and tanh
activation, respectively. We extend A and X to explicitly model the absence of edges and nodes
by introducing a separate ghost-edge type and ghost-node type. This will enable us to encourage
the generator to produce chemically valid molecular graphs as described below. Thus, we define
Ã ∈ {0, 1}n×n×(m+1) and X̃ ∈ {0, 1}n×(d+1). Each vector Ãij•, representing generated edges
between nodes i and j, needs to be a member of the simplex ∆m = {(y0, y1, . . . , ym) | yk ∈
{0, 1},

∑m
k=0 yk = 1}, because only none or a single edge between i and j is allowed. Here, we use

the zero element to represent the absence of an edge. Similarly, each generated node feature vector
x̃vi needs to be a member of the simplex ∆d, where the zero element represents ghost nodes.

Gumbel-softmax Trick. The generator is a neural network with two outputs, MLPA(z) ∈
Rn×n×(m+1) and MLPX(z) ∈ Rn×(d+1), which are created by linearly projecting hidden units into
a n2(m + 1) and n(d + 1) dimensional space, respectively. Next, continuous outputs need to be
transformed into discrete values according to the rules above to obtain tensors Ã and X̃ representing
a generated graph. Since a simple argmax operation is non-differentiable, we employ the Gumbel-
softmax trick [14, 15], which uses reparameterization to obtain a continuous relaxation of discrete
states. Thus, we obtain an approximately discrete adjacency tensor Ã from MLPA(z), and feature
matrix X̃ from MLPX(z).

Node Connectivity and Valence Constraints. While this allows us to generate graphs with varying
number of nodes, the generator could in principle generate graphs consisting of two or more separate
connected components. In addition, generating molecules where atoms have the correct number
of shared electron pairs (valence) is an important aspect the generator needs to consider, otherwise
generated graphs would represent invalid molecules. Finally, we want to prohibit edges between
any pair of ghost nodes. All of these issues can be addressed by incorporating regularization terms
proposed in [9]. Multiple connected components can be avoided by generating graphs that have a
path between every pair of non-ghost nodes. Using the generated tensor Ã, which explicitly accounts
for ghost edges, the number of paths between nodes i and j is given by

B̃ij = I(i = j) +

m∑
k=1

n−1∑
p=1

(
Ãp
)
ijk

. (3)

The regularizer comprises two terms, the first term encourages non-ghost nodes i and j to be connected
by a path, and the second term that a ghost node and non-ghost node remain disconnected:

µ

n2

∑
i,j

[1− (x̃vi)0]
[
1−

(
x̃vj
)
0

] [
1− B̃ij

]
+

µ

n2
(x̃vi)0

(
x̃vj
)
0
B̃ij , (4)

where µ > 0 is a hyper-parameter, and (x̃vi)0 > 0 indicates that the i-th node is a ghost node.

To ensure atoms have valid valence, we enforce an upper bound – hydrogen atoms are modeled
implicitly – on the number of edges of a node, depending on its type (e.g. four for carbon). Let
u = (u0, u1, . . . , ud)

> be a vector indicating the maximum capacity (number of bonding electron
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pairs) a node of a given type can have, where u0 = 0 denotes the capacity of ghost nodes. The vector
b = (b0, br1 , . . . , brm) denotes the capacity for each edge type with b0 = 0 representing ghost edges.
The actual capacity of a node vi can be computed by cvi =

∑
j 6=i b

>Ãij•. If cvi exceeds the value
in u corresponding to the node type of vi, the generator incurs a penalty. The valence penalty with
hyper-parameter ν > 0 is defined as

ν

n

n∑
i=1

max(0, cvi − u>x̃vi). (5)

3.3 Encoder and Discriminator

The encoder network gφ(G, ε), and the two discriminator networks Dψ(G, z) and Dη(G1, G2) are
closely related, because they all take graphs as input. First, we extract node-level descriptors by
stacking several GCN layers. Next, node descriptors are aggregated to obtain a graph-level descriptor,
which forms the input to a series of fully-connected layers. Here, inputs are multi-graphs with m
edge types, which we model by extending the Graph Isomorphism Network (GIN) architecture [13]
to multi-graphs. Let h(l+1)

vi denote the descriptor of node vi after the l-th GIN layer, with h
(0)
vi = xvi ,

then node descriptors get updated as follows:

h(l+1)
vi = tanh

 m∑
k=1

MLP(l)
rk

(1 + ε(l))h(l)
vi +

∑
u∈Nrk (vi)

h(l)
u

 , (6)

where ε(l) ∈ R is a learnable weight, and Nrk(vi) = {u | (u, rk, vi) ∈ E}. Next, graph-level node
aggregation is performed. We use skip connections [27] to aggregate node-level descriptors from all
L GIN layers and soft attention [28] to allow the network to learn which node descriptors to use. The
graph-level descriptor hG is defined as

hcvi = CONCAT(xvi ,h
(1)
vi . . . ,h

(L)
vi ), (7)

hc
′

vi = tanh(W1h
c
vi + b1), hG =

∑
v∈V σ(W2h

c′

v + b2)� hc
′

v , (8)

where W and b are parameters to be learned. Graph-level descriptors can be abstracted further by
adding an additional MLP on top, yielding h′G. The discriminator network Dη(G1, G2) contains two
GIN-based towers to extract graph-level descriptors h′G1

and h′G2
, which are combined by component-

wise multiplication and fed to a 2-layer MLP. Network Dψ(G, z) has a noise vector as second input,
which is the input to an MLP whose output is concatenated with h′G from above and linearly projected
to form log[σ(Dψ(G, z))]. The encoder network gφ(G, ε) has the same architecture as Dψ(G, z),
except that its output matches the dimensionality of z. Finally, we employ the 1-Lipschitz constraint
in [29] to constrain discriminators Dψ and Dη to be approximately 1-Lipschtiz continuous.

4 Experiments

In our experiments, we use molecules from the QM9 dataset [30] with at most 9 heavy atoms. We
consider d = 4 node types (atoms C, N, O, F), and m = 3 edge types (single, double, and triple
bonds). After removal of molecules with non-zero formal charge, we retained 131 941 molecules,
which we split into 80% for training, 10% for validation, and 10% for testing.

We extensively compare LF-MolGAN against three state-of-the-art VAEs: NeVAE [10] and CGVAE
[8] are graph-based VAEs with validity constraints, while GrammarVAE [2] uses the SMILES
representation. We also compare against MolGAN [4], which is a Wasserstein GAN without
inference network, reconstruction loss, node connectivity, or valence constraints. Finally, we include
a random graph generation model, which only enforces valence constraints during generation, similar
to CGVAE and NeVAE, but selects node types (X) and edges (A) randomly. Note that generated
graphs can have multiple connected components if valence constraints cannot be satisfied otherwise;
we consider these to be invalid. For NeVAE, we used our own implementation, for the remaining
methods, we used the author’s publicly available code to train and evaluate on the same set of
molecules as our proposed approach. Implementation details are described in the supplement.
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4.1 Latent Space

In the first experiment, we investigated properties of the encoder and the associated latent space. We
projected molecules of the test set into the latent space, and performed a k nearest neighbor search to
find the closest latent representation of a molecule in the training set in terms of cosine distance. We
compared this against the nearest neighbors by Tanimoto similarity of ECFP4 fingerprints [31]. We
found that the two approaches lead to quite different sets of nearest neighbors, as depicted in fig. 2.
Nearest neighbors based on molecules’ latent representation usually differ by small substructures. For
instance, the query and fifth nearest neighbor in the first row of fig. 2 differ by the location of the side
chain, whereas the ring structure is shared. On the other hand, the topology of nearest neighbors by
Tanimoto similarity (second row) differs considerably from the query. Moreover, all but one nearest
neighbor contain nitrogen atoms, which are absent from the query. In the second example (last two
rows), the nearest neighbors in latent space are all linear structures with triple bonds that differ in
the number and location of functional groups, whereas all nearest neighbors by Tanimoto similarity
contain ring structures and only one contains a triple bond. Additional experiments with respect to
interpolation in the latent space can be found in the supplement.

4.2 Molecule Generation

Next, we evaluated the quality of generated molecules. We generated molecules from N = 10 000
latent vectors, sampled from a multivariate standard Gaussian and employed the metrics available in
the benchmark suite proposed in [32]: Validity is the percentage of valid molecules, i.e., the molecular
graph has a single connected component and all nodes have the correct valence. Uniqueness is the
percentage of unique molecules within a set of N randomly sampled valid molecules. Novelty is
the percentage of molecules not in the training data within a set of N unique randomly sampled
molecules. Validity and novelty are calculated with respect to the set of all valid and all unique
molecules, which we obtain by repeated sampling (up to 10 times). Thus, scores of models with
limited validity/uniqueness will be penalized. Note that previous work defined uniqueness and novelty
as the percentage with respect to all valid molecules, which is hard to interpret, because models with
low validity would have high novelty. Hence, scores reported here are considerably lower compared
to previously reported numbers.

Figure 4a shows that LF-MolGAN generates molecules with high validity (93.6%) and is only out-
performed by CGVAE, which by design is constrained to only generate valid molecules. Moreover,
LF-MolGAN ranks second in novelty and third in uniqueness; we will investigate the reason for this
difference in detail in the next section on distribution learning. Graph-based NeVAE always generates
molecules with correct valence, but often (88.2%) generates graphs with multiple connected compo-
nents, which we regard as invalid. Its set of valid generated molecules has the highest uniqueness.
We can also observe that graph-based models outperform the SMILES-based GrammarVAE, which
is prone to generate invalid SMILES representation of molecules, which is a known problem [16,
18, 19, 22, 23]. MolGAN without inference network is struggling to generate molecules with valid
valence and only learned one particular mode of the distribution, which we will discuss in more detail
in the next section. It is inferior to LF-MolGAN in all categories, in particular with respect to novelty
and uniqueness of generated molecules.
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(b)

Reconstructed (%) Generated (%)

Ghost-node bond 4 0.03 2 0.02
Valency 152 1.15 124 0.94
Split graph 541 4.10 680 5.16
Valid 12 487 94.71 12 378 93.89

Figure 4: (a) Overview of simple molecule generation statistics. (b) Frequency of errors of LF-
MolGAN on test set.

Next, we inspected the reason for generated molecules being invalid to assess whether imposed node
connectivity and valence constraints of our model are effective. Molecules can be generated by (a)
reconstructing the latent representation of a real molecule in the test set, or (b) by decoding a random
latent representation draw from an isotropic Gaussian (see fig. 1). Figure 4b reveals that most errors
are due to multiple disconnected graphs being generated (4-5%). While individual components do
represent valid molecules, we treat them as erroneous molecular graphs. In these instances, 95-96% of
graphs have 2 connected components and the remainder has 3. We did not observe a clear preference
towards the size of generated connected components. Only about 1% of molecules have atoms with
improper valence and less than 0.1% of graphs have atomic bonds between ghost nodes. Therefore,
we conclude that the valence constraint is highly effective.

Finally, we turn to the random graph generation model. It achieves a relatively high uniqueness
of 60.8%, which ranks third, and has a higher novelty than MolGAN and GrammarVAE. Many
generated graphs have multiple connected components, which yields a low validity. The fact that the
random model cannot be clearly distinguished from the remaining models, indicates that validity,
uniqueness, and novelty do not accurately capture what we are really interested in: Can we generate
chemically meaningful molecules with similar properties as in the training data? We will address
this issue by proposing a more appropriate set of evaluation metrics, which we will discuss next.

4.3 Distribution Learning

While the simple overall statistics in the previous section can be useful rough indicators, they ignore
the physicochemical properties of generated molecules and do not capture to which extent a model
is able to estimate the distribution of molecules from the training data. Therefore, we compare the
distribution of 10 descriptors dk used in [32] in terms of 1-Wasserstein distance. One descriptor,
internal similarity, is a measure of diversity that is defined as the maximum Tanimoto similarity with
respect to all other molecules in the dataset – using the binary Extended Connectivity Molecular
Fingerprints with diameter 4 (ECFP4) [31]. The remaining descriptors represent physicochemical
properties of molecules, such as molecular weight (see fig. 5 for a full list).

We approximate the distribution on the training data and the generated data using histograms htrain
k

and hgen
k , and define the ground distance Cij(k) between the edges of the i-th and j-th bin as the

Euclidean distance, normalized by the minimum of the standard deviation of dk on the training and
the generated data. The 1-Wasserstein distance, also called Earth Mover’s Distance (EMD), is defined
as EMD(htrain

k ,hgen
k ) = minP∈U(htrain

k ,hgen
k )〈C(k),P〉, where U(a,b) is the set of coupling matrices

with P1l = a and P>1l = b [33]. As overall measure of how well properties of generated molecules
match those of molecules in the training data, we compute mean{exp[−EMD(htrain

k ,hgen
k )]}k=1,...,10,

which is summarized in fig. 3 (a perfect model would obtain a score of 1). Distributions of individual
descriptors are depicted in fig. 5 and fig. A.1 of the supplement.

First of all, we want to highlight that using the proposed overall metric (see fig. 3), we can easily
identify the random model, which is not obvious from the simple summary statistics in fig. 4. In
particular, from fig. 4 we could have concluded that NeVAE is only marginally better than the random
model. The proposed scheme clearly demonstrates that NeVAE is superior to the random model
(overall score 0.431 vs 0.334). When considering differences between individual descriptors (see
fig. A.1d), we can see that randomly generated molecules are not meaningful due to higher number
of hydrogen acceptors, molecular weight, molecular complexity, and polar surface area.
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Figure 5: Distribution of 10 descriptors of molecules in the training data and of 10,000 unique
molecules generated by (a) LF-MolGAN, and (b) CGVAE [8]. Mol Wt: molecular weight. Mol Log
P: water-octanol partition coefficient. Bertz CT: molecular complexity index. TPSA: molecular polar
surface area. H Acceptors (Donors): Number of hydrogen acceptors (donors).

Figure 3 also shows that LF-MolGAN achieved the best overall score. Molecular weight and the
internal similarity of generated molecules best match that of the training data by a large margin
(EMD = 0.17 and 0.40, see fig. 5a). The highest difference is due to the number of aromatic rings,
which are underrepresented in generated molecules (EMD = 1.24). CGVAE is overall the best
performing VAE (see fig. 5b). However, it notably produces molecules with larger weight (EMD
= 1.02) and lower internal similarity (EMD = 1.17). The latter explains its high novelty value
in fig. 4a: by creating a more diverse set of molecules than the training data represents, a high
percentage of generated molecules is novel and unique. The trade-off between internal similarity
and novelty/uniqueness also explains the results in fig. 4a: LF-MolGAN traded matching internal
similarity for lower novelty/uniqueness. Molecules generated by NeVAE (see fig. A.1a) have issues
similar to CGVAE: they have larger weight (EMD = 1.73) and lower internal similarity (EMD = 2.02),
which benefits uniqueness. GrammarVAE in fig. A.1b is far from capturing the data distribution,
because it tends to generate long SMILES strings corresponding to heavy molecules (EMD = 5.32 for
molecular weight). With respect to MolGAN without inference network (see fig. A.1c): LF-MolGAN
has a slight advantage, which is mostly due to hydrogen acceptors (0.04 vs 0.38) and TPSA (0.10 vs
0.37), but is also worse for some properties such as hydrogen donors (0.18 vs 0.07). An interesting
detail can be derived from the distribution of molecular weight: MolGAN has problems generating
molecules with intermediate to low molecular weight (< 115 g/mol), which highlights a common
problem with GANs, where only one mode of the distribution is learned by the model (mode collapse).
In contrast, LF-MolGAN can capture this mode, but still misses the smaller mode with molecular
weight below 100 g/mol (see fig. 5a). This mode contains only 2344 molecules (2.2%), which makes
it challenging – for any model – to capture. This demonstrates that our proposed set of metrics can
reveal valuable insights that would have been missed when solely relying on validity, novelty, and
uniqueness for evaluation.
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5 Conclusion

We formulated generation and inference of molecular graphs as a likelihood-free adversarial learning
task. Compared to previous approaches, it allows training without explicitly computing a reconstruct-
ing loss, which would require solving an expensive graph isomorphism problem. Moreover, we argued
that the common validation metrics validity, novelty, and uniqueness are insufficient to properly
assess the performance of algorithms for molecule generation, because they ignore physicochemical
properties of generated molecules. Instead, we proposed to compute the 1-Wasserstein distance
between distributions of physicochemical properties of molecules. We showed that the proposed
LF-MolGAN allows efficiently exploring the space of molecules via molecules’ continuous latent
representation, and that it more accurately represents the distribution over the space of molecules
than previous methods.
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A Additional Results

A.1 Distribution Learning
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Figure A.1: Distribution of 10 descriptors of molecules in the training data and of 10,000 unique
molecules generated by (a) NeVAE [10], (b) GrammarVAE [2], (c) MolGAN [4], and (d) randomly.
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Figure A.3: Interpolation along two axes of the embedding space. The highlighted molecule in the
middle is the query.

A.2 Latent Space Interpolation

In the first experiment, we interpolated between two molecules by computing their respective latent
representation z̃A and z̃B and reconstructing molecules from latent codes on the line between z̃A
and z̃B . The results are depicted in fig. A.2. Interpolation between molecules appears smooth, but
we can also see examples of latent representations corresponding to graphs with multiple connected
components (top row), which we excluded from our analyses above, but included here for illustration.

Next, we investigated whether we can assign meaning to the different dimensions of the latent space.
To this end, we projected a query molecule into the latent space and moved in equidistant steps in latent
space, each time reconstructing the corresponding molecule. While we found it generally difficult to
assign meaning to latent dimensions, we did find some dimensions that allowed interpretation. Figure
A.3 illustrates the changes by moving along two axes of the latent representation. From left to right,
the number of double and triple bonds tend to increase, whereas from top to bottom, the frequency
of nitrogen atoms decreases and that of oxygen atoms increases. Therefore, the top right contains
molecules rich in triple bonds and nitrogen, whereas the lower left contains oxygen-rich molecules
with single bonds only.

B Implementation Details

GIN We implemented the sum over the descriptors of neighboring nodes in the GIN layer (6) as a
dense matrix product between the adjacency matrix A•,•,rk and the matrix (h

(l)
v1 , . . . ,h

(l)
vn)>, which

has a complexity of O(n2d). Clearly, this is a bottleneck for large graphs. However, due to the
sparsity of the adjacency matrix, we can be employ sparse matrix computation. In the first layer,
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where descriptors are one-hot encoded node types, the computation requires O(ē) operations, with
ē being the average number of edges between nodes. After the second layer, descriptors will be
dense and we have to compute the product between a sparse and a dense matrix, which requires
O(ēd) operations. To the best of our knowledge, most deep learning frameworks only support sparse
computation on rank-2 matrices, therefore additional engineering would be required to incorporate
the batch dimension for efficient sparse matrix computation.

Architecture If not mentioned otherwise, tanh is used as activation function. Encoders and
discriminators have L = 2 GIN-layers with 128 units for each of the m = 3 edge types. The GIN-
MLP in (6) has one linear layer. The two linear layers used for soft-attention and subsequent graph-
pooling in (7) have 128 units each. The MLP taking the graph-pooled descriptor hG and outputting
h′G has two fully-connected layers with 128 and 64 units, respectively. The cycle-discriminator
Dη(G1, G2) uses a 2-layer MLP with 64 units each to combine graph-level feature descriptors h′G1

and h′G2
. Networks Dψ(G, z), gφ(G, ε) have a noise vector as second input, which is the input to

one fully-connected layer with 256 units. The hyper-parameter τ used in the Gumbel-softmax [14,
15] is set to τ = 1. In total, our model consists of 927 242 weights that need to be optimized during
training. We trained for 200 epochs using the Adam optimizer [34] with β1 = 0.5, β2 = 0.9, and
initial learning rate 0.001, which is lowered to 0.0005 after 60 epochs, and 0.0001 after 120 epochs.
The regularization weights µ and ν in (4) and (5) were tuned manually and set to 0.005 and 0.05. In
practice, we compute a smoothed version of B̃ij in (3) using s(x) = σ(a(x − 1

2 )) with a = 100,
which improves numerical stability. The weight of the gradient penalty [29] of the discriminators was
set to 10. Weights θ and φ of the encoder and decoder get updated at the same time, as are the weights
ψ and η of both discriminators. Updates are performed sequentially, with a 5:1 ratio of discriminator
to encoder/decoder updates. To stabilize training and encourage exploration, we added a discount
term proportional to the variance of the predictions of the discriminator Dψ(G̃, z). The term was
weighted by −0.2 and added to the remaining losses when updating weights θ and φ of the encoder
and decoder.

Random Graph Generation For the random graph generation model, we used a similar setup
as the generator used in NeVAE [10]. We first randomly select the atom types for each node in
the graph to create X, and then sequentially draw edges (vi, rk, vj) such that the valence of atoms
is always correct. We denote by δ(i, j | El) ∈ {0; 1} whether nodes vi and vj are disconnected in
the graph specified by the set of edges El, and by δ(rk | vi, vj , El) ∈ {0; 1} whether nodes vi and
vj can be connected by an edge of type rk without violating valence constraints. The first mask is
used to ensure only a single bond between atoms is formed, and the second mask to satisfy valence
constraints. Independent random noise drawn from N (0, 1) is denoted by ε.

The probability of the i-th node feature vector xvi encoding the atom type is given by

P (xvi = ej) =
exp εj∑d

j′=1 exp εj′
,

where ej is the one-hot encoding of the j-th atom type (j = 1, . . . , d). Edges are added sequentially:
in the l-th step, the probability of an edge (vi, rk, vj), conditional on the previously added edges El−1
is given by

P ((vi, rk, vj) | El−1) = P (vi, vj | El−1)P (rk | vi, vj , El−1),

P (vi, vj | El−1) =
δ(i, j | El−1) exp(εi,j)∑

i′,j′ δ(i
′, j′ | El−1) exp(εi′,j′)

,

P (rk | vi, vj , El−1) =
δ(rk | vi, vj , El−1) exp(εrk)∑r

k′=1 δ(rk′ | vi, vj , El−1) exp(εrk′ )
.

We repeatedly sample edges until no additional valid edges can be added. Therefore, generated random
molecular graphs will always have correct valences, but can have multiple connected components if
valence constraints cannot be satisfied otherwise; we consider these samples to be invalid.

Software We implemented our model using TensorFlow version 1.10.0 and performed training
on a NVIDIA Quadro P6000. We used RDKit [35] version 2018.09.1.0 for computing molecular
descriptors. Validity of generated molecular graphs was assessed by RDKit’s SanitizeMol function.
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To evaluate how well models estimate the distribution of molecules from the training data, we used
the benchmark suite GuacaMol version 0.3.2 [32] and the Python Optimal Transport (POT) library
version 0.5.1 [36].
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