Proceedings of the 5th International Conference on
Automotive User Interfaces and Interactive Vehicular Applications
Eindhoven, 2013
Innovations in the area of vehicle electronics, sensing technologies and wireless communication (including both vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2X)) are resulting in a rapid change of the driving context. Over the last few years, a rapid increase can be observed in the number of systems aiming to support the driver and increase the safety and comfort. Ultimately, the combination of these support systems may lead to the complete automation of the driving task. In addition, developments in the area of wireless communication have vastly increased the possibilities for drivers and passengers alike to take nomadic appliances within the car for entertainment and communication purposes. These developments create both opportunities and challenges for researchers and developers in the area of automotive user interfaces and interactive vehicular applications.

We proudly present the proceedings of the Fifth International Conference on Automotive User Interfaces and Interactive Vehicular Applications (www.auto-ui.org/13). It builds on the success of the previous conferences, starting in Duisburg-Essen in 2009, with follow-up conferences in Pittsburgh (2010), Salzburg (2011) and Portsmouth, New Hampshire (2012).

This year’s conference is hosted by the User-centred Engineering group of the Department for Industrial Design at Eindhoven University of Technology (TUE). The Department for Industrial Design of TUE focuses on research and design for intelligent systems. The above-mentioned technological innovations demonstrate that the automotive and mobility domain is an ideal application domain for research and development in the area of intelligent systems. In collaboration with the departments of Mechanical Engineering, Computer Science, Electrical Engineering and Industrial Engineering & Innovation Sciences, the department for Industrial Design contributes to the education of automotive engineers and research for and design of intelligent automotive systems, constituting the Strategic Area Smart Mobility of TU Eindhoven.

Conference Goals

The rapid technological innovations create opportunities for new applications for making driving safer, more efficient, more comfortable and more fun. One goal of the conference is therefore to provide a platform for discussing new applications. One of the topical subjects is the trend towards automation of the driving task and the associated human factors issues. The increase of applications and systems aiming to increase safety, efficiency, comfort and fun also has a downside, of increasing the chance of driver distraction. Another goal of the conference is therefore to provide a platform for exchanging insights concerning driver distraction and how to use these insights for the design of vehicular applications reducing distraction. In the third place, innovations in the domain of interaction technologies have found their way into the domain of automotive user interfaces, and the conference serves as a platform for exchanging insights about novel interaction technologies. Fourthly, putting the affective aspect associated with driving on a par with safety, efficiency and comfort brings the driving experience to the fore, confirming a gradual shift in focus that surfaced at AUTO-UI ’12. Finally, the strong applied focus of the Automotive UI conferences makes AUTO-UI an ideal meeting place for people both from academia and industry.
Submissions and Review Process

Authors were invited to submit short (4 page) or long (max 8 page) papers. In total 67 papers were submitted, with authors from Europe, America, Asia and Australia. Each paper was reviewed by at least three independent reviewers. On the basis of the review, the chairs selected 41 pages, 24 for oral presentation and 17 for presentation in the poster session, which are included in the conference proceedings. The conference was organized in cooperation with the Association for Computing Machinery (ACM), so that the proceedings will be available through the ACM portal. In addition, contributions were submitted for the work-in-progress session and the doctoral consortium. These contributions, as well as the demos presented at the conference, appear in the adjunct proceedings. Pursuing on the success of the 2011 and 2012 conference, proposals for workshops and tutorials were invited. From the eight submissions for workshops six workshops resulted, four full-day workshops and two half-day workshops. The workshop descriptions have been included in the adjunct proceedings.

Acknowledgements

We would like to express our warm appreciation to the many people who have contributed to the organization of this conference: the Conference Committee, the Technical Committee and additional expert reviewers. We also thank the management and members of the department for Industrial Design, who supported the organization of the conference in many different ways. Last but not least, we would like to thank the Conference office of TUE and the student volunteers for their contributions.

General Chair
Jaques Terken, Eindhoven University of Technology
Conference Organization

Conference Chair
Jacques Terken, Eindhoven University of Technology, Eindhoven, The Netherlands

Papers Co-Chairs
Marieke Martens, TNO / Universiteit Twente, Twente, The Netherlands
Christian Müller, DFKI, Saarbrücken, Germany
Jennifer Healey, INTEL Labs, Santa Clara, USA

Work-in-progress & Interactive Demos Co-Chair
Andreas Riener, Johannes Kepler University, Linz, Austria

Workshops and Tutorials Co-Chair
Ronald Schroeter, Queensland University of Technology, Brisbane, Australia

Industrial Showcase Chair
Alex Uyttendaele, DAF Trucks, Eindhoven, Eindhoven, The Netherlands
Christian Müller, DFKI, Saarbrücken, Germany

Doctoral Colloquium Chairs
Andreas Riener, Johannes Kepler University, Linz, Austria

Publication Co-Chairs
Sebastian Osswald, TUM CREATE, Singapore

Webmaster
Dino Sepac, Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Local Arrangements
Karine van den Wildenberg, Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Program Committee
Ignacio Alvarez, Clemson University
Susanne Boll, Universität Oldenburg
Linda Boyle, University of Washington
Duncan Brumby, University College London
Susan Chrysler, University of Iowa
Birsen Donmez, University of Toronto
Berry Eggen, Technische Universiteit Eindhoven
Alois Ferscha, University of Linz
Peter Froehlich, FTW
Paul Green, University of Michigan
Jeff Greenberg, Ford Motor Co
Riender Happée, TU Delft
Helen Harris, (unspecified)
Jennifer Healey, Intel
William Horrey, Liberty Mutual
Shamsi Iqbal, Microsoft Research
Christian Janssen, SKERI
Myounghoon Jeon, Michigan Technological University
Matt Jones, FIT LAB, Swansea
Jessica Jung, Fraunhofer IESE
Nicholas Kelling, University of South Florida Polytechnic
Dagmar Kern, Bertrandt Ingenieurburo GmbH
Seungjun Kim, Carnegie Mellon University
Matthias Kranz, University of Passau
Andrew Kun, University of New Hampshire
Tomas Macek, IBM
Angela Mahr, DFKI
Rod McCall, University of Luxembourg
Daniel McGehee, University of Iowa
Zeljko Medenica, University of New Hampshire
Bruce Mehler, MIT
Alexander Meschtscherjakov, University of Salzburg
Christian Müller, DFKI
Michael Nees, Lafayette College
Cristina Olaverri, Technische Universität München
Sebastian Osswald, TUM CREATE
Oskar Palinko, University of New Hampshire
Bastian Pfleging, University of Stuttgart
Benjamin Reaves, Oracle Corp
Bryan Reimer, MIT
Andreas Riener, Johannes Kepler University Linz
Shannon Roberts, University of Wisconsin-Madison
Albrecht Schmidt, University of Stuttgart
Kazunori Shidoji, Kyushu University
Mikael Skov, Aalborg University
Joonwoo Son, DGIST
DaiLia Szostak, Intel
Ivan Tashev, Microsoft Research
Jacques Terken, Technische Universität Eindhoven
Manfred Tscheligi, University of Salzburg
Omer Tsimhoni, General Motors Israel
Jessica Villing, University of Gothenburg
Bruce Walker, Georgia Tech
David Wilfinger, University of Salzburg
Raphael Wimmer, University of Regensburg
Ute Winter, General Motors
Huimin Xiong, University of Washington
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>3</td>
</tr>
<tr>
<td>Conference Organization</td>
<td>5</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>6</td>
</tr>
<tr>
<td>Keynote</td>
<td>10</td>
</tr>
<tr>
<td>Papers</td>
<td>14</td>
</tr>
<tr>
<td>Session 1: Interaction Techniques 1 - Gesturing</td>
<td></td>
</tr>
<tr>
<td>Standardization of the In-Car Gesture Interaction Space</td>
<td>14</td>
</tr>
<tr>
<td>Andreas Riener, Alois Ferscha, Florian Bachmair, Patrick Hagmüller, Alexander Lemme, Dominik Muttenthaler, David Pühringer, Harald Rogner, Adrian Tappe, Florian Weger</td>
<td></td>
</tr>
<tr>
<td>A Study of Unidirectional Swipe Gestures on In-Vehicle Touch Screens</td>
<td>22</td>
</tr>
<tr>
<td>Gary Burnett, Elizabeth Crundall, David Large, Glyn Lawson, Lee Skrypchuk</td>
<td></td>
</tr>
<tr>
<td>Opportunistic Synergy: a Classifier Fusion Engine for Micro-Gesture Recognition</td>
<td>30</td>
</tr>
<tr>
<td>Leonardo Angelini, Francesco Camino, Stefano Camino, Maurizio Caon, Denis Lalarne, Omar Abou Khaled, Elena Mugel-lini</td>
<td></td>
</tr>
<tr>
<td>Session 2: Interaction Techniques 2 - Pointing</td>
<td></td>
</tr>
<tr>
<td>Free-hand Pointing for Identification and Interaction</td>
<td>40</td>
</tr>
<tr>
<td>Sonja Rümelin, Chadly Marouane, Andreas Butz</td>
<td></td>
</tr>
<tr>
<td>How To Make Large Touch Screens Usable While Driving</td>
<td>48</td>
</tr>
<tr>
<td>Sonja Rümelin, Andreas Butz</td>
<td></td>
</tr>
<tr>
<td>Driver Queries Using Wheel-Constrained Finger Pointing and 3D Head-up Display Visual Feedback</td>
<td>56</td>
</tr>
<tr>
<td>Kikuo Fujimura, Lijie Xu, Cuong Tran, Rishabh Bhandari, Victor Ng-Thow-Hing</td>
<td></td>
</tr>
<tr>
<td>Session 3: Measuring and Reducing Distraction</td>
<td></td>
</tr>
<tr>
<td>Advanced Auditory Cues on Mobile Phones Help Keep Drivers’ Eyes on the Road</td>
<td>66</td>
</tr>
<tr>
<td>Thomas Gable, Bruce Walker, Haifa Moses, Ramitha Chitloor</td>
<td></td>
</tr>
<tr>
<td>ADAS HMI Using Peripheral Vision</td>
<td>74</td>
</tr>
<tr>
<td>Sabine Langlois</td>
<td></td>
</tr>
<tr>
<td>Visual-Manual In-Car Tasks Decomposed - Text Entry and Kinetic Scrolling as the Main Sources of Visual Distraction</td>
<td>82</td>
</tr>
<tr>
<td>Tuomo Kujala, Johanna Silvennoinen, Annegret Lasch</td>
<td></td>
</tr>
<tr>
<td>Session 4: Multimodal Interaction</td>
<td></td>
</tr>
<tr>
<td>Evaluating Multimodal Driver Displays of Varying Urgency</td>
<td>92</td>
</tr>
<tr>
<td>Ioannis Politis, Stephen Brewster, Frank Pollick</td>
<td></td>
</tr>
<tr>
<td>Comparing Three Novel Multimodal Touch Interfaces for Infotainment Menus</td>
<td>100</td>
</tr>
<tr>
<td>Richard Swette, Keenan May, Thomas Gable, Bruce Walker</td>
<td></td>
</tr>
</tbody>
</table>
Using Speech, GUIs and Buttons in Police Vehicles: Field Data on User Preferences for the Project54 System .. 108
W. Thomas Miller, Andrew Kun

International Evaluation of NLU Benefits in the Domain of In-vehicle Speech Dialog Systems..............................114
Linn Hackenberg, Sara Bongartz, Christian Härtle, Thorb Baumgarten

Session 5: Texting and Calling
Texting While Driving: Is Speech-based Texting Less Risky than Handheld Texting?................................. 124
Jibo He, Alex Chaparro, Bobby Nguyen, Rondell Burge, Joseph Crandall, Rui Ni, Shi Cao, Barb Chaparro
Exploring User’s Expectations for Context and Road Video Sharing While Calling and Driving.............. 132
Bastian Pfleging, Stefan Schneegass, Albrecht Schmidt

Session 6: Driver Modelling
Automated Driving Aids: Modeling, Analysis, and Interface Design Considerations ... 142
Michael Heymann, Asaf Degani
A Data Set of Real World Driving to Assess Driver Workload .. 150
Stefan Schneegass, Bastian Pfleging, Nora Broy, Frederik Heinrich, Albrecht Schmidt
The Effect of Cognitive Load on Adaptation to Differences in Steering Wheel Force Feedback Level 158
Swethan Anand, Jeroen Hogema, Jacques Terken

Session 7: Methodology
The Car Data Toolkit: Smartphone Supported Automotive HCI Research... 168
David Wilfinger, Martin Murer, Axel Baumgartner, Christine Döttlinger, Alexander Meschtscherjakov, Manfred Tscheligi
Measuring Linguistically-induced Cognitive Load During Driving Using the ConTRe Task176
Vera Demberg, Asad Sayeed, Angela Mahr, Christian Müller
Standard Definitions for Driving Measures and Statistics: Overview and Status of Recommended Practice J2944 .. 184
Paul Green

Session 8: Experience
Measurement Of Momentary User Experience In An Automotive Context... 194
Moritz Körber, Klaus Bengler
Development of a Questionnaire for Identifying Driver’s Personal Values in Driving... 202
Qonita Shahab, Jacques Terken, Berry Eggen
Presenting System Uncertainty in Automotive UIs for Supporting Trust Calibration in Autonomous Driving ... 210
Tove Helldin, Göran Falkman, Maria Riveiro, Staffan Davidsson
Posters

Computerized Experience Sampling in the Car – Issues and Challenges ... 220
Alexander Meschtscherjakov, Sandra Trösterer, Christine Döttlinger, David Wilfinger, Manfred Tscheligi

Exploring Head-up Augmented Reality Interfaces for Crash Warning Systems ... 224
Hyungil Kim, Xuefang Wu, Joseph L. Gabbard

Using Tap Sequences to Authenticate Drivers .. 228
Andrew Kun, Travis Royer, Adam Leone

Exploring Comfortable and Acceptable Text Sizes for In-Vehicle Displays .. 232
Derek Viti, Alexander Muir

Towards Augmented Reality Navigation Using Affordable Technology .. 238
Oskar Palinko, Andrew Kun, Zachary Cook, Adam Downey, Aaron Lecomte, Meredith Swanson, Tina Tomaszewski

Estimating Cognitive Load Using Pupil Diameter During a Spoken Dialogue Task .. 242
Peter Heeman, Tomer Meshorer, Andrew Kun, Oskar Palinko, Zeljko Medenica

Unwinding after Work: An In-Car Mood Induction System for Semi-Autonomous Driving .. 246
Zoe Terken, Roy Haex, Luuk Beursgens, Elvira Arslanova, Maria Vrachni, Jacques Terken, Dalila Szostak

Mostly Passive Information Delivery in a Car .. 250
Tomáš Macek, Tereza Kasparová, Jan Kleindienst, Ladislav Kunc, Martin Labský, Jan Vystrcil

Driver Diaries: A Multimodal Mobility Behaviour Logging Methodology ... 254
Martin Kraicheel, Roderick McCall, Vincent Koenig

Haptic In-seat Feedback for Lane Departure Warning .. 258
David Dass, Alex Uyttendaele, Jacques Terken

Gameful Design in the Automotive Domain – Review, Outlook and Challenges .. 262
Stefan Diewald, Andreas Möller, Luis Roalter, Tobias Stockinger, Matthias Kranz

Assessing In-Vehicle Information Systems Application in the Car: a Versatile Tool and Unified Testing Platform ... 266
Nicolas Louveton, Rod McCall, Tigran Avanesov, Vincent Koenig, Thomas Engel

Collision Detection and Warning at Road Intersections Using an Object Oriented Bayesian Network 270
Galia Weidl, Virat Singhal, Dominik Petrich, Dietmar Kasper, Andreas Wedel, Gabi Breuel

Sustainability, Transport and Design: Reviewing the Prospects for Safely Encouraging Eco-driving 278
Rich McIlroy, Neville Stanton, Catherine Harvey

Anticipatory Driving Competence – Motivation, Definition & Modeling ... 286
Patrick Stahl, Birsen Donmez, Greg A. Jamieson

Graphic Toolkit for Adaptive Layouts in In-Vehicle User Interfaces ... 292
Renate Häuslschmid, Klaus Bengler, Cristina Olaverri Monreal

A Left-Turn Driving Aid Using Projected Oncoming Vehicle Paths with Augmented Reality 300
Cuong Tran, Karlin Bark, Victor Ng-Thow-Hing
Driver distraction and high mental workload are typically among the topics that are mentioned when design, development, introduction and implementation of user interfaces are discussed in the field of traffic and transport. There is more at stake, however, drivers should not only be able to cope with interfaces in a relatively comfortable manner, they should also be accommodated in such a way that they act optimally with respect to the specific system’s purpose.

Driver distraction, or inattention to the road have been reported to be responsible for a considerable number of the accidents on road by the human factors community for quite some time. A review of the literature demonstrates a lot of empirical work that was conducted already in the seventies of the last century, to gain understanding of the role of attention mechanisms in the driving task. Subsequently, the design and development of in-vehicle advisory and control technology has stimulated a host of more empirical studies during the last thirty years. The introduction, implementation and penetration of devices have increased progressively. In particular, the boost of cellular telephones, navigation systems, and now smartphones (combining the latter two) has led to an increase in distraction opportunities within the vehicle.

Closely related to situational distracting in the driving environment is mental workload. The increase in technology in the driving environment imposes cognitive demands to the driver that has to date not yet been completely sorted out. The relationship between mental workload and driving performance has been demonstrated in many studies, however, mainly with rather complex information technologies, at the high end on a continuum of information quantities in the driving environment. It is largely unknown how and where the “redline” of information provision leading to mental overload should be assessed.

Finally, many systems if not most of them are designed for the average human driver, i.e. in the Netherlands a man of about 35 years old, preferably driving on a motorway. The interface is designed accordingly, with some margins (size, speed, letters etc.) of course to accommodate not only this driver but not too much margin, because that would be at the cost of practical usefulness. Tailoring to the individual is in some cases perhaps necessary in this respect to keep certain groups interested, and other groups safe from making errors. Tailoring, to ensure individual acceptance of systems is necessary for optimal functioning and compliance. Suitable user interfaces are vital in that respect.

From driver distraction to driver support, the role of user interfaces
Karel Brookhuis completed his study in Psychology at the University of Groningen, specialising in experimental psychology and psychophysiology, in 1980. He is a full professor at the Faculty of TPM at Delft University of Technology and at the Department of Psychology of the University of Groningen. Research interests are human factors in occupational settings, particularly traffic and transport, for instance, with respect to driving behaviour in specific conditions. Research topics include effects of psycho-active substances and fatigue on driving behaviour, measurement methods, psycho-physiological aspects of task performance, work load in traffic, specifically under and with ICT applications. Much of this work has been through participation in several large European projects focusing on design and evaluation of new telematics applications (ADAS) in traffic. Karel Brookhuis (co-)authored over 300 publications, from Book Chapters to Research Reports and International Scientific Journal Articles, some of which were cited quite a lot (more than 300 times). He also organised and (co-) edited an International Handbook, and a large number of conference proceedings.