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Abstract. In this paper we evaluate several regularization schemes ap-
plied to the problem of force estimation, that is Traction Force Mi-
croscopy (TFM). This method is widely used to investigate cell adhesion
and migration processes as well as cellular response to mechanical and
chemical stimuli. To estimate force densities TFM requires the solution
of an inverse problem, a deconvolution. Two main approaches have been
established for this. The method introduced by Dembo [1] makes a finite
element approach and inverts the emerging LES by means of regulariza-
tion. Hence this method is very robust, but requires high computational
effort. The other ansatz by Butler [2] works in Fourier space to solve
the problem by direct inversion. It is therefore based on the assumption
of smooth data with little noise. The combination of both, a regulariza-
tion in Fourier space, has been proposed [3] but not analyzed in detail.
We cover this analysis and present several methods for an objective and
automatic choice of the required regularization parameters.

1 Introduction

Living cells in multicellular organisms, e.g. sponges, mice and men, are con-
stantly experiencing and, most often, generating mechanical forces. These are
essential in a plethora of physiological and pathological processes ranging from
stem cell differentiation and tissue formation during embryogenesis to cell loco-
motion in the cellular immune response and cancer metastasis. Any attempt to
quantitatively understand such processes crucially depends on spatially and tem-
porally highly resolved measurements of cell forces. The first reliable technique
to visualize forces of individual cells was pioneered by Harris et al. [4] who grew
cells on a thin silicone sheet and observed wrinkles emerging under contracting
cells. To estimate the acting traction forces the setup was slightly changed by
replacing the silicone sheet with a solidly supported thin film of elastic material.
Usually cross-linked polyacrylamide (PAA) [1] or polydimethylsiloxane (PDMS)
[5], [6] are used. Fluorescent marker beads are embedded slightly below the sur-
face. These markers can be localized by fluorescent light microscopy combined
with digital image processing (c.f. Sect. 2). By comparison to a reference image
where the cell has been removed mechanically and the rubber has reached its
relaxed state the cell force induced deformations can be quantified (see Fig. 1).
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Fig. 1: Scheme of the experimental setup for traction force analysis. A cell is located on
a thin rubber film with embedded marker beads and exerts forces on it. The position
of the fluorescent beads can be detected with fluorescence microscopy and quantified
by digital image processing (c.f. Sect. 2). The deformation vector field is subsequently
used to estimate location and magnitude of the cell force (see Sect. 3). Please note that
the proportions are not realistic.

To find a mathematical model that relates the measured deformations to the
traction forces the silicone substrate layer is most often assumed to be infinitely
thick, i.e., a linear elastic halfspace. Furthermore, the tractions are restricted
to act only on the surface of the halfspace. This kind of problem was studied
in elasticity theory by Boussinesq [7], [8] and found to satisfy the following
Fredholm integral equation∫

R2\{y}

G(y − x)f(x)dx = u(y) for each y ∈ R2 or short G [f ] = u , (1)

where u : R2 7→ R2 denotes the deformation at a place y, f : R2 7→ R2 the force
at a location x and G the Boussinesq Greens’ Tensor

G(d) =
3

4πE|d|3

(
|d|2 + d2

1 d1d2

d1d2 |d|2 + d2
2

)
with d = (d1, d2)T ∈ R2 . (2)

For notational clarity we use the uncommon G [f ] for the linear operator G acting
on f . E is the rubber’s Young modulus. Its Poisson ratio was found to be 0.5 [6]
corresponding to an incompressible medium. Merkel et al [9] have shown that
the assumption of an infinite halfspace has to be dropped if the layer thickness
is less than 60 µm. Here a modified Greens’ Tensor must be used, c.f. [9].

For both the finite and the infinite thickness case we must therefore invert a
Fredholm integral equation, a procedure which is known to be ill-posed. It hence
requires a regularization ansatz. We briefly introduce the methods of Dembo
and Butler in Sects. 1.1 and 1.2, several possibilities combining both methods
are discussed in Sect. 3.

1.1 Finite Element Method

To discretize the integral equation (1) Dembo used the manually marked cell
outline and generated a quadrilateral mesh within for estimating traction den-
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sities. Cell forces are therefore restricted to the cell area. This is a reasonable
assumption and limits the complexity of the emerging equation system. However,
after discretization the LES is still ill-posed and normally even lacks a solution.
To circumvent this Dembo made use of the regularization functional

||G [f ]− u||2 + λΩ(f) (3)

whose minimum is a force distribution f that compromises between the mea-
sured data set u and the operator Ω. In Dembo’s method an entropy measure is
used to prefer smooth force fields. The regularization parameter λ ≥ 0 is used
to adjust the expected complexity of the solution. Dembo’s method is known to
be highly accurate and profits from the restriction to the force application area,
which stabilizes the algorithm and restrains the number of unknowns. Never-
theless, f is still high-dimensional and the minimization of the functional (3) is
computationally expensive.

1.2 Fourier Method

Since the left-hand side of Equation (1) is a convolution, a transformation to
Fourier space will reduce it to a simple product

Ĝ(k)f̂(k) = û(k) for each k ∈ R2 , (4)

where Ĝ, f̂ , û respectively denote the Fourier transforms of G, f, u and k is a
two dimensional wave number. Note that for each k Equation (4) is a LES with
two equations and two unknowns while the Dembo’s LES is a system with 2n
equations and 2m unknowns. Here the number of beads is denoted by n and m
is the number of forces. The inversion of (4) is therefore very fast. However, for
small k the matrix Ĝ is nearly singular and a good solution will hence crucially
depend on noise-free data as mentioned by Butler et al [2].

2 Digital Image Processing

Several methods are currently in use to track fluorescent marker beads in micro-
graphs. All of them are comparably fast, accurate and reliable. In our case we
used a tracking algorithm that was implemented and described earlier [9]. Briefly,
the method comprises two steps. First, an interactively marked sample bead of
the reference image is fitted by a two dimensional Gaussian to obtain a template.
This is then compared to the whole image by normalized cross-correlation. Local
maxima of the thresholded correlation function are assumed to be probable bead
positions. Second, from each of these initial positions in the reference image a
template is taken and cross-correlated to a certain vicinity in the image of the
strained rubber. Templates that are recognized above a preselected threshold
are taken into account for the deformation vector field.
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3 Regularization

In the following we suggest a combination of both Dembo’s and Butler’s method,
a regularization in Fourier space, aiming to connect the stabilizing effects of the
regularization approach with the fast computation of a fourier space scheme.
Such a combined method has already been proposed by Sabass et al [3] albeit
without quantitative analysis of the possible regularization schemes and with a
manual choice of the regularization parameter. For this purpose we interpolate
the scattered deformation vector field on a rectangular grid. Let gx, gy be the
grid numbers and xmin, xmax, ymin and ymax minimum and maximum x- and
y-coordinate of the n bead positions, respectively. By choosing

gx :=
⌊√

n
ymax − ymin
xmax − xmin

⌋
and gy :=

⌊
n

gx

⌋
(5)

we guarantee that the number of displacement vectors and the aspect ratio
of the definition area stay approximately the same. Please note that by this
choice the spatial resolution of our TFM method is already determined (bxc :=
maxk∈Z,k≤x(k)). In a next step we perform a FFT on the interpolated deforma-
tion field to obtain ũ and1 likewise wave numbers k1,x, k1,y..., kn,x, kn,y ∈ R. We
now approach equation (4) for these k. For convenience, let

G̃ :=

Ĝ(k1,x)
. . .

Ĝ(kn,y)

 . (6)

We retrieve the LES
G̃f̃ = ũ . (7)

A back transformation of its solution2 f̃ gives a force density on the grid that ũ
was interpolated on. However, the blocks of G̃ are nearly singular for small values
of k and must hence be regularized. For reasons of computational efficiency and
convenient implementation we restrict ourselves to a slightly generalized version
of the regularization procedure by Tikhonov [10]. In fact we make use of the
following functional:

||G̃f̃ − ũ||2 + λ||L(f̃ − f0)||2 , (8)

where L is a quadratic matrix and f0 is a vector of the same dimension as f̃ .
The minimum of this functional is known to be the solution of

(G̃∗G̃+ λL∗L)f̃ = G̃∗ũ+ λL∗Lf0 (9)

that is guaranteed to be unique if L is injective. Minimization of (8) is therefore
unexpensively accomplished by direct inversion of (9). Choosing L and f0 is
1 ũ is a vector containing x- and y- coordinates of the Fourier-transformed deformation

vectors in the grid which is assigned linewise.
2 f̃ is unique because G̃ is blockwise non-singular
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equivalent to selecting a suitable penalty term for equation (8). L is normally
chosen to be a measure of a property that the solution is expected to have while
f0 can be understood to be an approximation of the solution itsself. There are
procedures that allow the definition of an optimal L using a Bayesian approach
with a prior of the solution’s noise distribution. Because traction force patterns
have never been measured by direct methods, the essential information for the
Bayesian interpretation is unavailable. Instead we will evaluate several heuristic
methods that are based on reasonable assumptions of location, formation and
temporal evolution of the traction field.

3.1 Classic Approaches

A first attempt to stabilize (7) is to penalize high values of f̃ by setting L = I
as proposed by Tikhonov [10]. Since the equations that belong to small wave
numbers are more instable than those to large ones, it also seems reasonable to
penalize high Fourier coefficients for small wave numbers.3 For this we made the
following choices we call wave damp or wave damp square choosing

Lij := δij
1
|ki|

or Lij := δij
1
|ki|2

. (10)

3.2 Temporal Smoothing

In many cases a series of cell and substrate images is made to record the cell’s
activity. If we assume that the difference of forces from image to image is small
we can develop another penalty term. Let t1, ..., tl ∈ R be the points of time
the images were made and u(ti) the respective deformation and forces at those
points of time. If we set

Ḡ :=

l times︷ ︸︸ ︷G̃ . . .
G̃

 and ū :=

u
(t1)

...
u(tl)

 (11)

the solution of Ḡf̄ = ū will give a force density estimation for the whole series of
images. We can now introduce our assumptions of little difference by applying

Lij := δij − δi(j−2n) , (12)

i.e. the penalty term sums the differences between the fourier coefficients in one
time step and the proceeding. Thus, the functional (8) will prefer solutions where
the forces at the different points of time only change slightly.

3 With ground truth we could isolate the critical frequencies for an optimal L.
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3.3 Restriction to a Predefined Area

An important advantage of Dembo’s finite element method is that it easily allows
the force to be estimated only within a predefined area. By transforming the
convolution (1) into Fourier space this seems to become impossible since the
FFT algorithm works on a rectangular grid. However, it is possible to effectively
restrict forces to a certain area by the following procedure. Let 1C : R2 7→ {0, 1}
be the indicator function for the cell area, i.e., 1C(x) yields 1 if and only if x is
within the cell area.

The procedure consists of two steps. First we solve equation (7) by a common
regularization scheme (c.f. Sects. 3.1 and 3.2) to get a solution f̃ . We now trans-
form f̃ into spatial domain and multiply the result with 1C . The product will
be 0 outside the predefined area and return the estimated force pattern inside.
Subsequently we retransform the product into Fourier space and call the final
result f0. In a second step we make use of the functional

||Gf̃ − ũ||2 + λ||f̃ − f0||2 (13)

to get a solution that implicitly prefers a resemblance to the function f0, i. e., it
has no significant forces outside the marked cell area.

3.4 Objective Choice of the Regularization Parameter

Crucial to all regularization methods is the choice of the parameter λ that is
supposed to balance the data discrepancy and the penalty term. Therefore it is
of high importance to use well founded values for λ.4 To automate this parameter
choice without knowledge of the error several procedures have been proposed of
which two proved especially useful for our case.

The heuristic idea of the L-curve criterion [11] is to find a λ that represents
a trade-off between data fidelity and the penalty norm. This balance can be
determined by examining the L-shaped curve (||Gfλ − u||, ||L(fλ − f0)||) where
fλ is the solution of (9) but for our purpose this method proved unstable. Instead
we determine the functions d(λ) = ||Gfλ − u|| and p(λ) = ||L(fλ − f0)|| and
identify the λ values at which d has maximum and p has minimum derivative.
The average of those two values subsequently provides a useful choice for the
regularization parameter since it determines the value where the penalty starts
to apply and the data is still sufficiently fitted by the model.

Another parameter choice yielding a very good performance is an adjusted
cross-validation approach [12]. The cv-method splits the data set into a validation
and computation set. A ratio of 25% to 75% is a common choice. While the
computation set is used to calculate a solution for several choices of λ, these
solutions are applied to the direct problem and the result is compared to the

4 With the Bayesian approach that was previously mapped out, λ turns out to be
optimally chosen as ratio of the squared deformation error and the squared error in
the force field.
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validation set. The solution that suits best is the one that most likely can explain
the unused data and is therefore a reasonable choice.

Since a cross-validation in Fourier space did not provide satisfying results
we adapted it to work in position space. The computation set is interpolated
on a grid, transformed into Fourier space and forces are estimated as described
above. By equation (7) we are now able to compute the deformation vector field
uλ that would be observed if the estimation fλ was accurate. uλ is retransformed
to position space and the difference dλ to the grid-interpolated validation set is
determined. The λ which minimizes dλ is the parameter to choose. It is pos-
sible to repeat this procedure with another 25% validation set to stabilize the
results. Thus, the cross-validation approach is very reliable but computationally
expensive.

4 Experiments and Results

We evaluated our approach on several data to test it with ground truth and
different levels of noise in displacement data. First we created a synthetic set
of test data (see Fig 2, first row, left). The second situation was force fields
of normal human epidermal keratinocytes (Young modul of substrate: 11 kPa)
as retrieved by Tikhonov regularization and the L-curve criterion. (see Fig 2,
first row, right). This enables us to test the traction estimation in a realistic
situation. Both traction distributions served as ground truth for our second test
on synthetic data with known ground truth and noise.

4.1 Simulations

Simulations were performed by adding normal distributed noise on ground truth
displacements. For each noise level we performed the simulation with 20 different
noise patterns. To avoid random fluctuations between the tested penalties and
parameter determinations we used the same noise patterns for all simulations.

Noise levels were chosen as multiples of the occuring mean displacements in
the test images. As the interpretation of this quantity is not obvious we show
the displacement vector fields with the highest noise level in Fig. 2, second row.
All tests were done with 7 different noise levels.

On all data we performed tests with the wave damp, squared wave damp,
classical Tikhonov regularization and the temporal derivative as regularization
penalties. For determination of the regularization parameter we used both, the
L-curve criterion and the cross-validation approach with and without restricting
the traction to the cell area.

4.2 Results

Results for the artificial test pattern are shown in Fig. 3. Wave damp and squared
wave damp regularization generally show a linear dependence of estimation error
on the noise level up to a certain point. The error without any regularization is
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Fig. 2: Synthetic test data. First row: Defined traction patterns. Left: Artificial test
pattern. Right: Estimated traction distribution of a normal human epidermal ker-
atinocyte. Second row: Synthetic displacement data with maximum of added noise.
Left: Displacements of artificial test pattern, standard deviation of noise: 0.14 µm.
Right: Displacement of estimated traction distribution of a normal human epidermal
keratinocyte, standard deviation of noise: 0.054 µm.

also shown. The temporal derivative of the traction is therefore not well suited for
estimation in Fourier space. This was surprising since for the well-known point
force traction estimation as mapped out in [3], we found it a stable improvement.
Classical Tikhonov regularization combined with cross-validation yields best ac-
curacy. This result is confirmed by the simulations with the realistic traction
distribution (cf. Fig. 3, 3rd and 4th row). The squared wave damp regulariza-
tion also provides good results for high noise levels.

For low noise the cross-validation is not suited for the choice of an appropriate
regularization parameter which leads to high deviations (see Fig 3, 3rd row right,
for noise lower than 2 times of the mean displacement λ < 10−6, for higher noise
levels λ > 106). The second step regularization restricting the forces to the cell
area was able to enhance the results in several cases. Due to its low computational
effort the second step should be considered whenever the force application area
is known.

5 Discussion

In this paper we presented a systematic investigation of wave damp, wave damp
squared, Tikhonov regularization and temporal derivative as penalties for trac-
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tion estimation in Fourier space. The regularization parameter estimation was
performed for all penalties with automatic choice of the regularization parameter
λ inspired by the L-curve criterion and cross-validation each with and without
constraining the tractions to the cell area. In connection with the Tikhonov reg-
ularization cross-validation yielded the best results. For this combination the
estimation errors are less than a fifth of the straight forward, not regularized
solution. As the choice of λ is critical for the evaluation of displacement data we
see an important point in its automized choice. This enables an objective and
reproducible evaluation of large data sets comprising many images.
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Fig. 3: Results of different penalty terms on the evaluation of artificial test data (first
two rows) and a realistic traction distribution (last two rows) using different estima-
tion methods for the regularization parameter λ. First row left: wave damp, right:
wave damp squared. Second row left: Tikhonov, right: temporal derivative with 5 time
steps considered, note the different scaling. Third row left: wave damp, right: wave
damp squared. Fourth row left: Tikhonov, right: temporal derivative with 5 time steps
considered, note the different scaling.


