
TREE STRUCTURED PURSUIT FOR SIMULTANEOUS IMAGE APPROXIMATION

Ariel J. Bernal,

Ryerson University
Department of Electrical Engineering

350 Victoria St., Toronto, Ontario M5B 2K3

Sebastian E. Ferrando ∗

Ryerson University
Department of Mathematics

350 Victoria St., Toronto, Ontario M5B 2K3

ABSTRACT

The paper introduces an adapted orthonormal system to ap-
proximate a collection of given images. The associated con-
struction is performed by a pursuit algorithm constrained to
build a tree; the pursuit maximization is performed over a
large dictionary of Haar wavelet-like functions. The approx-
imations are given by vector valued discrete martingales that
converge to the vector of input images. A natural applica-
tion for our construction is the case when the set of images is
given by a sequence of video frames. We describe the trade
off between the size of the input set and the quality of the
approximation and provide examples and comparisons.

Index Terms— Image coding. Martingales. Transforms.

1. INTRODUCTION

This note describes a new algorithm for the simultaneous ap-
proximation of a given collection of images defined on a com-
mon domain Ω. A natural application of the algorithm is the
case when the collection of images is given by a sequence of
video frames. The algorithm constructs a tree which is asso-
ciated to a partition of Ω (more precisely: a sequence of par-
titions). References [1] and [2] provide examples of adaptive
trees for image compression. In general, the tree construction
is associated to a partition of the base domain which in turn
is dependent on a given single input image. It follows that
it is critical to keep the storage cost of the partition low as it
adds to the total storage cost of the compressed image. There-
fore, algorithms which partition a given image domain, with
the purpose of compressing an image, need to impose strong
geometrical constraints on the partition elements (which we
will call atoms.) In particular, [1] only allows atoms which
are polyhedra, further partitions of these atoms can only be
performed using line cuts.

As an alternative to the above described situation, the ap-
proach introduced in this paper allows for arbitrary partition-
ing of a given image domain and, hence, we deal with ar-
bitrary atoms. In order to offset the relatively high cost of

∗The research of A.J.Bernal and S.E. Ferrando is supported in part by an
NSERC grant.

the resulting adapted partition we consider the case where we
have a collection of d images, defined on a common domain
Ω. This creates a trade-off as, on the one hand, the relative
cost of storing the partition diminishes when we increase d
and, on the other hand, the quality of the approximation de-
grades as d is increased.

We describe a construction (which we will call the Vector
Greedy Splitting Algorithm or VGS for short) of an adapted
partition of Ω, this partition is common to the given collec-
tion of images. Given a certain amount of similarity among
the images in this collection, our construction provides asso-
ciated compression improvements when the common adapted
partition is used to compress the collection of images as a sin-
gle entity.

The rest of this paper is organized as follows, Section 2
describes the VGS algorithm to construct the approximating
tree. The description is done under the main setup of the pa-
per, namely the case when the data X has a continuous cu-
mulative distribution. Section 3 provides a general overview
on how to bit-code the data structures used to encode the tree
approximation. Section 4 provides examples of the proposed
compression technique and a brief comparison with current
techniques.

2. ADAPTIVE TREE CONSTRUCTION

Consider a collection of d given video frames X[i], i =
1, . . . , d. We will treat them as random variables X[i] : Ω →
R on a probability space (Ω,A, P). We collect the d frames
into a vector valued random variable X : Ω → Rd, and will
define the following inner product for Y,Z ∈ L2(Ω, Rd)

[Y,Z] ≡
∫

Ω

〈Y (w), Z(w)〉 dP (w), (1)

with 〈Y (w), Z(w)〉 =
∑d
i=1 Y [i](w) Z[i](w).

We recall a pursuit algorithm in our setup ([3]), let X ∈
L2(Ω, Rd) with inner product [,], also assume a given sub-
set D ⊆ L2(Ω, Rd) is given. Define inductively the nth. −
residue by Rn+1X = RnX − [RnX,µn] µn, where µn sat-
isfies

[RnX,µn] = sup
ψ∈D,||ψ||=1

[RnX,ψ], (2)

with R0X ≡ X . Notice that X =
∑n
k=0[R

kX,µk]µk +
Rn+1X and ||Rn+1X||2 = ||RnX||2 − |[X,µn]|2.

Consider the following dictionary of vector valued func-
tions (1A denotes the characteristic function of a set A)

C = {ψ : ψ = a1A0 + b1A1 , A0, Ai ∈ A, a, b ∈ Rd (3)

and
∫

Ω

ψ dP = 0,
∫

Ω

||ψ||2 dP = 1}.

Generic elements from C are too costly to encode. To
partly avoid this difficulty we define below a pursuit algo-
rithm constrained by a tree structure. This type of approach
can be considered as a constrained non-linear approximation
as described in [4]. The reader will check easily that one con-
sequence of the tree structure is that [µi, µj] = 0 for i �= j,
therefore we will have [RnX,µn] = [X,µn].

A main contribution of the construction described in this
paper is a practical and insightful approach to handle (2) for
(a restricted version of) the above dictionary C. In order to
incorporate the tree structure into the pursuit algorithm we
first need to refine (3) as follows, consider A ∈ A and

CA = {ψ ∈ C : A0, A1 ⊆ A, A0 ∪A1 = A, A0 ∩A1 = ∅}.
(4)

This dictionary will be called the Haar dictionary. We in-
dicate that we can solve the following key step to define the
pursuit algorithm.

Theorem: Assume X has a continuous cumulative distri-
bution, then there exists ψA ∈ CA so that

[X,ψA] = sup
ψ∈CA

[X,ψ], (5)

Remark: For simplicity, on this presentation we will as-
sume P is the uniform measure on Ω = [0, 1]2. It is possible
to extend our results to the general case in which the conti-
nuity hypothesis is removed. The functions ψA will be called
best functions (at A) their explicit form will be given shortly.

Our vector approximations are always initialized as fol-
lows µ0 = ψ∅ ≡ c 1Ω where c is chosen so that [X,ψ∅]ψ∅[i] =∫
Ω
X[i] dP.
For any random variable Y and set A define

RA(Y) ≡ {y : ∃w ∈ A such that Y (w) = y}. (6)

In order to completely specify ψA = a1A0 + b1A1 ∈ CA,
ψA as in the above Proposition, it is enough to provide A0

explicitly:

1A0(w) = 1{z:X[b′](z)≤y}(w) where X[b′](z) ≡ 〈X(z), b′〉
(7)

for some b′ ∈ Sd and for some y ∈ RA(X[b′]),

moreover b = ||b|| b′. The quantities b′ and y = y(b′) are
obtained by an optimization procedure described in [5].

Define the best children of A by

A0 ≡ {w ∈ A : ψA(w) = a}, A1 ≡ {w ∈ A : ψA(w) = b}.
(8)

Next we define the VGS algorithm, we will indicate how
the algorithm constructs recursively a sequence of partitions
Πn indexed by n = 0, 1, 2, The index n will be referred
as the n−th. iteration of VGS. Start by setting Π0 = {Ω, ∅}
(notice that we explicitly include ∅ in Π0, this will include ψ∅
in all our approximations) and assume, inductively, that Πk,
k ≤ n (Πk ⊆ A) have been constructed and are finite. Now
we describe how to generate Πn+1. Consider A∗ ∈ Πn such
that it satisfies

|[X,ψA∗]| ≥ |[X,ψA]| for all A ∈ Πn. (9)

If [X,ψA∗] = 0, the algorithm VGS terminates and Πp ≡ Πn

for all p ≥ n. Otherwise, i.e. [X,ψA∗] �= 0, we set

Πn+1 = Πn\{A∗} ∪ {A∗
0, A

∗
1} (10)

where, as indicate previously, the setsA∗
k are the best children

ofA∗. The elementψA∗ selected at iteration nwill be denoted
µn, notice [µk, µk′] = 0 if k �= k′. Define the tree Tn as
follows

Tn ≡ ∪nk=0Πk. (11)

and the associated approximation by

XTn
≡

∑
A∈Tn

[X,ψA] ψA. (12)

XTn
is a martingale sequence which satisfies:

XTn
(w) =

1
P (A)

∫
A

X dP, for w ∈ A and A ∈ Πn. (13)

Under general conditions, it can be proven that

lim
n→∞

XTn
(w) = X(w) for almost all w ∈ Ω. (14)

The above limit will actually be finite ifX is a simple function
(even though the above Theorem does not apply), namely if
X takes a finite number of values.

Using a re-ordering function h, we order the expansion
(12) in such a way such that |[X,µh(k)]| ≥ |[X,µh(k+1)]|.
Given a certain error level ε > 0, define the optimized ap-
proximation by

Xn =
n−1∑
k=0

[X,µh(k)] µh(k), (15)

where n = n(ε) is the smallest integer that ||X −Xn|| ≤ ε.
The corresponding n nodes Ak which satisfy µh(k) = ψAh(k)

are called the active nodes for the given ε. Figure 1 displays
an input set with d = 9 and a detail at different levels of
approximation.

Fig. 1. Left: Input set. Right: top left: original middle image,
top right: PSNR=22, bottom left: PSNR=34, bottom right:
PSNR=40.

3. BIT ENCODING OF VECTOR APPROXIMATION

Besides coding the information to identify active nodes, we
need to code [X,ψAh(k)] and the corresponding b′. We also
need to keep enough of the tree information in order to eval-
uate ψAh(k)(w) at different points w ∈ Ω. In particular, this
information will contain the relevant children-parent relation-
ship. This information will be called the significance map.
Its actual encoding is technically challenging as our approach
only deals with the actives nodes (i.e. we do not complete
with the missing nodes in order to obtain a tree). Besides of
the information contained in the significance map, we also
need to know how active atoms are made up of Ω points. This
information will be called the partition map and consists on
encoding the partition associated to the active nodes only.

When we report bit values of the significance map we
will be reporting the bit cost of encoding quantized values
[X,ψAh(k)] and the corresponding quantized values for b′ (so,
in effect, our significance map also includes a quantization
map). In some instances we will be reporting the bit cost of
encoding a lossless compressed version of the corresponding
data structures (we have found that the partition map is very
sensitive to quantization and hence the need to use lossless
compression).

CMS
[i](d) will mean that we have run VGS for d inputs

and the component i has a significance cost ofCMS
[i](d) bits.

Whenever d = 1 we will write CMS
1 as CMS

(1). In
short, CMS

(1) represents the (quantized) significance map
cost of encoding the output of VGS (excluding the partition
cost) and VGS was executed on a single image. We use sim-
ilar notation for the partition map cost but we will assume
the partition cost is independent of i. Therefore the notation
CMΠ(d) denotes the number of bits needed to store the parti-
tion map when VGS was executed on d images.

We expect CMS
[i](d) to deteriorate as d increases (for

any i), and we also expect CMS
(1) to be of best quality, i.e.

CMS
(1) << CMS

[i](d) for all i and d. We also note that
CMΠ(d) has a uniform upper bound (i.e. the upper bound is
independent of d) which depends solely on the size of Ω.

Lets use CFixedBasis to denote the cost of encoding a
given image by a certain method with fixed basis (in particu-
lar it could be JPEG, JPEG2000, Haar basis, etc.). If there
are d images we will denote with CFixedBasis[i] the cost,
of the method, for image i. We expect that CMS

(1) <<
CFixedBasis[1].

We introduce next a useful quantity to quantify the quality
of VGS’s approximation

γ(d) ≡ CMΠ(d)
d

+
∑d
i=1 CMS

[i](d)
d

. (16)

Clearly, the optimal d� is the one that minimizes γ(d). It is
clear that there is a tension between how large d has to be

so
CMΠ (d)

d is small enough and at the same time we want∑ d
i=1 CMS

[i](d)

d to remain small but we know that CMS
[i](d)

deteriorates as d growths.
Notice that VGS will outperform the cost of the fixed ba-

sis method, namely CFixedBasis if

γ(d) <
∑d
i=1 CFixedBasis[i]

d
. (17)

As an illustration, Figure 2 shows a set of images taken
from a video sequence (8 bit monochromatic at 15 fps). We
have run VGS on increasingly larger subsets of this collec-
tion of images by adding one image at a time to the previ-
ous subset. In this way we were able to compute γ(d) for
d = 1, . . . , 20. The results are plotted in Figure 3, the term

in (16) (average cost for Partition Map)
CMΠ (d)

d is denoted
PM (Partition Map) in the figure, and the term in (16) (av-
erage total cost for Quantization Map and Significance Map)∑ d

i=1 CMS
[i](d)

d is denoted by QM + SM .

4. RESULTS AND COMPARISONS

In this section we will compare the JPEG2000 and our al-
gorithm in a static environment using the video sequence set
from Figure 2. This is a rather slow changing video but sam-
pled at a relatively fast rate of 15 fps. When we say “static”
we mean that JPEG2000 does not make use of any temporal
correlation among frames. Nonetheless, we have run JPEG2000
in the most favorable situation, namely we have collected the
input set into a single larger image.

Due to the fact that 9 images is the best number of images
for the VGS algorithm, we will use d = 9; our approximation
is given by (15) and, when reporting results, we label it AVG
(or Haar-AVG). There are two versions of our algorithm and
both outperform (in terms of the PSNR) the JPEG2000 results
in the example provided. The first version is the standard ap-
proximation and the second one is the same approximation
using the Lempel-Ziv (AVG-LZ) algorithm to encode the par-
tition and the quantization map (lossless compression).

Figure 4 shows the total bit cost vs distortion, comparing
the JPEG2000 with our algorithms. It is clear from the figure

Fig. 2. Video sequence

that AVG using the Lempel-Ziv encoding algorithm outper-
forms (in terms of the PSNR) the others for this special video
sequence. Table 4 shows numerically the same information
as in Figure 4. The last column of the table contains the dif-
ference between the JPEG2000 and AVG-LZ, it is possible to
see that the AVG-LZ is within 20% − 35% better (in terms
of the PSNR) than JPEG2000 for this case, several more ex-
amples are described in [5] and a systematic comparison with
JPEG2000 will be described elsewhere. Reasonable compar-
isons with video codecs are harder to stablish as it may require
incorporating additional features to the VGS algorithm; some
comparisons with MPEG, for color video, are described in
[5].

Fig. 3. Average bit cost per image vs number of images.

Fig. 4. Total bits vs PSNR for first 9 frames.

PSNR(db) JPEG2000 AVG AVG LZ DIFF
29.9 5461 7650 3779 31%
32.6 8192 9103 5135 37%
35.0 10922 10758 7088 35%
38.8 16384 14260 11143 32%
41.7 21837 18325 15719 28%
46.3 32768 27277 24981 24%

Table 1. Numerical bit cost vs. distortion comparison

5. REFERENCES

[1] D. Alani, A. Averbuch, and S. Dekel, “Image coding with
geometric wavelets,” IEEE Transactions on Image Pro-
cessing, vol. 16, pp. 69–77, 2007.

[2] Y. Huang, I. Pollak, M.N. Do, and C.A. Bouman, “Fast
search for best representations in multitree dictionaries,”
IEEE Transactions on Image Processing, vol. 15, pp.
1779–1793, July 2006.

[3] S. Mallat, “A wavelet tour of signal processing,” Aca-
demic Press, second edition, July 1999.

[4] A. Cohen, I. Daubechies W. Dahmen, and R. De Vore,
“Tree approximation and optimal encoding,” Applied and
Computational Harmonic Analysis, vol. 11, pp. 192–226,
2001.

[5] A.J. Bernal, “Simultaneous approximations of images.
applications to image and video compression,” MASc
Thesis, vol. Ryerson University, 2007.

