Sebastian SeiboldTU Dresden | TUD · Institute of Forest Botany and Zoology
Sebastian Seibold
Professor
About
139
Publications
85,965
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,042
Citations
Introduction
Additional affiliations
January 2020 - January 2023
Nationalpark Berchtesgaden
Position
- Senior Researcher
April 2017 - January 2023
June 2016 - March 2017
Publications
Publications (139)
To reduce future loss of biodiversity and to allocate conservation funds effectively, the major drivers behind large-scale extinction processes must be identified. A promising approach is to link the red-list status of species and specific traits that connect species of functionally important taxa or guilds to resources they rely on. Such traits ca...
The habitat-amount hypothesis challenges traditional concepts that explain species richness within habitats, such as the habitat-patch hypothesis, where species number is a function of patch size and patch isolation. It posits that effects of patch size and patch isolation are driven by effects of sample area, and thus that the number of species at...
Trophic interactions are a fundamental part of ecosystems; yet, most ecological studies focus on single trophic levels and this hampers our ability to detect the underlying mechanisms structuring communities as well as the effects of environmental change. Here, we argue that the historical dominance of studying competition within trophic levels, an...
Recent reports of local extinctions of arthropod species¹, and of massive declines in arthropod biomass², point to land-use intensification as a major driver of decreasing biodiversity. However, to our knowledge, there are no multisite time series of arthropod occurrences across gradients of land-use intensity with which to confirm causal relations...
The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2–5 with decomposer groups—such as microorganisms and insects—contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the d...
Deforestation of tropical forests have resulted in extensive areas of secondary forests with the potential to restore biodiversity to former old- growth forest levels. The
recovery of vertebrate communities is an essential component of biodiversity and
ecosystem restoration, as vertebrates provide key ecosystem functions. However, little is known...
Widespread insect losses are a critical global problem. Mitigating this problem requires identifying the principal drivers across different taxa and determining which insects are covered by protected areas. However, doing so is hindered by missing information on most species owing to extremely high insect diversity and difficulties in morphological...
The biodiversity of tropical rainforests is under extreme pressure due to the expansion of agricultural land. Beyond the immediate risk of species extinction, the intensification of land use can alter species' behaviour with consequences for the entire ecosystem.
In this study we investigated the impact of land use on the acoustic behaviour of cica...
Arthropods face a global decline attributed to habitat loss, climate change, pesticide use, and an intensification of land‐use practices such as mowing. Studies on the effects of mowing on arthropod abundance showed conflicting results potentially due to multiple factors, including study design, grassland management, sampling method, and arthropod...
Mountain forests are biodiversity hotspots with competing hypotheses proposed to explain elevational trends in habitat specialization and species richness. The altitudinal-niche-breadth hypothesis suggests decreasing specialization with elevation, which could lead to decreasing species richness and weaker differences in species richness and beta di...
Numerous studies have reported that observed species shifts in mountain areas lag behind expectations under current warming trends, however, the mechanisms remain poorly understood. One important mechanism might be microclimatic heterogeneity causing migration of species to cooler conditions under closed forest canopies, but evidence is scarce. We...
Invertebrates and microorganisms are important but climate-dependent agents of wood decomposition globally. In this meta-analysis, we investigated what drives the invertebrate effect on wood decomposition worldwide. Globally, we found wood decomposition rates were on average approximately 40% higher when invertebrates were present compared to when...
Aim
Mountain ecosystems are hotspots of biodiversity due to their high variation in climate and habitats. Yet, above average rates of climate change and enhanced forest disturbance regimes alter local climatic conditions and vegetation structure, which should impact biodiversity. We here investigated the impact of vegetation and elevation as well a...
Recent losses in the abundance and diversity of arthropods have been documented in many regions and ecosystems. In grasslands, such insect declines are largely attributed to land use, including modern machinery and mowing regimes. However, the effects of different mowing techniques on arthropods remain poorly understood. Using 11 years of data from...
Mycorrhizal associations are key mutualisms that shape the structure of forest communities and multiple ecosystem functions. However, we lack a framework for predicting the varying dominance of distinct mycorrhizal associations in an integrated proxy of multifunctionality across ecosystems.
Here, we used the datasets containing diversity of mycorrh...
Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions1,2. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sam...
Conservation programs need improved tools to measure the recovery of animal diversity across restoration gradients. We used soundscapes and expert identifications of bird species to calculate niche position (i.e., mean of environmental conditions across all areas a species occupies) and niche breadth (i.e., the standard deviation of the species dis...
Amphibians globally suffer from emerging infectious diseases like chytridiomycosis caused by the continuously spreading chytrid fungi. One is Batrachochytrium salamandrivorans (Bsal) and its disease ‒ the ‘salamander plague’ ‒ which is lethal to several caudate taxa. Recently introduced into Western Europe, long distance dispersal of Bsal, likely t...
Niche convergence or conservatism have been proposed as essential mechanisms underlying elevational plant community assembly in tropical mountain ecosystems. Subtropical mountains, compared to tropical mountains, are likely to be shaped by a mixing of different geographic affinities of species and remain somehow unclear. Here, we used 31 0.1-ha per...
Variation in leaf traits is critical for carbon gains and losses during leaf life and drives litter carbon and nutrient losses via decomposition. Accurately quantifying litter decomposition parameters is essential for assessing ecosystem carbon and nutrient dynamics. Leaf litterbags have commonly been employed to measure effects of environmental dr...
River dike grasslands provide habitats for plants and arthropods, while habitat quality strongly depends on vegetation management. Mowing and hay collection cause considerable mortality, while species groups may respond differently,
depending on their position within the vegetation, and their trophic level. On dikes at River Inn in Southern Bavaria...
An improved understanding of biodiversity-productivity relationships (BPRs) along environmental gradients is crucial for effective ecosystem management and biodiversity conservation. The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions. However, there is limited knowledge reg...
Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic...
Ecosystems worldwide face threats related to human-driven degradation, climate change, and biodiversity loss. Addressing these challenges requires management strategies that combine biodiversity conservation with climate change mitigation. Here, we aimed to identify local-scale management actions that promote biodiversity at multiple trophic levels...
Mountain forests are plant diversity hotspots, but changing climate and increasing forest disturbances will likely lead to far‐reaching plant community change. Projecting future change, however, is challenging for forest understory plants, which respond to forest structure and composition as well as climate. Here, we jointly assessed the effects of...
The rare social parasitic ant species Myrmica karavajevi was found at several sites as part of a study on the ant fauna in Berchtesgaden National Park (Bavaria, Germany). It is the second record for Bavaria and the first for the German Alps. We found the species exclusively at alpine pastures with different treatments. Little is known about the bio...
Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in E...
Insects have a pivotal role in ecosystem function, thus the decline of more than 75% in insect biomass in protected areas over recent decades in Central Europe¹ and elsewhere2,3 has alarmed the public, pushed decision-makers⁴ and stimulated research on insect population trends. However, the drivers of this decline are still not well understood. Her...
As climate change intensifies and demand for timber rises, forest disturbances are increasing. Disturbances in forests cause an abrupt loss in canopy cover and increase resource availability on the ground, which can have manifold effects on the habitat quality of forest‐dwelling species. One pathway through which disturbances influence habitat qual...
Across the tree of life, organismal functional strategies form a continuum from slow-to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, the synchronization of these strategies at the entire community level is untested. We combine trait data for >2800 above-and belowground taxa from 14 tr...
Outbreaks of the spongy moth Lymantria dispar can have devastating impacts on forest resources and ecosystems. Lepidoptera‐specific insecticides, such as Bacillus thuringiensis var. kurstaki (BTK) and tebufenozide, are often deployed to prevent heavy defoliation of the forest canopy. While it has been suggested that using BTK poses less risk to non...
Most European forests are used for timber production. Given the limited extent of unmanaged (and especially primary) forests, it is essential to include commercial forests in the conservation of forest biodiversity. In order to develop ecologically sustainable forest management practices, it is important to understand the management impacts on fore...
The species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e., solar radiation) and substrate energy (i.e., non-structural carbohydrates or nutritional content). The relative importance of substrate energy is thought to decrease with i...
Empirical evidence for the positive relationship between tree species richness and wood decomposition is weak, despite the greater numbers of decomposers in diverse stands. Tree species identity affects decomposition rates strongly by altering soil communities and micro-environments. It is therefore likely that tree species richness influences spat...
Invertebrate herbivory is a crucial process contributing to the cycling of nutrients and energy in terrestrial ecosystems. While the function of herbivory can decrease with land‐use intensification, the underlying mechanisms remain unclear. We hypothesize that land‐use intensification impacts invertebrate leaf herbivory rates mainly through changes...
Aim
Mycorrhiza play key roles for ecosystem structure and functioning in forests. However, how different mycorrhizal types influence mountain forest biodiversity–ecosystem functioning (BEF) relationships are largely unknown. We evaluate how the diversity of distinct mycorrhiza‐associated fungi and trees shapes forest carbon storage along elevationa...
Understanding whether land use intensification causes regime shifts is of key importance for management, particularly if these shifts are associated with thresholds separating different ecosystem states and with hysteretic dynamics. Here we use a unique, long-term grassland database to identify thresholds in the response of 16 ecosystem functions a...
The patterns of successional change of decomposer communities is unique in that resource availability predictably decreases as decomposition proceeds. Saproxylic (i.e. deadwood‐dependent) beetles are a highly diverse and functionally important decomposer group, and their community composition is affected by both deadwood characteristics and other e...
Forest management has been shown to affect biodiversity, but the effects vary among taxa and studies. Due to their host-tree preferences, many saproxylic, i.e. deadwood-dependent, beetle species are likely affected by forest management via changes in tree species composition. However, further structural differences caused by forest management, such...
An automatic bird sound recognition system is a useful tool for collecting data of different bird species for ecological analysis. Together with autonomous recording units (ARUs), such a system provides a possibility to collect bird observations on a scale that no human observer could ever match. During the last decades, progress has been made in t...
Environmental filters—including those resulting from biotic interactions—play a crucial role during the assembly of ecological communities. The importance of scale has thereby been acknowledged but filters at different scales have rarely been quantified in relation to each other, although these hierarchically nested filters eventually determine whi...
Wood decomposition is a central process contributing to global carbon and nutrient cycling. Quantifying the role of the major biotic agents of wood decomposition, i.e. insects and fungi, is thus important for a better understanding of this process. Methods to quantify wood decomposition, such as dry mass loss, suffer from several shortcomings, such...
Species diversity shapes ecosystem services. Despite the advantages that this relationship has for pest management, few studies have investigated the links between infrastructure damage (i.e. the percentage amount of infrastructures infested by termites), species richness and the environment. Moreover, it is not clear that which proportion of speci...
Concerning declines in insect populations have been reported from Europe and the United States, yet there are gaps in our knowledge of the drivers of insect trends and their distribution across the world. We report on our analysis of a spatially extensive, 14‐year study of ground‐dwelling beetles in four natural forest biomes spanning Japan's entir...
How many species can live in a specific habitat is a key question in conservation biology. Due to its heterogeneity, deadwood supports highly diverse communities. The total number of species related to deadwood is, however, underestimated by most empirical community studies. First, as most reports on saproxylic species richness do not relate the nu...
Understanding species richness variation among local communities is one of the central topics in ecology, but the complex interplay of regional processes, environmental filtering, and local processes hampers generalization on the importance of different processes. Here, we aim to unravel drivers of spider community assembly in temperate forests by...
Forestry in Europe changed the tree species composition and reduced dead-wood amount and heterogeneity, and therefore negatively affected saproxylic diversity. Efficient conservation requires knowledge about the importance of the relevant diversity drivers across taxa. We examined the relative importance of space vs. host for saproxylic diversity a...
Microclimate is a crucial driver of saproxylic beetle assemblages, with more species often found in sunny forests than in shady ones. Whether this pattern is caused by a higher detectability due to increased beetle activity under sunny conditions or a greater diversity of beetles emerging from sun-exposed deadwood remains unclear. This study examin...
1.The patterns of successional change of decomposer communities is unique in that resource availability predictably decreases as decomposition proceeds. Saproxylic (i.e., deadwood-dependent) beetles are a highly diverse and functionally important decomposer group, and their community composition is affected by both deadwood characteristics and othe...
eDNA metabarcoding has become a standard method for assessing wood-inhabiting fungi and bacteria, yet determination of dead-wood-inhabiting beetles still relies on time-consuming collection of beetle specimens. We thus tested whether beetle species can be identified by eDNA sequencing of wood in a mesocosm experiment that manipulated species assemb...
Observational evidence suggests that forests in the Northern Alps are changing at an increasing rate as a consequence of climate change. Yet, it remains unclear whether the acceleration of forest change will continue in the future, or whether downregulating feedbacks will eventually decouple forest dynamics from climate change. Here we studied futu...
Insecticides used to combat outbreaks of forest defoliators can adversely affect non‐target arthropods. Forestry insecticides typically suppress Lepidoptera larvae which are the cornerstone of the canopy community of deciduous oak forests. The abrupt removal of this dominant component of the food web could have far‐reaching implications for forest...
Context
Current diversity and species composition of ecological communities can often not exclusively be explained by present land use and landscape structure. Historical land use may have considerably influenced ecosystems and their properties for decades and centuries.
Objectives
We analysed the effects of present and historical landscape struct...
• Among the many concerns for biodiversity in the Anthropocene, recent reports of flying insect loss are particularly alarming, given their importance as pollinators, pest control agents, and as a food source. Few insect monitoring programmes cover the large spatial scales required to provide more generalizable estimates of insect responses to glob...
Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic as...
Central Europe's temperate forests are heavily shaped by centuries of human activity. Their natural vegetation, mainly consisting of beech-dominated (Fagus sylvatica) deciduous forests, has been widely replaced by more profitable species grown outside of their natural ranges. This has strongly influenced forest-dwelling communities. Necessary adapt...
The legacy of the ‘SL > SS principle’, that a single or a few large habitat patches (SL) conserve more species than several small patches (SS), is evident in decisions to protect large patches while down-weighting small ones. However, empirical support for this principle is lacking, and most studies find either no difference or the opposite pattern...