Sebastian Scherer

Sebastian Scherer
Carnegie Mellon University | CMU · Robotics Institute

About

282
Publications
71,765
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,475
Citations
Additional affiliations
February 2012 - present
Carnegie Mellon University
Position
  • Systems Scientist

Publications

Publications (282)
Article
Aerial manipulation has gained interest in completing high-altitude tasks that are challenging for human workers, such as contact inspection and defect detection, etc. Previous research has focused on maintaining static contact points or forces. This letter addresses a more general and dynamic task: simultaneously tracking time-varying contact forc...
Preprint
Full-text available
Exploration is a critical challenge in robotics, centered on understanding unknown environments. In this work, we focus on robots exploring structured indoor environments which are often predictable and composed of repeating patterns. Most existing approaches, such as conventional frontier approaches, have difficulty leveraging the predictability a...
Preprint
Full-text available
We propose the MAC-VO, a novel learning-based stereo VO that leverages the learned metrics-aware matching uncertainty for dual purposes: selecting keypoint and weighing the residual in pose graph optimization. Compared to traditional geometric methods prioritizing texture-affluent features like edges, our keypoint selector employs the learned uncer...
Preprint
Full-text available
Robust depth perception in visually-degraded environments is crucial for autonomous aerial systems. Thermal imaging cameras, which capture infrared radiation, are robust to visual degradation. However, due to lack of a large-scale dataset, the use of thermal cameras for unmanned aerial system (UAS) depth perception has remained largely unexplored....
Article
Camera localization in LiDAR maps has become increasingly popular due to its promising ability to handle complex scenarios, surpassing the limitations of visual-only localization methods. However, existing approaches mostly focus on addressing the cross-modal 2D-3D gaps while overlooking the relationship between adjacent image frames, which results...
Preprint
Full-text available
The growing demand for air travel requires technological advancements in air traffic management as well as mechanisms for monitoring and ensuring safe and efficient operations. In terminal airspaces, predictive models of future movements and traffic flows can help with proactive planning and efficient coordination; however, varying airport topologi...
Preprint
Full-text available
Traversability estimation in rugged, unstructured environments remains a challenging problem in field robotics. Often, the need for precise, accurate traversability estimation is in direct opposition to the limited sensing and compute capability present on affordable, small-scale mobile robots. To address this issue, we present a novel method to le...
Preprint
Aerial manipulation has gained interest in completing high-altitude tasks that are challenging for human workers, such as contact inspection and defect detection, etc. Previous research has focused on maintaining static contact points or forces. This letter addresses a more general and dynamic task: simultaneously tracking time-varying contact forc...
Preprint
Full-text available
Uncrewed Aerial Vehicles (UAVs) are a leading choice of platforms for a variety of information-gathering applications. Sensor planning can enhance the efficiency and success of these types of missions when coupled with a higher-level informative path-planning algorithm. This paper aims to address these data acquisition challenges by developing an i...
Preprint
Full-text available
Vertical take-off and landing (VTOL) aircraft do not require a prolonged runway, thus allowing them to land almost anywhere. In recent years, their flexibility has made them popular in development, research, and operation. When compared to traditional fixed-wing aircraft and rotorcraft, VTOLs bring unique challenges as they combine many maneuvers f...
Preprint
Full-text available
The problem of path planning for autonomously searching and tracking multiple objects is important to reconnaissance, surveillance, and many other data-gathering applications. Due to the inherent competing objectives of searching for new objects while maintaining tracks for found objects, most current approaches rely on multi-objective planning met...
Article
The fast-growing demand for fully autonomous robots in shared spaces calls for developing trustworthy agents that can safely and seamlessly navigate crowded environments. Recent models for motion prediction show promise in characterizing social interactions in such environments. However, using them for downstream navigation can lead to unsafe behav...
Article
We present BioSLAM, a lifelong (lifelong simultaneous localization and mapping) SLAM framework for learning various new appearances incrementally and maintaining accurate place recognition for previously visited areas. Unlike humans, artificial neural networks suffer from catastrophic forgetting and may forget the previously visited areas when trai...
Article
In the era of advancing autonomous driving and increasing reliance on geospatial information, high-precision mapping not only demands accuracy but also flexible construction. Current approaches mainly rely on expensive mapping devices, which are time consuming for city-scale map construction and vulnerable to erroneous data associations without acc...
Article
Visual localization plays an important role for intelligent robots and autonomous driving, especially when the accuracy of GNSS is unreliable. Recently, camera localization in LiDAR maps has attracted more and more attention for its low cost and potential robustness to illumination and weather changes. However, the commonly used pinhole camera has...
Article
Full-text available
We present a coordinated autonomy pipeline for multi-sensor exploration of confined environments. We simultaneously address four broad challenges that are typically overlooked in prior work: (a) make effective use of both range and vision sensing modalities, (b) perform this exploration across a wide range of environments, (c) be resilient to adver...
Preprint
Full-text available
This work proposes an autonomous multi-robot exploration pipeline that coordinates the behaviors of robots in an indoor environment composed of multiple rooms. Contrary to simple frontier-based exploration approaches, we aim to enable robots to methodically explore and observe an unknown set of rooms in a structured building, keeping track of which...
Preprint
In recent years, significant progress has been made in the field of simultaneous localization and mapping (SLAM) research. However, current state-of-the-art solutions still struggle with limited accuracy and robustness in real-world applications. One major reason is the lack of datasets that fully capture the conditions faced by robots in the wild....
Preprint
Developing and testing novel control and motion planning algorithms for aerial vehicles can be a challenging task, with the robotics community relying more than ever on 3D simulation technologies to evaluate the performance of new algorithms in a variety of conditions and environments. In this work, we introduce the Pegasus Simulator, a modular fra...
Article
Multi-agent exploration of a bounded 3D environment with the unknown initial poses of agents is a challenging problem. It requires both quickly exploring the environments and robustly merging the sub-maps built by the agents. Most existing exploration strategies directly merge two sub-maps built by different agents when a single frame observation i...
Preprint
Full-text available
Using Unmanned Aerial Vehicles (UAVs) to perform high-altitude manipulation tasks beyond just passive visual application can reduce the time, cost, and risk of human workers. Prior research on aerial manipulation has relied on either ground truth state estimate or GPS/total station with some Simultaneous Localization and Mapping (SLAM) algorithms,...
Preprint
Full-text available
Time-optimal path planning in high winds for a turning rate constrained UAV is a challenging problem to solve and is important for deployment and field operations. Previous works have used trochoidal path segments, which consist of straight and maximum-rate turn segments, as optimal extremal paths in uniform wind conditions. Current methods iterate...
Article
Full-text available
The camera is an attractive device for use in beyond visual line of sight drone operation since cameras are low in size, weight, power, and cost. However, state-of-the-art visual localization algorithms have trouble matching visual data that have significantly different appearances due to changes in illumination or viewpoint. This paper presents iS...
Article
Autonomous exploration has many important applications. However, classic information gain-based or frontier-based exploration only relies on the robot current state to determine the immediate exploration goal, which lacks the capability of predicting the value of future states and thus leads to inefficient exploration decisions. This letter present...
Preprint
Full-text available
Detecting unseen instances based on multi-view templates is a challenging problem due to its open-world nature. Traditional methodologies, which primarily rely on 2D representations and matching techniques, are often inadequate in handling pose variations and occlusions. To solve this, we introduce VoxDet, a pioneer 3D geometry-aware framework that...
Preprint
This workshop paper presents the challenges we encountered when simulating fully-actuated Unmanned Aerial Vehicles (UAVs) for our research and the solutions we developed to overcome the challenges. We describe the ARCAD simulator that has helped us rapidly implement and test different controllers ranging from Hybrid Force-Position Controllers to ad...
Preprint
Full-text available
The fast-growing demand for fully autonomous aerial operations in shared spaces necessitates developing trustworthy agents that can safely and seamlessly navigate in crowded, dynamic spaces. In this work, we propose Social Robot Tree Search (SoRTS), an algorithm for the safe navigation of mobile robots in social domains. SoRTS aims to augment exist...
Preprint
Full-text available
The process of designing costmaps for off-road driving tasks is often a challenging and engineering-intensive task. Recent work in costmap design for off-road driving focuses on training deep neural networks to predict costmaps from sensory observations using corpora of expert driving data. However, such approaches are generally subject to over-con...
Article
Full-text available
We quantify and analyze the potential number of flyable hours for an advanced air mobility (AAM) vehicle over the contiguous United States. We use Meteorological Aerodrome Reports (METARs) from 2019, covering 91 airports in the US. By filtering the METARs based on Federal Aviation Administration mandated flight conditions and the vehicle’s physical...
Article
Full-text available
Autonomous robot navigation in austere environments is critical to missions like “search and rescue”, yet it remains difficult to achieve. The recent DARPA Subterranean Challenge (SubT) highlights prominent challenges including GPS-denied navigation through rough terrains, rapid exploration in large-scale three-dimensional (3D) space, and interrobo...
Article
Full-text available
This paper surveys recent progress and discusses future opportunities for Simultaneous Localization And Mapping (SLAM) in extreme underground environments. SLAM in subterranean environments, from tunnels, caves, and man-made underground structures on Earth, to lava tubes on Mars, is a key enabler for a range of applications, such as planetary explo...
Article
Time-optimal path planning in high winds for a turning-rate constrained UAV is a challenging problem to solve and is important for deployment and field operations. Previous works have used trochoidal path segments comprising straight and maximum-rate turn segments, as optimal extremal paths in uniform wind conditions. Current methods iterate over a...
Article
Full-text available
This work proposes an autonomous multi-robot exploration pipeline that coordinates the behaviors of robots in an indoor environment composed of multiple rooms. Contrary to simple frontier-based exploration approaches, we aim to enable robots to methodically explore and observe an unknown set of rooms in a structured building, keeping track of which...
Preprint
Full-text available
This paper presents the ARCAD simulator for the rapid development of Unmanned Aerial Systems (UAS), including underactuated and fully-actuated multirotors, fixed-wing aircraft, and Vertical Take-Off and Landing (VTOL) hybrid vehicles. The simulator is designed to accelerate these aircraft's modeling and control design. It provides various analyses...
Preprint
Full-text available
Visual localization plays an important role for intelligent robots and autonomous driving, especially when the accuracy of GNSS is unreliable. Recently, camera localization in LiDAR maps has attracted more and more attention for its low cost and potential robustness to illumination and weather changes. However, the commonly used pinhole camera has...
Article
Accurate camera localization in existing LiDAR maps is promising since it potentially allows exploiting strengths of both LiDAR-based and camera-based methods. However, effective methods that robustly address appearance and modality differences for 2D–3D localization are still missing. To overcome these problems, we propose the I2D-Loc, a scene-agn...
Preprint
Full-text available
We propose developing an integrated system to keep autonomous unmanned aircraft safely separated and behave as expected in conjunction with manned traffic. The main goal is to achieve safe manned-unmanned vehicle teaming to improve system performance, have each (robot/human) teammate learn from each other in various aircraft operations, and reduce...
Chapter
Few-shot object detection has attracted increasing attention and rapidly progressed in recent years. However, the requirement of an exhaustive offline fine-tuning stage in existing methods is time-consuming and significantly hinders their usage in online applications such as autonomous exploration of low-power robots. We find that their major limit...
Preprint
Full-text available
Wide-angle cameras are uniquely positioned for mobile robots, by virtue of the rich information they provide in a small, light, and cost-effective form factor. An accurate calibration of the intrinsics and extrinsics is a critical pre-requisite for using the edge of a wide-angle lens for depth perception and odometry. Calibrating wide-angle lenses...
Article
Full-text available
Recent years have witnessed the increasing application of place recognition in various environments, such as city roads, large buildings, and a mix of indoor and outdoor places. This task, however, still remains challenging due to the limitations of different sensors and the changing appearance of environments. Current works only consider the use o...
Preprint
Full-text available
We present a method to synthesize novel views from a single $360^\circ$ panorama image based on the neural radiance field (NeRF). Prior studies in a similar setting rely on the neighborhood interpolation capability of multi-layer perceptions to complete missing regions caused by occlusion, which leads to artifacts in their predictions. We propose 3...
Preprint
Full-text available
Seamlessly integrating rules in Learning-from-Demonstrations (LfD) policies is a critical requirement to enable the real-world deployment of AI agents. Recently Signal Temporal Logic (STL) has been shown to be an effective language for encoding rules as spatio-temporal constraints. This work uses Monte Carlo Tree Search (MCTS) as a means of integra...
Preprint
Full-text available
Estimating terrain traversability in off-road environments requires reasoning about complex interaction dynamics between the robot and these terrains. However, it is challenging to build an accurate physics model, or create informative labels to learn a model in a supervised manner, for these interactions. We propose a method that learns to predict...
Preprint
Full-text available
Multi-agent exploration of a bounded 3D environment with unknown initial positions of agents is a challenging problem. It requires quickly exploring the environments as well as robustly merging the sub-maps built by the agents. We take the view that the existing approaches are either aggressive or conservative: Aggressive strategies merge two sub-m...
Preprint
Full-text available
The visual camera is an attractive device in beyond visual line of sight (B-VLOS) drone operation, since they are low in size, weight, power, and cost, and can provide redundant modality to GPS failures. However, state-of-the-art visual localization algorithms are unable to match visual data that have a significantly different appearance due to ill...
Preprint
Full-text available
Place recognition is the fundamental module that can assist Simultaneous Localization and Mapping (SLAM) in loop-closure detection and re-localization for long-term navigation. The place recognition community has made astonishing progress over the last $20$ years, and this has attracted widespread research interest and application in multiple field...
Article
Full-text available
Many aerial robotic applications require the ability to land on moving platforms, such as delivery trucks and marine research boats. We present a method to autonomously land an Unmanned Aerial Vehicle on a moving vehicle. A visual servoing controller approaches the ground vehicle using velocity commands calculated directly in image space. The contr...
Preprint
Full-text available
We present BioSLAM, a lifelong SLAM framework for learning various new appearances incrementally and maintaining accurate place recognition for previously visited areas. Unlike humans, artificial neural networks suffer from catastrophic forgetting and may forget the previously visited areas when trained with new arrivals. For humans, researchers di...
Preprint
Full-text available
This paper reports on the state of the art in underground SLAM by discussing different SLAM strategies and results across six teams that participated in the three-year-long SubT competition. In particular, the paper has four main goals. First, we review the algorithms, architectures, and systems adopted by the teams; particular emphasis is put on l...
Preprint
Full-text available
Interestingness recognition is crucial for decision making in autonomous exploration for mobile robots. Previous methods proposed an unsupervised online learning approach that can adapt to environments and detect interesting scenes quickly, but lack the ability to adapt to human-informed interesting objects. To solve this problem, we introduce a hu...