
Sebastian Monka- Karlsruhe Institute of Technology
Sebastian Monka
- Karlsruhe Institute of Technology
About
19
Publications
4,639
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
128
Citations
Introduction
Current institution
Publications
Publications (19)
Despite the remarkable success of deep neural networks (DNNs) in computer vision, they fail to remain high-performing when facing distribution shifts between training and testing data. In this paper, we propose Knowledge-Guided Visual representation learning (KGV), a distribution-based learning approach leveraging multi-modal prior knowledge, to im...
Knowledge graphs (KGs) have transformed data management within the manufacturing industry, offering effective means for integrating disparate data sources through shared and structured conceptual schemas. However, harnessing the power of KGs can be daunting for non-experts, as it often requires formulating complex SPARQL queries to retrieve specifi...
Trajectory prediction in traffic scenes involves accurately forecasting the behaviour of surrounding vehicles. To achieve this objective it is crucial to consider contextual information, including the driving path of vehicles, road topology, lane dividers, and traffic rules. Although studies demonstrated the potential of leveraging heterogeneous co...
Autonomous Driving (AD) datasets, when used in combination with deep learning techniques, have enabled significant progress on difficult AD tasks such as perception, trajectory prediction and motion planning. These datasets represent the content of driving
scenes as captured by various sensors, including cameras, RADAR, and LiDAR, along with 2D/3D...
Deep learning methods have made remarkable breakthroughs in machine learning in general and in automated driving (AD) in particular. However, there are still unsolved problems to guarantee reliability and safety of automated systems, especially to effectively incorporate all available information and knowledge in the driving task. Knowledge graphs...
Current deep learning methods for object recognition are purely data-driven and require a large number of training samples to achieve good results. Due to their sole dependence on image data, these methods tend to fail when confronted with new environments where even small deviations occur. Human perception, however, has proven to be significantly...
Current deep learning methods for object recognition are purely data-driven and require a large number of training samples to achieve good results. Due to their sole dependence on image data, these methods tend to fail when confronted with new environments where even small deviations occur. Human perception, however, has proven to be significantly...
Current deep learning methods for object recognition are purely data-driven and require a large number of training samples to achieve good results. Due to their sole dependence on image data, these methods tend to fail when confronted with new environments where even small deviations occur. Human perception, however, has proven to be significantly...
Automated driving is one of the most active research areas in computer science. Deep learning methods have made remarkable breakthroughs in machine learning in general and in automated driving (AD) in particular. However, there are still unsolved problems to guarantee reliability and safety of automated systems, especially to effectively incorporat...
Automated driving is one of the most active research areas in computer science. Deep learning methods have made remarkable breakthroughs in machine learning in general and in automated driving (AD)in particular. However, there are still unsolved problems to guarantee reliability and safety of automated systems, especially to effectively incorporate...
Automated Driving (AD) datasets, when used in combination with deep learning techniques, have enabled significant progress on difficult AD tasks such as perception, trajectory prediction and motion planning. These datasets represent the content of driving scenes as captured by various sensors, including cameras, RADAR, and LiDAR, along with 2D/3D a...
Recent approaches of computer vision utilize deep learning methods as they perform quite well if training and testing domains follow the same underlying data distribution. However, it has been shown that minor variations in the images that occur when using these methods in the real world can lead to unpredictable errors. Transfer learning is the ar...
The information perceived via visual observations of real-world phenomena is unstructured and complex. Computer vision (CV) is the field of research that attempts to make use of that information. Recent approaches of CV utilize deep learning (DL) methods as they perform quite well if training and testing domains follow the same underlying data dist...
Traditional approaches to computer vision tasks based on neural networks are typically trained on a large amount of pure image data. By minimizing the cross-entropy loss between a prediction and a given target class, the network and its visual embedding space are automatically learned to fullfill a given task. However, due to the sole dependence on...
Traditional computer vision approaches, based on neural networks (NN), are typically trained on a large amount of image data. By minimizing the cross-entropy loss between a prediction and a given class label, the NN and its visual embedding space are learned to fulfill a given task. However, due to the sole dependence on the image data distribution...
Deep learning techniques achieve high accuracy in computer vision tasks. However, their accuracy suffers considerably when they face a domain change, i.e., as soon as they are used in a domain that differs from their training domain. For example, a road sign recognition model trained to recognize road signs in Germany performs poorly in countries w...
In order to improve usability and safety, modern unmanned aerial vehicles (UAVs) are equipped with sensors to monitor the environment, such as laser-scanners and cameras. One important aspect in this monitoring process is to detect obstacles in the flight path in order to avoid collisions. Since a large number of consumer UAVs suffer from tight wei...
In order to improve usability and safety, modern unmanned aerial vehicles (UAVs) are equipped with sensors to monitor the environment, such as laser-scanners and cameras. One important aspect in this monitoring process is to detect obstacles in the flight path in order to avoid collisions. Since a large number of consumer UAVs suffer from tight wei...