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Abstract— We present an approach for the development
of lightweight analog cognition for autonomous navigation in
unknown environments. We consider a hypothetical differential
drive robot, equipped with a limited sensor suite that includes
one front and one rear monocular obstacle sensor and a target
(bearing and distance) sensor. A robotic motion control scheme
is developed for obstacle avoidance and target-seeking using
an innovative dynamical systems architecture incorporating a
nonlinear controller derived using Lyapunov techniques. We
claim that the avoidance-steering behavioral property of the
agent is a weakly emergent characteristic. Simulations are
provided and discussed.

I. INTRODUCTION

For a wide range of applications in mobile robotics, a
coordinated group of lightweight agents can outperform a
more heavily-equipped processing-intensive single robot. A
team of economical agents can provide superior coverage
and a degree of redundancy that increases the likelihood
of mission success. Indeed, for surveillance, disaster-relief
or remote exploration, the multi-robot team is envisioned to
supplant the paradigm of the single powerful automaton [1],
[2], [3], [4].

In such distributed robotic systems, individual agents
must possess ample capabilities despite stringent hardware
constraints that limit available processing power and memory
capacity. A number of lightweight behavioral control archi-
tectures exist, referred to generally as reactive robotic control
schemes [5], ranging from Braitenberg-type designs used
in swarm robotics, BEAM (Biology, Electronics, Aesthetics,
Mechanics) control methods based on neural-like processing,
to behavior-based approaches. As described in [5], each of
these techniques is inspired by biology, and attempts to
emulate various aspects of biological cognition. A primary
reason for developing bio-mimetic robot control schemes is
to achieve the high “intellect-to-mass” ratios exhibited by
simple animals.

Consider that a honeybee, equipped with a brain that
consists of roughly 106 neurons with a power “rating” of less
than 1 mW, exhibits a wide range of social interactions, the
capacity for learning as well as three-dimensional navigation,
whereas a modern autonomous ground-based robot, equipped
with several consumer-grade microprocessors, each of which
consisting of approximately 107 transistors and rated at
more than 10 W, lacks the behavioral sophistication of the
insect [6] [7] [8] [9] [10] [11]. The divide between the natural
and the artificial is so vast, that technological improvements
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alone (as dictated by Moore’s Law) may be insufficient to
close the gap, and there seems to be a clear need for the
continued development of novel paradigms of cognition for
robotics, especially those inspired by nature [12] [13].

Most forms of robotic control have drawn inspiration
from features of the brain common to many species. For
example, there is substantial evidence that computation in the
brain is fundamentally analog, i.e., occurring on continuous
scales of amplitude and time, and nonlinear [14], [15], [16],
[17]. This has motivated the use of artificial neural network
(ANN) control in robotics, and, while practical examples of
such systems exist ([18], [19]), there is still no systematic
approach that dictates the topology and parameter settings of
the ANN from behavioral requirements.

But perhaps the most compelling aspect of biological
cognition is the mysterious way by which behavior emerges
from the nonlinear dynamics of the brain [20]. That is,
while in software-programmed robots many behaviors can be
predicted from scripted action “units” and are, therefore, not
emergent in the sense of Bedau [20]1, behaviors generated
by biological cognition are not predictable, or, at least, not
straightforwardly so. For even if the full complement of
deterministic differential equations describing the (relevant
portion of the) brain is available, the nonlinearity and high
order of the system tend to thwart efforts to determine an
exact solution analytically. Thus we argue that, in general,
biological cognition produces behavior in a manner consis-
tent with Bedau’s definition of weak emergence.

Even if one rejects the idea that biological cognition is un-
scripted, and that it is simply beyond our current capabilities
to script behavior “dynamically,” then the following question
still remains: How does a nonlinear dynamical system encode
behavior?

II. CONTRIBUTIONS

We present a robotic control scheme for simultaneous
target-seeking and obstacle avoidance in unknown environ-
ments. To the best of our knowledge, our approach is the
first to demonstrate a systematically synthesized cognition
described in terms of nonlinear dynamics that exhibits
useful, weakly emergent behavioral properties. Specifically,
we show that subsumed obstacle avoidance steering occurs
without an explicit attempt on the part of the designers; no
where in the behavioral design of the agent is the behavior
“steer to avoid obstacles” explicit, yet, such steering behavior

1Bedau states that a property P of a system S with dynamics D is called
weakly emergent if, given known initial conditions and external inputs, the
existence of P can be deduced only by simulation of D.
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Fig. 1. Top view of agent. The chassis of the agent is indicated by the
shaded triangle. A body frame of reference is indicated by the x1L-x2L

coordinate system. Shown are the front- and rear-mounted obstacle
sensors. The position of the target, denoted by T , is given by the polar
coordinates (rT , θT ).

is evident from simulation. Implied steering information from
sensors is also not available since the front and rear obstacle
sensors are monocular.

III. PROBLEM FORMULATION

We consider an environment represented in Euclidean
space, Rm, m ∈ Z , 2 ≤ m ≤ ∞. The target, obstacles and
initial robot position are located within a compact subset of
Rm. Obstacles are assumed to be simply connected subsets
of Rm. A stationary target is positioned arbitrarily in the
environment. Our derivations are valid for any m, however,
for the purposes of simulation (presented in Section V), we
shall impose the restriction m = 2 (i.e., navigation in the
plane).

The agent or robot, also dimensionless (but with a specific
orientation), has a local frame of reference, as shown in
Figure 1. Not shown in the figure (but taken into account
in simulations) is the underlying differential drive [21]. The
robot may translate forward or reverse, in the direction of
its x1L axis, and rotate about its center (coincident with the
origin of the local coordinate system, O). Translational speed
is denoted by vτ and rotational rate is denoted by ωρ.

The robot has no map of the environment, nor does it
possess the ability to estimate its own global position or
velocity. It is equipped with fore and aft monocular obstacle
sensors for which readings use a class-L function (i.e., a
bounded, continuous, positive and monotonically decreasing
function) of the distance to the nearest obstacle point directly
in front or behind the robot, respectively. The agent is also
equipped with a target sensor which returns the distance and
bearing to the target, denoted by rT and θT , as shown in
Figure 1. The robot has no other sensors.

The readings from the front and rear obstacle sensors

are given by the polar-coordinate forms
[
−σ0,f

0

]
and[

σ0,r

0

]
, respectively, where σ0,f and σ0,r represent the

class-L functions mentioned above. The overall obstacle
sensor reading is formed as the virtual force

σ0 =
[
−σ0,f

0

]
+

[
σ0,r

0

]
. (1)
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Fig. 2. Proposed analog-compatible robotic control scheme. The
agent’s dynamics are captured by “control/computation” and models of
the world or the functioning of sensors (external to the robot) comprise
the “sensing/actuation” portion of the scheme.

Note that there is no angular component in these obstacle
sensor readings and so no explicit steering information is
imparted to the agent.

Target sensing information is denoted by σ1 =
[

rT

θT

]
,

where rT and θT denote distance and bearing to the target,
respectively, as shown in Figure 1. To avoid singularities
in the control law u1, described below, we impose the
restrictions that rT ∈ [a,∞), and θT ∈ [−b, b], where a > 0
and 0 ≤ b < π

2 .

IV. APPROACH

Beer’s formulation lays a foundation for us, describing
an autonomous agent based on dynamical systems, in which
an explicit internal state is associated with the agent [22].
This state suggests that the agent is not merely reflexively
reacting to stimuli, but is processing information about its
environment— a kind of deliberation— and acting accord-
ingly. Our task is to provide a methodology to synthesize
the agent’s dynamics, and thus “fill in the blanks” of Beer’s
template.

The proposed cognition is organized into two levels or
layers, as shown in Figure 2. The inner control loop, Level 0,
consisting of “environmental” model E0 and controller C0,
corresponds to basic actuation (locomotion via a differential
drive). The outer control loop, Level 1, consisting of plant P1

and controller C1, is the motion planning (obstacle avoidance
and target seeking) level.

At each level, we express the problem the agent needs to
solve as an environmental model— in effect, translating the
problem into a domain where analog control-theoretic tech-
niques are natural— and design a controller that regulates
the plant and hence achieves our objectives. The cognition
or “behavior-generator” thus takes the form of an analog
controller. The architecture follows naturally from this plant-
controller co-design concept. The Ei blocks model some
aspect of our path-planning problem (based on a combination
of formal derivation and qualitative concepts), the controllers
Ci are derived to achieve desired aims by considering the
dynamics of the relevant Ei.

A. Level 0 Dynamics

Level 0 consists of the blocks C0 and E0, is the lowest
level of the scheme, and encompasses a closed-loop differen-
tial drive system. The E0 block models a pair of dc motors,
each of which is described by the block diagram in Figure 3.
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Fig. 3. Model for each motor. The block diagram describes an
armature-controlled dc motor, with parameters Km = 0.00837 Nm/A,
Ra = 10.4 Ω, La = 150 µH, Jm = 6.7×10−8 Nms2/rad, b = 10 Nms,
Kb = 8.3747 mV/(rad/s), and Laplace variable, s.

The translational speed, vτ , and rotational rate, ωρ, of the
agent are related to the left and right motor speeds, denoted
by ωL and ωR, respectively, as

ωL = −
(

1
ρ

)
vτ +

(
λ

2ρ

)
ωρ (2)

and

ωR =
(

1
ρ

)
vτ +

(
λ

2ρ

)
ωρ (3)

where ρ represents tire radius and λ represents the center-
to-center distance between the left and right tires. No slip
conditions are assumed. The controller, C0, is comprised of
a pair of PID-type regulators, each of the form c s+d

s , where
c and d are real constants.

It is important to note that from the perspective of Level 1,
the closed loop system consisting of C0 and E0 is assumed
to be the identity system, which is valid if the dynamics of
Level 0 are sufficiently fast.

B. Level 1 Dynamics

The Level 1 system encompasses Level 0 (in its entirety)
denoted by L0, controller C1 and model E1. Level 1
represents both seeking and obstacle avoidance. Obstacle
avoidance is handled implicitly by the control system which
treats the obstacle sensor output as a exogenous or “noise”
input that is suppressed.

The E1 model is derived using geometry and describes
the kinematic relationship between the velocity of the agent
and convergence to the target. That is,

η̇ = B1,2(η)
[

vτ

ωρ

]
σ1 = η

(4)

in which η ∈ R2 is the state vector,

B1,2(η) =

[
− cos(η2) 0

sin(η2)
η1

1

]
. While the model is not

explicitly realized (it represents the target sensor), it is
used in the analytic derivation of the controller, C1. The
C1 control design problem is represented in Figure 4. The
block C1,1 describes a behavioral constraint expressed as

C1,1 :
{

ξ̇1,1 = A1,1ξ1,1 + B1,1e1

eB = G1,1ξ1,1

(5)

C1,1

C1

C1,2
L0 E10

u1,2 y0

σ1

+
_ e1

u1
+
+

ξ1,1ξ

y1
eB

Fig. 4. Setup for design of C1.

where eB is the output of a low pass filter given by the stable
controllable state model (A1,1, B1,1, G1,1). The regulation
of eB about zero imposes that the agent should arrive at
the target, but not necessarily “right away” since eB varies
slowly relative to the error e1. The control u1 is derived using
Lyapunov synthesis [23] based on the Lyapunov function

V1 = ξT
1,1Pξ1,1 +

1
2ε

eT
BeB + zT z (6)

where P is a positive definite matrix, ε > 0, and z is
the backstepping error state (see [23] or [24]) given by
z = y1− uα where uα is the virtual control (associated with
backstepping). We derive that

u1,2 = B−1
1,2(η)

[
A1ξ1,1 − ρA2(eB)s(eB)

]
− κ

2
z (7)

where A1 is a constant matrix, A2(·) and s(·) are nonlinear
mappings involving saturation and pulse functions, and ρ
and κ are positive constants. This provides that ‖ξ1,1‖ is
bounded, ‖z‖ is bounded, and ‖eB‖ is bounded and tends
to zero as time approaches infinity. We have assumed,
however, that σ1 is bounded (with a known bound) and,
technically, this assumption is not accurate. This is a key
approximation with our approach— that obstacles may be
represented by bounded disturbances on the system. In fact,
upon contact, the obstacle sensor output due to an immovable
obstacle ought to match the agent’s incident velocity and,
therefore, σ1 should not be bounded (it is, however, since
we’ve specified class-L functions to describe virtual forces).
Nevertheless, the control u1,2, provides an arguably useful
behavior that is geared toward lightweight machines (which,
while not guaranteeing target convergence, may be adequate
for the required application).

V. SIMULATIONS

The agent is simulated in three distinct obstacle courses,
placed at various initial positions and orientations. We in-
clude several representative plots here with full animation
videos available directly from the following URL2:
http://www.ece.tamu.edu/∼takis/robotics main page 2.html

In these simulations, the robot is indicated by a conical
shape, and its trace is shown in each plot. The target is
depicted as a green torus. No physical contact is made
between the robot and the obstacles (no physics is mod-
eled in these simulations); the robot reacts to the local

2The reader may also navigate to the following URL and take the
“Research” link: http://www.ece.tamu.edu/∼takis.
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initial position

Fig. 5. Simulation #1.

obstacle detector output σ1 only. Simulations are conducted
using MatlabTM and SimulinkTM, and execute rapidly on a
PowerPC G4 processor (even for complex obstacle courses,
simulations are completed within a couple of minutes). A
custom C/C++ OpenGL application was developed to render
the simulation [25].

The agent’s controller parameters are the same in all sim-
ulations, and were chosen through a trial-and-error process.
The simulated obstacle detection sensor characteristics also
have a considerable influence on the agent’s behavior. The
sensors are based on an exponential function with a decay
rate that is adjusted to yield different resolutions.

In the first pair of simulations, with results shown in
Figures 5 and 6, we note how the agent deals with a
fairly wide obstruction. In each simulation, the agent is
initially positioned “behind” the wall, on the side furthest
from the target. In Figure 5, we note that the agent first
makes a number of forward and reverse motions, apparently
attempting to pass through the obstacle by overcoming the
virtual force. Within a short time, the agent begins to steer
and takes a circuitous path to the target. We surmise that the
filtering provided by C1,1 makes such trajectories admissible.
A close-up view of the first simulation is shown in Figure 7.
In Figure 6, the agent is again positioned initially behind the
wall, but is facing in the direction opposite the target. The
resulting path is much more direct and straightforward, likely
because the agent does not experience an opposing virtual
force.

The next pair of simulations, Figures 8 and 9, show
the agent coping with a regular arrangement of spherical
obstacles. Both of these simulations appear to suggest the
agent’s obstacle avoidance strategy of steering. Convergence
is successful in both cases.

In the final pair of simulations shown in Figures 10 and 11,

initial position

Fig. 6. Simulation #2.

initial position

Fig. 7. Simulation #1, closer view (with trajectory truncated).

the agent is placed in a challenging maze-like environment.
The first figure shows an unsuccessful attempt, since the
agent, even after considerable time, fails to converge to
the target. From a different initial position and orientation,
however, the agent makes it to the target (in relatively little
time), as shown in Figure 11.

VI. CONCLUSION

A hierarchical robotic control scheme developed using
control-theoretic tools and inspired by neuroscience has been
described and demonstrated. We answer the question posed
in the introduction, namely, “How does a dynamical system
encode behavior?” as “A dynamical system encodes behav-
ior through the use of regulatory mechanisms— feedback
control loops synthesized to achieve particular goals. The
behaviors that result are simply the outputs of controllers.”
Because of its direct compatibility with dynamical systems,
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Fig. 8. Simulation #3.

initial position

Fig. 9. Simulation #4.

initial position

Fig. 10. Simulation #5.
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initial position

Fig. 11. Simulation #6.

control theory provides an ideal analog “programming lan-
guage” to generate behavior for lightweight agents. We for-
mulated target-seeking and subsumed obstacle avoidance as a
tracking-control problem with disturbance-input suppression,
and the approach appears to have practical merit (insofar as
simulations may be considered valid empirical studies).
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