Sebastian Castillo-Hair

Sebastian Castillo-Hair
Verified
Sebastian verified their affiliation via an institutional email.
Verified
Sebastian verified their affiliation via an institutional email.
  • PhD
  • Postdoctoral researcher at University of Washington

Integrating high throughput experiments and machine learning to advance synthetic biology.

About

18
Publications
3,075
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
551
Citations
Current institution
University of Washington
Current position
  • Postdoctoral researcher

Publications

Publications (18)
Preprint
Full-text available
Limiting expression to target cell types is a longstanding goal in gene therapy, which could be met by sensing endogenous microRNA. However, an unclear association between microRNA expression and activity currently hampers such an approach. Here, we probe this relationship by measuring the stability of synthetic microRNA-responsive 3’UTRs across 10...
Article
Full-text available
The interplay between transcription factors and chromatin accessibility regulates cell type diversification during vertebrate embryogenesis. To systematically decipher the gene regulatory logic guiding this process, we generated a single-cell multi-omics atlas of RNA expression and chromatin accessibility during early zebrafish embryogenesis. We de...
Article
Full-text available
mRNA therapeutics are revolutionizing the pharmaceutical industry, but methods to optimize the primary sequence for increased expression are still lacking. Here, we design 5’UTRs for efficient mRNA translation using deep learning. We perform polysome profiling of fully or partially randomized 5’UTR libraries in three cell types and find that UTR pe...
Preprint
Full-text available
An important and largely unsolved problem in synthetic biology is how to target gene expression to specific cell types. Here, we apply iterative deep learning to design synthetic enhancers with strong differential activity between two human cell lines. We initially train models on published datasets of enhancer activity and chromatin accessibility...
Chapter
Optogenetics enables precise control of gene expression in a variety of organisms. We recently developed the first system for optogenetic control of transcription in Bacillus subtilis. This system is based on CcaSR, a light-responsive two-component regulatory system originally derived from Synechocystis PCC 6803. The so-called B. subtilis CcaSR v1....
Preprint
Full-text available
The 5′ UTRs of mRNAs are critical for translation regulation, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5′ UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5′ UTR is sufficient to...
Preprint
Full-text available
The discovery of new genes regulating essential biological processes has become increasingly important, and CRISPRi has emerged as a powerful tool for achieving this goal. This method has been used in many model organisms to decrease the expression of specific genes and assess their impact on phenotype. Pooled CRISPRi libraries in bacteria have bee...
Article
Full-text available
Over just the last 2 years, mRNA therapeutics and vaccines have undergone a rapid transition from an intriguing concept to real-world impact. However, whereas some aspects of mRNA therapeutics, such as the use of chemical modifications to increase stability and reduce immunogenicity, have been extensively optimized for over two decades, other aspec...
Article
Full-text available
Biological engineers often find it useful to communicate using diagrams. These diagrams can include information both about the structure of the nucleic acid sequences they are engineering and about the functional relationships between features of these sequences and/or other molecular species. A number of conventions and practices have begun to eme...
Article
Full-text available
The Gram-positive bacterium Bacillus subtilis exhibits complex spatial and temporal gene expression signals. Although optogenetic tools are ideal for studying such processes, none has been engineered for this organism. Here, we port a cyanobacterial light sensor pathway comprising the green/red photoreversible two-component system CcaSR, two metabo...
Article
Bacillus subtilis is the leading model Gram-positive bacterium, and a widely used chassis for industrial protein production. However, B. subtilis research is limited by a lack of inducible promoter systems with low leakiness and high dynamic range. Here, we engineer an inducible promoter system based on the T7 RNA Polymerase, the lactose repressor...
Chapter
Optogenetic systems enable unmatched precision for controlling molecular biological processes but require the use of specialized electrical and optical hardware. In an effort to make working with optogenetic systems more accessible, we recently described an open-source hardware platform called the Light Plate Apparatus (LPA). The LPA is a device ca...
Article
Full-text available
In optogenetics, researchers use light and genetically encoded photoreceptors to control biological processes with unmatched precision. However, outside of neuroscience, the impact of optogenetics has been limited by a lack of user-friendly, flexible, accessible hardware. Here, we engineer the Light Plate Apparatus (LPA), a device that can deliver...
Article
Flow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (M...
Article
Full-text available
Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to...
Article
Gene networks regulate biological processes dynamically. However, researchers have largely relied upon static perturbations, such as growth media variations and gene knockouts, to elucidate gene network structure and function. Thus, much of the regulation on the path from DNA to phenotype remains poorly understood. Recent studies have utilized impr...

Network

Cited By